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ON THE CHOICE-REVEALED
EXTENSION OPERATORS

B. Bodé (Budapest, Hungary)

Abstract. In this paper we will discuss two set-extension operators.

Both of them can be connected to the decision making, namely, they will

be revealed by a choice function. However, we do not assume that this

choice function is given on all subsets of the possible alternatives. The

main aim to discover that hidden information which replaces the missed
- ones, supporting the decision maker.

1. Introduction

In a decision process the final aim is to select a subset from the set
of possible alternatives 2, consisting of the alternatives which are the most
preferred by the decision maker. This selection can be done by different
mechanisms. These mechanisms are based on the requirements of the decision
maker and a technique for the evaluation, which of the possible alternatives
fulfils better the prescribed requirements. This evaluation can be realized by
numerical evaluation, pairwise comparison, etc. Here we will discuss some
properties of the set-valued evaluation, described by choice functions.

One of the main problem of the general choice theory is under what kind of
conditions can the choice function be represented by a binary relation. Without
claiming the completeness we refer to [1}, [2], [5], [7], [8], [9] which deal with
this problem. In the literature a lot of papers (e.g. [1], [2], [6], etc.) deal with
other rational properties of the choice function, too.

One of the reasons for the large interest in general choice theory is that
it can model the individual choice. For example, it is suited to investigate the
outcomes of such economic activities as tender-evaluation and market-analysis,
and such social and political processes that consider voting procedures as gallup
poll.
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However, the individual choice is usually limited to the practically relevant
subsets of the alternatives. Our interest turns to the problems, how this
limitations effect to the irrelevant subsets, and how we can refine the relevancy
of the subsets of alternatives.

2. Basic definitions and theorems

Let Q denote the set of alternatives and let B C 2 \ §. We will refer to
this set system as option set.

We have to mention, that in some papers the term ”option set” is used for
the set of all possible alternatives. However, we will distinguish the set of all
alternatives and its subsets.

Definition 2.1. C : B — 2% is a choice function given on the subset
BC29 if C(X)C X forall X € B. If C: B — B, then we say that C is
injective.

Definition 2.2. The triplet D = (Q,B,C) will be called real decision
mechanism if the following properties are satisfied:

1. 0 ¢ B;

2. The option set B covers , i.e. Q= |J X;
XeB

3. C(X) #0 for all X € B;

4. The option set B may contain a set from 2 at most once.

If we extend the option set to the whole 2 \ ) then from the conditions
of the real decision mechanism the second one is obviously unnecessary, so we
have the following definition.

Definition 2.3. The triplet D* = (£2,2%\ §,C) will be called perfect
decision mechanism if C(X) # 0 for all X € 29\ 0.

The greatest part of the papers dealing with decision mechanism uses the
perfect decision mechanism.

The exclusion of @ from the option set has only practical meaning in the
decision making. The condition C(@) = 0, used in a lot of papers, is meaningless
for the decision. From practical point of view it would be meaningful, if
we excluded from B the whole set of alternatives. Indeed, the task of the
decision making is to choose the best alternative(s) from the set of all possible
alternatives using the given decision. If the mechanism directly defines this
choice for the whole set of alternatives, then the task of decision making looses
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its meaning again. However, for the following analysis, as a technical tool, it
will be allowed, but will not be demanded that € B.

In practice, to collect the elements of the option set is based on the
manner of satisfaction of the requirements by the different alternatives, i.e.
those alternatives belong to the same set of the option set, which apply
the same technic (but maybe with different quality) to satisfy a group of
requirements of decision procedure. Grouping the requirements satisfied by
the same alternatives guarantees the possibility to fulfil the fourth property of
the real decision mechanism.

Definition 2.4. We say that the real decision mechanism is normal, if
there exists a binary relation P on © x Q such that either C(X) = C¥P(X) or
C(X) = CMAX(X) holds for every X € B, where

CAP(X) = {z €X:yPz Vye X}
is the set of non-dominated alternatives of X, and
CMAX(X)={r e X :zP'y Vy € X}

is the set of mazimal alternatives of X.

In this case we will refer to C and P as normal choice function and choice-
representing relation, respectively.

In the Definition 2.4 P’ means the restriction of P to X. In the sequel,
when the restriction is obvious, we will omit the mark ’ from the nomination
of the relation. Here and in the following the overlined relation denotes the
complement of the relation.

It is easy to show examples for choice functions which are not normal on
a given B, what is more on 2.

Every choice function reveals two preferences relations (see [7] and [8]).

