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THE MAXIMAL OPERATOR OF THE (C,a«) MEANS
OF THE WALSH-FOURIER SERIES

U. Goginava (Thilisi, Georgia)

Abstract. The main aim of this paper is to prove that for the boundedness
of the maximal operator 0 from the Hardy space H,(I) to space Ly(I)
the assumption p > 1/(a + 1) is essential.

We denote the set of non-negative integers by N. By a dyadic interval in

I 1+1
2k’;> for some k € N, 0 <1 < 2F.

Given k € N and z € [0,1), let Iy(z) denote the dyadic interval of length 2%
which contains the point z.

I:1]0,1) we mean one of the form [

We also use the notation mes(A) for the Lebesgue measure of any measur-
able set A.

Let ro(z) be a function defined by
1, ifxze][0,1/2)
ro(z) = ; ro(z +1) =ro(x).
—1, ifze(1/2,1)
The Rademacher system is defined by

rn(z) =19(2"z), mn>1 and =z €]0,1).

Let wp,ws, ... represent the Walsh functions, i.e. wg(xz) =1 and if n =
=20m) 4 4 2() ig a positive integer with ny > ng > ... > n,, then

wp () = 1y, (2) .oy, (2).
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The Walsh-Dirichlet kernel is defined by

D,(z) = Z_:wk(x)
k=0

Recall that

2n ifx € [0,1/2™),
1) Dan (&) =

0, ifxzell/271).

The partial sums of the Walsh-Fourier series are defined as follows:

=

m—

Sulfox) = 3 F(i)w(a),

j=0
where the number

ﬂﬁz/}wmwmm
I

is said to be j-th Walsh-Fourier coefficient of the function f.
The norm (or quasinorm) of the space L,(I) is defined by

1/p

17l = | [ s (0<p <+

The space weak-L,(I) consists of all measurable functions f for which

[1Fllweat—z, 1) = sup A mes(| f| > NP < oo,
>

The o-algebra generated by the dyadic Ij, interval of length 2% will be
denoted by Fj, (k € N).

Denote by f = (f,n € N martingale with respect to (Fj,,n € N (for
details see, e.g. [7, 10]). The maximal function of martingale f is defined by

£ = sup £,
neN
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In case f € Li(I), the maximal function can also be given by

* =su ot w)du x
f*(z) =sup (@) /f( )dul, el

n>1 1MES
n(z)

For 0 < p < oo the Hardy martingale space H,(I) consist all martingales
for which

Al m, = (1] < oo

If f € Li(I) then it is easy to show that the sequence (Son(f) : n € N)
is a martingale. If f is a martingale, that is f = (f©, fM) ..)) then the
Walsh-Fourier coefficients must be defined in a little bit different way:

FG) = lim [ (@)w;(2)da.
Ja

The Walsh-Fourier coefficients of the function f € L;(I) are the same as the
ones of the martingale (San(f) : » € N obtained from the function f.

The (C, ) means of the Walsh-Fourier series of the martingale f is given
by

n

1

on(fx) = Ao ZAz:jl'Sj(fvx)’
n— j=1
where
e I+a)...(n+a)

n!
for any n € N, # —1,—2,... It is known that [11] A% ~ n®.

For the martingale f we consider the maximal operator

ol f = suploy(f,z)|.

The (C, «) kernel is defined by

n

(6% 1 o—
Kp(w) = 3 > AT IDy(w).
n=l =1

The first result with respect to the a.e. convergence of the Walsh-Fejér
means o). f is due to Fine [1]. Later, Schipp [4] showed that the maximal
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operator ol f is of weak type (1,1), from which the a.e. convergence follows
by standard argument [3]. Schipp’s result implies by interpolation also the
boundedness of ¢} : L, — L, (1 < p < oo). This fails to hold for p = 1, but
Fujii [2] proved that ¢! is bounded from the dyadic Hardy space H; to the space
Ly (see also Simon [5]). Fujii’s theorem was extended by Weisz [8]. Namely, he
proved that the maximal operator of the Fejér means of the one-dimensional
Walsh-Fourier series is bounded from the martingale Hardy space H,(I) to the
space L,(I) for p > 1/2. Simon [6] gave a counterexample, which shows that
this boundedness does not hold for 0 < p < 1/2.

