THE MAXIMAL OPERATOR OF THE (C, α) MEANS OF THE WALSH–FOURIER SERIES

U. Goginava (Tbilisi, Georgia)

Abstract. The main aim of this paper is to prove that for the boundedness of the maximal operator σ_*^{α} from the Hardy space $H_p(I)$ to space $L_p(I)$ the assumption $p > 1/(\alpha + 1)$ is essential.

We denote the set of non-negative integers by **N**. By a dyadic interval in I : [0,1) we mean one of the form $\left[\frac{l}{2^k}, \frac{l+1}{2^k}\right)$ for some $k \in \mathbf{N}$, $0 \le l < 2^k$. Given $k \in \mathbf{N}$ and $x \in [0,1)$, let $I_k(x)$ denote the dyadic interval of length 2^{-k} which contains the point x.

We also use the notation mes(A) for the Lebesgue measure of any measurable set A.

Let $r_0(x)$ be a function defined by

$$r_0(x) = \begin{cases} 1, & \text{if } x \in [0, 1/2) \\ & & \\ -1, & \text{if } x \in [1/2, 1) \end{cases}, \qquad r_0(x+1) = r_0(x).$$

The Rademacher system is defined by

$$r_n(x) = r_0(2^n x), \quad n \ge 1 \text{ and } x \in [0, 1).$$

Let w_0, w_1, \ldots represent the Walsh functions, i.e. $w_0(x) = 1$ and if $n = 2^{(n_1)} + \ldots + 2^{(n_r)}$ is a positive integer with $n_1 > n_2 > \ldots > n_r$, then

$$w_n(x) = r_{n_1}(x) \dots r_{n_r}(x).$$

Mathematics Subject Classification 2000. 42C10

The Walsh-Dirichlet kernel is defined by

$$D_n(x) = \sum_{k=0}^{n-1} w_k(x).$$

Recall that

(1)
$$D_{2^n}(x) = \begin{cases} 2^n, & \text{if } x \in [0, 1/2^n), \\ 0, & \text{if } x \in [1/2^n, 1). \end{cases}$$

The partial sums of the Walsh-Fourier series are defined as follows:

$$S_m(f,x) = \sum_{j=0}^{m-1} \hat{f}(j)w_j(x),$$

where the number

$$\hat{f}(j) = \int_{I} f(x)w_j(x)dx$$

is said to be j-th Walsh-Fourier coefficient of the function f.

The norm (or quasinorm) of the space $L_p(I)$ is defined by

$$||f||_p := \left(\int_I |f(x)|^p dx \right)^{1/p} \qquad (0$$

The space weak- $L_p(I)$ consists of all measurable functions f for which

$$||f||_{\operatorname{weak}-L_p(I)} := \sup_{\lambda>0} \lambda \operatorname{mes}(|f|>\lambda)^{1/p} < +\infty.$$

The σ -algebra generated by the dyadic I_k interval of length 2^{-k} will be denoted by F_k ($k \in \mathbf{N}$).

Denote by $f = (f^{(n)}, n \in \mathbf{N}$ martingale with respect to $(F_n, n \in \mathbf{N}$ (for details see, e.g. [7, 10]). The maximal function of martingale f is defined by

$$f^* = \sup_{n \in \mathbf{N}} |f^{(n)}|.$$

In case $f \in L_1(I)$, the maximal function can also be given by

$$f^*(x) = \sup_{n \ge 1} \frac{1}{\max(I_n(x))} \left| \int_{I_n(x)} f(u) du \right|, \qquad x \in I.$$

For $0 the Hardy martingale space <math>\mathbf{H}_p(I)$ consist all martingales for which

$$||f||_{H_p} := ||f^*||_p < \infty.$$

If $f \in L_1(I)$ then it is easy to show that the sequence $(S_{2^n}(f) : n \in \mathbf{N})$ is a martingale. If f is a martingale, that is $f = (f^{(0)}, f^{(1)}, \ldots)$ then the Walsh-Fourier coefficients must be defined in a little bit different way:

$$\hat{f}(j) = \lim_{k \to \infty} \int_{I^d} f^{(k)}(x) w_j(x) dx.$$

The Walsh-Fourier coefficients of the function $f \in L_1(I)$ are the same as the ones of the martingale $(S_{2^n}(f) : n \in \mathbb{N}$ obtained from the function f.