Definition 2.5. R is the C-revealed Richter-relation on B if

zRye3X eB:zeC(X), ye X.

Definition 2.6. S is the C-revealed Samuelson-relation if
Sy 3IXeB:zeC(X), ye X\ CX).

The maximal or non-dominated alternatives with these preferences pla@r
very important role to recognize whether a decision mechanism is normal or

not. Namely, in our investigations we will use the following propositions proved
in [5].
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Proposition 2.1. Let D = (2, B,C) be a real decision mechanism. For
al X €eB

(1) CHP(X) c C(X) C CHAX(X).

(Here the inclusions are strict for some X € B if C is not normal.)

Proposition 2.2. Let D = (Q, B, C) be a real decision mechanism, R and
S be the C-revealed Richter and Samuelson relations, respectively, and let S¢

denote the dual of the relation S, i.e. S4 =5-1. Then
Rc s¢
is equivalent with the equalities

cYP(X)=C(X)=C¥4%X(X) VXeB

Let us observe, that CH4X and CYP can be applied for X ¢ B, too, but
in this case it can not be guaranteed that CH¥4X(X) # @ and CYP(X) # 0.
Furthermore, R is, in general, reflexive relation, however, if there exists z € £
such that x ¢ C(X) for all X € B, then the reflexivity property will be injured.

The following proposition is almost trivial, but it will be very useful in the
further discussion.

Proposition 2.8. Suppose that D = (Q,B,C) is a normal real decision
mechanism with the choice-representing relation P. Then the following equali-
ties are valid

CMAX(C(X))=C(X) VX Ee€B,
) CHAX(CYAX (X)) =CYAX(X) VX e(27\0)\B.

Proof. Under the condition of the proposition it is enough to prove that
(2) fulfils for all X € 2%\ 0. From the definition of the choice function follows
that
CEAX (O (X)) c o (X)  vx e

Otherwise, if z € CM4X(X) then zPy for all y € X, consequently, Py
for all y € CMAX(X), i.e. z € CHAXCHMAX(X), so

CMAX(X) C CMAX(CMAX(X)) VX 2% o
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Corollary 2.1. Let D = (Q,B,C) be a real decision mechanism, R and
S be the C-revealed Richter and Samuelson relations, respectively, and assume
that R C S holds. Then

C§P(C(X) =CH*¥(C(x)=Cc(X) vXeB,
CRAX(CHAX(X)) = C¥4X(X)  vX e2?\B,
CEP(CYP (X)) =ChP(X) VX e29\B.

Proof. Taking into consideration the Proposition 2.2 we have that
C(X) = CH4X(X) = CYP(X) = CMAX(X), ie. the decision mechanism
is normal with the relations R and S¢. The statement of the Proposition 2.3
gives the demanded equalities with the choice P = R or P = SS9, &

3. The extension operator K, revealed by the choice function C

In his paper [4] G.A.Koshevoy has introduced the operator
(3) CX) = J{r e2?\0:c(v) = c(x)},

revealed by a choice function C : 22 — 29, Under the assumption that C is an
ordinally rationalizable choice function, i.e. if there exists an order (reflexive,
antisymmetric and transitive relation) P on  such that C(X ) = CMAX(X)
for all X € 2%, it has been proved that C is a closure operator on 29, ie. it
satisfies properties required in the following definition with A4 = 2.

Definition 3.1. K is a closure operator on the set system A if the following
requirements are fulfilled for all set belonging to A :
1. X CK(X);
2. K(K(X)) = K(X);
3. X CY implies K(X) C K(Y).

The antisymmetry of the relation P is very strict in a real decision making,
since it means that C(X) has only a single element for all X € 29,

In the following we will restrict the Koshevoy-operator to a subset B C 29
and instead of assuming about C to be ordinally rationalizable, we will give
assumptions for the C-revealed Richter- and Samuelson-relations.
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Definition 3.2. Let D = (Q,8,C) be a real decision mechanism. The
operator K¢ : B — 29 defined by

@) Ko(X)=J{r e B: C(¥) = C(X)}

will be called a C-revealed extension of the sets belonging to the option set B.
The operator K¢ is injective if K¢ : B — B.
The set system

(5) B, =BU{Kc(X): X € B}

will be called Kc-extension of the option set B.
Proposition 3.1. Let D = (2, B,C) be a real decision mechanism and let
K¢ be defined by (4). Then

X CKe(X) VX € B.