The maximal operator ¢% (0 < a < 1) of the (C, @) means of the Walsh-
Paley Fourier series was investigated by Weisz [9]. In his paper Weisz proved
the boundedness of ¢¢ : H, — L, when p > 1/(1+«). In [9] Weisz conjectured
that for the boundedness of the maximal operator ¢2 from the Hardy space
H,(I) to the space L,(I) the assumption p > 1/(o + 1) is essential. We give
answer to the question and prove that the maximal operator o2 of the (C, a)
means of the Walsh-Paley Fourier series is not bounded from the Hardy space
Hy/o41(1) to the space Lq/q41(1). The following is true.

Theorem 1. Let a € (0,1). Then the maximal operator c% of the
(C, ) means of the Walsh-Fourier series is not bounded from the Hardy space
Hyja41)(I) to the space Ly q41)(I).

In order to prove Theorem 1 we need the following lemma.

Lemma 1. Let 1 <n € N. Then

« a 1/(a+1) >
[ (A3 K @) > cfa)
I

Proof. It is evident that

/D x)dx = min{i, j}.

Then we can write

2
M

Y AL D) | de =

1

AalAal/D

A?V;fjA%;li min{i, j} > ¢ () M2,

<

Il

<
Il
_
o
Il

=
Ms

<
I
-
-
Il
-

|
_ME
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It is well-known that [9]

(3) /|Kf\}(ac)\dx <cla) <oco, M=1,2..
T

Denote
Ey,:={z€l: |Kj‘i‘,i (2)| < c(a)N;}

and
GNi = I\ENm
where
27l
Ny= 2 i=1,2,.. | ——|, n>2
N? logy n

and ¢(«) is some positive constant discussed later.

From (2) and (3) we can write

(4) cr(@) N7 <

< / (A, |KS, (2)])2dz =
I

- / (A, L |KS, (2)])2dz + / (A% K, (2)])?de <
GN.

7

En,

<c(@)AY N, / (A%, K, ()] dat
En,
* / (A%, [, () 2o/ (48 |KS (2)) @D dr <
G,
<e(@)es(@)NZL 4 cy(a) N2+ / (A%, K8 | (@)Y .
G,

Define

cla) = c1(a)

© 2c3(a)’

Then from (4) we get

(5) / (A% K@)V @D dzr > es(a) > 0.
GnN

i
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Denote
i—1

QNi = GNi \ U GNJ»
j=1

From the definition of the set G, we obtain

c(a) Nymes(Gy,) < / |KY, (7)]dz < c(a).
G,
Hence

67(04).

(6) mes(Gy,) < N,

Combining (5) and (6) we get

/ (A%, 1 |KR, () (@t dg >

Qn,

i

1—1
> /(A?‘vi_l\K%i(iﬂ)l)l/(““)dfﬂ*Z /(A?vi_ﬂKfé,;(iC)I)l/(““)d:v2
J=1g,,

Consequently we can write

a @ 1/(a+1) >
e (A5, [KS () >

n/(logn

@ 1/(a+1) >
> 3 / s (AR K )/ >

[n/(logn)]

= Z /Aa KR ()Y d >

Zcrs(a) logn’



The maximal operator of the (C, &) means 133

Lemma 1 is proved.

Proof of Theorem 1. Let 1 <n € N and

ful@) i= Dyuss(2) = Dan ().
Then we can write that

0, ifk=0,...,2"

(7) Sk(fnv‘r): Dk(x)_DQ”(x)v ifk:2n+17"‘,2n+1_17

fn(x), if k> 27+,
We have
falz) = Sup |Sar (frs @) = ful2)],
(8) I fallz, = I £5llp = 1| Dan ()], = 277,
Since
Dk+2"_D2” :wQ"Dky k:172a"'72n7
from (7) we obtain
> > n nyL)| =
ol fu(z) = | max |05 ar (fns )|
2"+ M
= max - Z AgnﬁM k (fn;x) >
1<M<2m AS, N o
1 M
a-l_ n n >
= don | Jhax ZA k(Dyy2n(z) — Dan(2))| >
C13
2”04 12N San ZAM k
Then from Lemma 1 we get
a+1
0% fall1/(a c15( o o o
n||1/(a+1) > 15( ) max (AM—llKI\/I(I)Dl/( +1)dl‘ >

||fn||1/(a+1) — 9na29—na ) 1<M<2n

n

a+1
2016(o¢)< > — 00 as n — 0.

logn
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Theorem 1 is proved.
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