The (C, α) means of the Walsh-Fourier series of the martingale f is given by

$$\sigma_n^{\alpha}(f,x) = \frac{1}{A_{n-1}^{\alpha}} \sum_{j=1}^n A_{n-j}^{\alpha-1} S_j(f,x),$$

where

$$A_n^{\alpha} := \frac{(1+\alpha)\dots(n+\alpha)}{n!}$$

for any $n \in \mathbf{N}, \alpha \neq -1, -2, \dots$ It is known that [11] $A_n^{\alpha} \sim n^{\alpha}$.

For the martingale f we consider the maximal operator

$$\sigma_*^{\alpha} f = \sup_n |\sigma_n^{\alpha}(f, x)|$$

The (C, α) kernel is defined by

$$K_n^{\alpha}(x) := \frac{1}{A_{n-1}^{\alpha}} \sum_{k=1}^n A_{n-j}^{\alpha-1} D_k(x).$$

The first result with respect to the a.e. convergence of the Walsh-Fejér means $\sigma_n^1 f$ is due to Fine [1]. Later, Schipp [4] showed that the maximal

operator $\sigma_*^1 f$ is of weak type (1, 1), from which the a.e. convergence follows by standard argument [3]. Schipp's result implies by interpolation also the boundedness of $\sigma_*^1 : L_p \to L_p$ (1 . This fails to hold for <math>p = 1, but Fujii [2] proved that σ_*^1 is bounded from the dyadic Hardy space H_1 to the space L_1 (see also Simon [5]). Fujii's theorem was extended by Weisz [8]. Namely, he proved that the maximal operator of the Fejér means of the one-dimensional Walsh-Fourier series is bounded from the martingale Hardy space $H_p(I)$ to the space $L_p(I)$ for p > 1/2. Simon [6] gave a counterexample, which shows that this boundedness does not hold for 0 .

The maximal operator σ_*^{α} $(0 < \alpha < 1)$ of the (C, α) means of the Walsh-Paley Fourier series was investigated by Weisz [9]. In his paper Weisz proved the boundedness of $\sigma_*^{\alpha} : H_p \to L_p$ when $p > 1/(1+\alpha)$. In [9] Weisz conjectured that for the boundedness of the maximal operator σ_*^{α} from the Hardy space $H_p(I)$ to the space $L_p(I)$ the assumption $p > 1/(\alpha + 1)$ is essential. We give answer to the question and prove that the maximal operator σ_*^{α} of the (C, α) means of the Walsh-Paley Fourier series is not bounded from the Hardy space $H_{1/\alpha+1}(I)$ to the space $L_{1/\alpha+1}(I)$. The following is true.

Theorem 1. Let $\alpha \in (0,1)$. Then the maximal operator σ_*^{α} of the (C, α) means of the Walsh-Fourier series is not bounded from the Hardy space $H_{1/(\alpha+1)}(I)$ to the space $L_{1/(\alpha+1)}(I)$.

In order to prove Theorem 1 we need the following lemma.

Lemma 1. Let $1 < n \in \mathbb{N}$. Then

$$\int_{I} \max_{1 \le N \le 2^n} (A_{N-1}^{\alpha} |K_N^{\alpha}(x)|)^{1/(\alpha+1)} dx \ge c(\alpha) \frac{n}{\log n}.$$

Proof. It is evident that

$$\int_{I} D_j(x) D_i(x) dx = \min\{i, j\}.$$

Then we can write

(2)
$$\int_{I} \left(\sum_{j=1}^{M} A_{M-j}^{\alpha-1} D_{j}(x) \right)^{2} dx =$$
$$= \sum_{j=1}^{M} \sum_{i=1}^{M} A_{M-j}^{\alpha-1} A_{M-i}^{\alpha-1} \int_{I} D_{j}(x) D_{i}(x) dx =$$
$$= \sum_{j=1}^{M} \sum_{i=1}^{M} A_{M-j}^{\alpha-1} A_{M-i}^{\alpha-1} \min\{i,j\} \ge c_{1}(\alpha) M^{2\alpha+1}$$

It is well-known that [9]

(3)
$$\int_{I} |K_{M}^{\alpha}(x)| dx \leq c_{2}(\alpha) < \infty, \quad M = 1, 2..$$

Denote

$$E_{N_i} := \{ x \in I : |K_{N_i}^{\alpha}(x)| \le c(\alpha)N_i \}$$

and

$$G_{N_i} := I \setminus E_{N_i},$$

where

$$N_i := \frac{2^n}{N^i}, \quad i = 1, 2, ..., \left[\frac{n}{\log_2 n}\right], \quad n \ge 2$$

and $c(\alpha)$ is some positive constant discussed later.