Proof. It follows from that fact that X appears among the sets which
compose the set Ko (X). O

Proposition 3.2. Let D = (2, B,C) be a real decision mechanism, and
K¢ be the C-revealed extension operator. If R C 5S¢ is fulfilled for the C-
revealed Richter- and Samuelson-relations, then
C(X) = CR ¥ (Ke(X)) = CEA*(X) =

©) =CYP(Ke(X)) = CYP(X) VX € B.

If K¢ is injective, then

C(Ko(X)) = C(X) VX € B.

Proof. First of all let us remark that on the basis of Proposition 2.2 we
have that C(X) = CH¥4X(X) = CY¥P(X) for all X € B.

Let X € B and £ € C(X) and let denote Vx the set system which occurs
in the definition of Ko (X), i.e.

(7) Yx ={Y € B:C(Y) = C(X)}.

With this notation z € C(Y) for all Y € Yx. Using the fact, that C(X) and
CMAX(X) coincide on the sets belonging to B, we have zRy for all y € Y.



On the choice-revealed extension operators 111

Consequently, zRy for all y € WY : Y € Yx} = Kc(X). This means that
z € CRAX (K (X)), ie. C(X) C CHMAX(Ko(X)).

To prove the inverse inclusion, let z € C¥4X (K¢ (X)) be chosen arbitrar-
ily. Since z € K¢ (X), according to the construction of Kc(X), there exists Y €
€ Vx such that z € Y (here Yx is defined by (7)). Because of z €
€ CMAX(K:(X)) we know that TRy for all y € K¢(X). Consequently, if
Y € Yx then zRy forally € Y. ie. z € CHAX(Y) = O(Y) = C(X) =
= CMAX(X). This proves that C(X) 2 CHMAX(Kc(X)). Analogously can be
obtain the second line of (6).

If K is injective, then K¢ (X) € B, so C(K¢(X)) = CMAX(Ko(X)). ¢

If the decision mechanism is not normal, then additional assumptions are
needed to obtain similar proposition.

Proposition 3.3. Let D = (Q,B,C) be a real, but not necessary normal

decision mechanism and let R be the C-revealed Richter-relation. Suppose that
one of the following two conditions are satisfied for X € B:

1. Ke(X) = X;
2. Kc(X)D X and
2a. for ally € Kc(X)\ X there exists z € CMAX(X) such that yRz;
2b. moreover, if CMAX(X)\C(X) # 0, then x € CMAX(X)\C(X) and
Yy € Ko(X)\ X implies zRy.
Then
CR A (Ko(X)) = O X (X).

Proof. If Xc(X) = X then the statement is trivially valid.

Let now suppose, that Kc(z) \ X # 0. Let z* € CMAX(K(X)). Then
z* € Kc(x) and z*Rz for all 2z € Ko (X). Since X C Kc(X) we have

(8) ¥Rz Vz € X.

Let us assume that z* € Kc(X)\ X. According to the assumption 2a
there exists z € CH4X(X) C X C Ko(X) such that 2*Rz, which contradicts
to the assumption z* € CMAX(Ks(X)). Thus z* € X, therefore from (8)
follows that z € CHAX(X), ie. C¥AX(Kc(X)) C CMAX(X).

To prove the contrary inclusion let us suppose indirectly that there exist
z* € C¥AX(X) such that z* ¢ CHAX(Ko(X)). The latter condition means
that

(9) Iy* € Ko(X): z*Ry*.
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y* ¢ X, because in the contrary case (9) contradicts to the assumption
z* € CMAX(Kc(X)). So, y* € Ke(X) \ X.

If z* € C(X), then from (9) follows that there exists Y € B such that
* € C(X)=C(Y) C CHMAX(Y) and y* € Y, but it contradicts to (9).

If z*CH¥AX(X)\ C(X), then using the assumption 2b we obtain that
z* Ry*, which also contradicts to (9).

The last two contradictions indicate that z* € CMAX(Kg(X)). Conse-
quently, CY¥AX (K¢ (X)) = CHAX (X). O

Proposition 3.4. Let D = (,B,C) be a real decision mechanism and
assume that R C S% holds between the C-revealed Richter- and Samuelson-
relations. Then

Ko(X) = Kouax(X) = Kopax (Kgmax(X)) = Komax (Ko (X)) =

10
(10) = KCéVD(X) = ’Ccévo (’Ccévp (X)) = ’chlo(Kc(X)) VX € B.

If the C-revealed extension operator K¢ is injective, then

Ke(Ke(X)) = Ko(X).