From (2) and (3) we can write

(4)
$$c_1(\alpha)N_i^{2\alpha+1} \le$$

$$\begin{split} &\leq \int_{I} (A_{N_{i}-1}^{\alpha} |K_{N_{i}}^{\alpha}(x)|)^{2} dx = \\ &= \int_{E_{N_{i}}} (A_{N_{i}-1}^{\alpha} |K_{N_{i}}^{\alpha}(x)|)^{2} dx + \int_{G_{N_{i}}} (A_{N_{i}-1}^{\alpha} |K_{N_{i}}^{\alpha}(x)|)^{2} dx \leq \\ &\leq c(\alpha) A_{N_{i}-1}^{\alpha} N_{i} \int_{E_{N_{i}}} (A_{N_{i}-1}^{\alpha} |K_{N_{i}}^{\alpha}(x)| dx + \\ &+ \int_{G_{N_{i}}} (A_{N_{i}-1}^{\alpha} |K_{N_{i}}^{\alpha}(x)|)^{(2\alpha+1)/(\alpha+1)} (A_{N_{i}-1}^{\alpha} |K_{N_{i}}^{\alpha}(x)|)^{1/(\alpha+1)} dx \leq \\ &\leq c(\alpha) c_{3}(\alpha) N_{i}^{2\alpha+1} + c_{4}(\alpha) N_{i}^{2\alpha+1} \int_{G_{N_{i}}} (A_{N_{i}-1}^{\alpha} |K_{N_{i}}^{\alpha}|(x)|)^{1/(\alpha+1)} dx. \end{split}$$

Define

$$c(\alpha) = \frac{c_1(\alpha)}{2c_3(\alpha)}.$$

Then from (4) we get

(5)
$$\int_{G_{N_i}} (A_{N_i-1}^{\alpha} |K_{N_i}^{\alpha}|(x)|)^{1/(\alpha+1)} dx \ge c_5(\alpha) > 0.$$

Denote

$$\Omega_{N_i} := G_{N_i} \setminus \bigcup_{j=1}^{i-1} G_{N_j}.$$

From the definition of the set ${\cal G}_{N_i}$ we obtain

$$c(\alpha)N_i \operatorname{mes}(G_{N_i}) < \int\limits_{G_{N_i}} |K_{N_i}^{\alpha}(x)| dx \le c_6(\alpha).$$

Hence

(6)
$$\operatorname{mes}(G_{N_i}) \le \frac{c_7(\alpha)}{N_i}.$$

Combining (5) and (6) we get

$$\int_{\Omega_{N_{i}}} (A_{N_{i}-1}^{\alpha}|K_{N_{i}}^{\alpha}(x)|)^{1/(\alpha+1)} dx \ge$$

$$\geq \int_{G_{N_{i}}} (A_{N_{i}-1}^{\alpha}|K_{N_{i}}^{\alpha}(x)|)^{1/(\alpha+1)} dx - \sum_{j=1}^{i-1} \int_{G_{N_{i}}} (A_{N_{i}-1}^{\alpha}|K_{N_{i}}^{\alpha}(x)|)^{1/(\alpha+1)} dx \ge$$

$$\geq c_{8}(\alpha) - c_{9}(\alpha)N_{i}\sum_{j=1}^{i-1} \operatorname{mes}(G_{N_{j}}) \ge$$

$$\geq c_{8}(\alpha) - c_{10}(\alpha)N_{i}\sum_{j=1}^{i-1} \frac{1}{N_{j}} \ge$$

$$\geq c_{8}(\alpha) - \frac{c_{11}(\alpha)}{n} \ge c_{12}(\alpha), \quad \text{for} \quad n \ge n_{0}.$$

Consequently we can write

$$\begin{split} &\int_{I} \max_{1 \le N \le 2^{n}} (A_{N-1}^{\alpha} | K_{N}^{\alpha}(x) |)^{1/(\alpha+1)} dx \ge \\ &\ge \sum_{i=1}^{[n/(\log n)]} \int_{\Omega_{N_{i}}} \max_{1 \le N \le 2^{n}} (A_{N-1}^{\alpha} | K_{N}^{\alpha}(x) |)^{1/(\alpha+1)} dx \ge \\ &\ge \sum_{i=1}^{[n/(\log n)]} \int_{\Omega_{N_{i}}} (A_{N_{i}-1}^{\alpha} | K_{N_{i}}^{\alpha}(x) |)^{1/(\alpha+1)} dx \ge \\ &\ge c_{13}(\alpha) \frac{n}{\log n}. \end{split}$$

Lemma 1 is proved.