Proof. On the basis of the Proposition 2.2 we have that
C(X) = CMAX(X) = CYP(X) VX € B.
Taking into consideration the Proposition 3.2 we obtain that
Keyax(Ko(X)) =

=J{r e B: C(Y) = C¥*X(¥) = Cf**(Kc(X)) = C(X)} =
=Kc(X).

Analogously can be obtained the second line of (10).

The second statement follows from the second statement of Proposition
3.2. ¢

Corollary 3.1. The set system Bk, defined by (5) is the smallest option
set on which the C-revealed extension operator K¢ is injective.

The analog of the following proposition is used in paper [4] with the
operator C defined by (3) on the perfect decision mechanism.
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Proposition 3.5. Let D = (2, B,C) be a real decision mechanism and
assume that R C S% holds between the C-revealed Richter- and Samuelson-
relations. Then

Komax (C(X)) = Ke(X) VX €B.

If C 1is injective, then Kc(C(X)) = Ko (X).
Proof. Using the Propositions 2.2 and 2.3 for all X € B we obtain that

Keyax(C00) = U{Y € B: CH*X(v) = C(v) = Cf*¥ (C(x) = C(X)} =
= ’CC:\{AX (X) = ’Cc(X).

If C is injective, then according to the Corollary 2.1 CMAX(C(X)) can be
replaced by C(X), from which follows the second statement. o

In the following proposition we will execute the C-revealed extension
operator in that situation, when for the given choice function the right inclusion
is strict in (1) for some @ # X € B, i.e. we do not assume about C the normality.

First of all let us execute the following example.

Example 3.1. Let Q = {a,b,c,d} be the set of the possible alternatives.
Here (and in the following examples, too) the first and second columns of the
table describes the given choice function C. The further columns show the
derived sets, named in the headline. Namely, here the third column shows
the computed C-revealed choice function C}? AX the fourth and sixth columns
give the description of the C- and Cﬁ” AX_revealed extensions, respectively, and
between them the fifth column shows the relation between the C- and CMAX.-
revealed extension of the given sets.

X C(X) CHAX(X) T Ko(X) Komax (X)

c c c c = c
ab a ab ab c Cla b c d

a c a a ab c Dia c
a d dla d|a c dl|=|a c d
b ¢ b b ab cdi> b ¢ d
b d b b ab cdiD b ¢ d
d d d|a c d|D c d
ab ¢ b ab ab cdi=lab cd
ab d b ab ab cdil=lab cd
a d |a d|a dla c d|=|a cd
b d b b ab cd]|D b ¢ d
a b dla b ab ab cdif=lab cd
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From the table the following C-revealed relation R can be read

It is seen that both directions of the inclusion and the equality also appear
between the C- and CY AX _revealed extensions. The following proposition
explains this behavior.

Proposition 3.6. Let D = (Q,B,C) be a real, but not necessary normal
decision mechanism and let R be the C-revealed Richter-relation. Then one of
the following statements will be satisfied for any X € B:

1. IfCMAX(X) = C(X), then
Komax(X) € Ke(X).
Moreover, if Cc(X) = X also holds, then
Komax(X) = Ke(X).
2. If CYAX(X) > C(X) and Kc(X) = X, then

KcadAX (X) C Ke(X).

3. If CMAX(X) > C(X) and Kc(X) D X, furthermore, the following three
conditions hold:

3a. K¢ is injective on B;
3b. for ally € Kc(X)\ X there evists x € CNAX(X) such that yRz;
3c. € CMAX(X)\C(X) and ye Kc(X)\X implies zRy.
Then
]chmx (X) 2 Ke(X).
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Proof.
1. Let C¥AX(X) = C(X). Then

Ko(X)=|J{veB:C(Y)=C(X)} =
= (U{r eB:cv)=cf**(v) = ci** o)) U
U(U{Y eB:0(v) = c¥4X(x) c cl#X(v)}) 2
> (U{y eB:c(v) = clfA%(v) = el X (0)}) =
= Komax(X).

Otherwise, if Ko (X) = X, then from X C ’chmx(X) follows
Ko(X) € Koyax (X),

consequently, in this case

Ko(X) = Komax (X).

2. It follows from the second part of the proof of the first statement, since
there we did not used the equality C(X) = CMAX(X).

3. By the definition of Kcamax we have

Kemax(X) = J{Y € B: CY4¥(v) = CH4*(X)} .