Proof of Theorem 1. Let $1 < n \in \mathbf{N}$ and

$$f_n(x) := D_{2^{n+1}}(x) - D_{2^n}(x).$$

Then we can write that

(7)
$$S_k(f_n; x) = \begin{cases} 0, & \text{if } k = 0, \dots, 2^n, \\ D_k(x) - D_{2^n}(x), & \text{if } k = 2^n + 1, \dots, 2^{n+1} - 1, \\ f_n(x), & \text{if } k \ge 2^{n+1}. \end{cases}$$

We have

$$f_n^*(x) = \sup_k |S_{2^k}(f_n; x)| = f_n(x)|,$$

(8)
$$||f_n||_{H_p} = ||f_n^*||_p = ||D_{2^n}(x)||_p = 2^{n(1-1/p)}.$$

Since

$$D_{k+2^n} - D_{2^n} = w_{2^n} D_k, \qquad k = 1, 2, \dots, 2^n,$$

from (7) we obtain

$$\begin{split} \sigma_*^{\alpha} f_n(x) &\geq \max_{1 \leq M \leq 2^n} \left| \sigma_{2^n + M}^{\alpha}(f_n; x) \right| = \\ &= \max_{1 \leq M \leq 2^n} \frac{1}{A_{2^n + N}^{\alpha}} \left| \sum_{k=2^n + 1}^{2^n + M} A_{2^n + M - k}^{\alpha - 1} S_k(f_n; x) \right| \geq \\ &\geq \frac{1}{A_{2^{n+1}}^{\alpha}} \max_{1 \leq M \leq 2^n} \left| \sum_{k=1}^M A_M^{\alpha - 1} - k(D_{k+2^n}(x) - D_{2^n}(x)) \right| \geq \\ &\geq \frac{c_{13}(\alpha)}{2^{n\alpha}} \max_{1 \leq M \leq 2^n} \left| \sum_{k=1}^M A_{M-k}^{\alpha - 1} D_k(x) \right|. \end{split}$$

Then from Lemma 1 we get

$$\frac{\|\sigma_*^{\alpha} f_n\|_{1/(\alpha+1)}}{\|f_n\|_{1/(\alpha+1)}} \ge \frac{c_{15}(\alpha)}{2^{n\alpha 2} 2^{-n\alpha}} \left(\int_I \max_{1\le M\le 2^n} (A_{M-1}^{\alpha} |K_M^{\alpha}(x)|)^{1/(\alpha+1)} dx \right)^{\alpha+1} \ge c_{16}(\alpha) \left(\frac{n}{\log n}\right)^{\alpha+1} \to \infty \quad \text{as} \quad n \to \infty.$$

Theorem 1 is proved.

References

- Fine J., Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA, 41 (1955), 558-591.
- [2] Fujii N.J., Cesàro summability of Walsh-Fourier series, Proc. Amer. Math.Soc., 77 (1979), 111-116.
- [3] Marcinkiewicz I. and Zygmund A., On the summability of double Fourier series, *Fund. Math.*, **32** (1939), 112-132.
- [4] Schipp F., Wade W.R., Simon P. and Pál J., Walsh series. An introduction to the dyadic harmonic analysis, Adam Hilger, Bristol-New York, 1990.
- [5] Simon P., Investigation with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Sect. Math., 27 (1985), 87-101.
- [6] Simon P., Cesàro summability with respect to two-parameter Walsh system, Monatsh. Math., 131 (2000), 321-334.
- [7] Weisz F., Martingale Hardy spaces and their applications in Fourier analysis, Springer Verlag, 1994.
- [8] Weisz F., Cesàro summability of one and two-dimensional Walsh-Fourier series, Anal. Math., 22 (1996), 229-242.
- [9] Weisz F., (C, α) summability of Walsh-Fourier series, Anal. Math., 27(2001), 141-156.
- [10] Weisz F., Summability of multi-dimensional Fourier series and Hardy space, Kluwer, 2002.
- [11] Zygmund A., Trigonometric series, vol. 1, Cambridge Univ. Press, 1959.

(Received March 9, 2006)

U. Goginava

Department of Mechanics and Mathematics Tbilisi State University Chavchanadze str. 1 0128 Tbilisi, Georgia z_goginava@hotmail.com