According to the Proposition 3.2 the given assumptions guarantee, that
CMAX(Ko(X)) = CMAX(X). Since K¢ is injective, therefore Ko (X) € B,
so it appears between the sets deriving KC‘I\{AX (X), therefore Kca'lAX (X) 2
2 Ke(X). o
Let us now analyse the Example 3.1 in the light of the Proposition 3.5.
First of all it is seen, that K¢ is injective on B.
If we choose
1. X ={a,c,d}, then
C(X) = CY¥AX(X) = {a,d} and Kc(X) = X = {a,c,d}, therefore
Ko(X) = Kopax (X);
2. X = {a,c}, then C(X) = CMAX(X) = {a} and
Ke(X) ={a,b,c} D X = {a,c}, therefore Kc(X) 2 Komax (X);
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3. X = {b,c}, then C(X) = {b} = CMAX(X) = {b,c} and
Kc(X) =X = {b,c}, therefore Kg(X) 2 Komax (X);
4. X = {a,b}, then C(X) = {a} = CY¥4X(X) = {a,b} and
Kco(X) = {a,b,c} D X = {a,b}.
Here b € CHMAX(X)\ X and ¢ € K¢(X)\ X and aRc, i.e. the condition 3¢

fulfils. Moreover, b € C¥4X(X) but cRb, so the condition 3b also fulfils.
Therefore Kc(X) € Komax (X).

4. The weakening operator Hp defined by C-revealed relation

J. Kortelainen in his paper [3] has discussed the so called weakening
operator Hp : 2% — 2% defined by a reflexive binary relation P on Q x Q
with the following formula

Hp(X) = {z € Q: Jy € X such that yPzx}.

This operator is defined for all subsets from 2.

We have to mention that the weakening operator Hp is, in reality, a set-
extension operator.

Under the assumption of the reflexivity and transitivity of the relation P
it is also proved in [3] that Hp is a closure operator, i.e. the conditions of the
Definition 3.1 are fulfilled by Hp, namely

1. X CHp(X) VX €29\ §;
2. Hp(Hp(X)) =Hp(X) VX € 29 \ &;
3. X C Y implies Hp(X) C Hp(Y) if X,Y € 2%\ 0.

However, we have to mention, that the conditions 1 and 3 are valid without
transitivity of P, as it is seen from the given proof in [3].

In the further part of this section we will discuss the Hp operator with
particularly chosen relation P. Namely, let be given a real decision mechanism
D = (2,B,C) and let R and S be the C-revealed Richter- and Samuelson-
relations, respectively. We will examine the behavior of the weakening opera-
tors defined by P = R and P = S¢. In the following we will refer to Hz(X)
and Hga(X) as R- or S% revealed extensions of X.

Proposition 4.1. Let D = (Q,B,C) be a real decision mechanism and
assume that R C S% holds between the C-revealed Richter- and Samuelson-
relations, and R is reflexive on ) x Q. Then

X NnCYAX (HR(X)) C C(X)
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holds for all X € B.
If the relation R is transitive, too, then the inclusion

C(X) C CYAX (HR(X))

also holds for all X € B.

Proof. Let z* € X N C(Hp(X)). It means that z* € X and z*Ry for
all y € Hr(X). So z* € X and z*Ry for all y € X C Hg(X). Therefore
z* € C(X), consequently, X N CMAX(Hg(X)) C C(X).

Let z* € C(X) and let y* be an arbitrary point of Hp(X). According
to the definition of Hp(X) there exists £ € X such that TRy*. Otherwise,
z* € C(X) implies z* RZ. From the two last relations using the transitivity of
R follows the relation z*Ry*. Since y* € Hg(X) has been chosen arbitrarily,
therefore z* € CYAX (Hg(X)), consequently, C(X) C CMAX(Hp(X)). O

Proposition 4.2. Let D = (,B8,C) be a real decision mechanism and
assume that R and S?¢ are reflexive on Q x  and between them R C S% holds.
Then

Hr(X) € Hge(X).

Proof. Let z* € Hr(X). According to the definition Hg(X) there exists
y* € X such that y*Rz*. From R C S follows y*S%z*. Since y* € X, therefore
T* € Hsd (X) O

5. Connections between C- and R-revealed set-extensions

In this section we will compare the C- and R-tevealed set-extension with
respect to the inclusion.

Proposition 5.1. Let D = (Q,B,C) be a real decision mechanism and
assume that R C S? holds between the C-revealed Richter- and Samuelson-
relations and R is reflexive on Q x Q. Then for all X € B

Ke(X) € Hr(C(X)) C Hp(X).

Proof. Let z* € Kc(X). According to the definition of K¢ (X) there
exists Y € B for which C(Y) = C(X) and z* € Y. Since C(X) # @, therefore
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there exists y* € C(Y) = C(X) C X for which y*Rz*. By the definition of
Hr(C(X)) we have that z* € Hr(C(X)).

The second inclusion follows from the fact, that C(X) C X implies
HR(C(X)) € Hr(X). o

In the next proposition we will give a necessary and sufficient condition
which guarantees the strict implication between Kc(X) and Hp(X) in the
previous proposition for some X € B.

Proposition 5.2. Let D = (2, B,C) be a real decision mechanism and
assume that R C S holds between the C-revealed Richter- and Samuelson-
relations, and R is reflexive on ) x Q. Then

Kec(X) € Hr(X)
for some X € B if and only if there exists Y € B such that

(11) Y\ Kc(X) #0 and X NO(Y) # 0.

Proof. Sufficiency: Let us assume that there exists Y € B which satisfies
the condition (11), i.e. there exist z* € Y \ Ko(X) and y* € X N C(Y). It is
obvious that z* # y* because y* € X C Ko (X), but

(12) Tt ¢ Ke(X).

Since y* € X N C(Y), hence y* € X and y*Rzx for all z € Y. Otherwise,
z* € Y \ Kg(X), from which z* € Y. Therefore y* Rz*. It means that

(13) z* € Hr(X).

(12) and (13) imply K¢(X) € Hr(X).

Necessity: Let us assume that Ko(X) C Hgr(X). So there exists z* € Q such
that * ¢ Ko(X) and z* € Hg(X). From the definition of Hg(X) follows that
there exists y* € X such that y* Rz*. If we use the definition of Richter relation
we have that there exists Y € B such that y* € C(Y)NX and z* € Y\ Ko (X).
Therefore (11) holds. O

The following example illustrates the necessity of the condition (11).

Example 5.1. Let the choice mechanism and the derived set-extensions
be given by the following table:
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X C(X) Kc(X) He(X)
C c c c d
d d d c d

a b a ab c ab c
a c a a b c ab cd
b ¢ b b ¢ b cd
c d c d c d c d
a b c a ab c ab cd

From the table we can read that the following matrices describe the C-
revealed relations R and §¢, and they satisfy the R C S¢ rule.

1. Let X = {a,b,c}. Then (11) fulfils with the choice Y = {b, ¢}, since
CY) = {b}, Y\ Ke(X) = {d} and X NC(Y) = {b}. Therefore the
inclusion between K¢ (X) and Hg(X) is strict.

2. Let X = {a,b}. Then {a,b} NY # 0 satisfies if ¥ is chosen from
{a,b}, {abc}, {a,b,c}. But for all these sets

Y\ Kc({a,b}) = Y\{a7b7c} =0,

therefore the inclusion between K¢ (X) and Hg(X) is not strict.

Proposition 5.3. Let D = (Q,B,C) be a real decision mechanism and
assume that R C S% holds between the C-revealed Richter- and Samuelson-
relations, and S% is reflexive on Q x Q. Then

Kc(X) € Hga(X).

Proof. Let z* € K¢ (X). According to the definition K¢ (X) there exists
Y € B such that C(Y) = C(X) and z* € Y. From the second assumption
C(X) = CYP(X) # 0. By the definition of Samuelson relation we have that
z*Sy for all y € C(X) = C(Y). Hence yS—1z* for all y € C(X) C X. From
the definition of Hga(X) follow that z* € Hga(X). O

The Propositions 4.3 and 5.3 together give the inclusions
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Kc(X) € Hr(X) C Hsa(X).

Let us now discuss the connection between the H p-extensions of a set and
its Kc-extension.

Proposition 5.4. Let D = (Q,B,C) be a normal real decision mechanism
with a reflexive choice-representing relation P. Then

Hp(X) C Hp(Kc(X)).

Proof. Let z* € Hp(X). According to the definition Hp(X) there exists
y* € X such that y*Pz*. Hence y* € X C K¢ (X) such that y*Pz*. By the
definition of Hp(Kc (X)) we have that * € Hp(Kc(X)). $

The following question is, the inclusion in the Proposition 5.5. under which
condition will be strict?

Proposition 5.5. Let D = (2, B,C) be a normal real decision mechanism
with a reflexive choice-representing relation P. If for some X € B there exist
z* € Ko(X)\ X and y* € Q such that z*Py* and xPy* for all x € X then

(14) HP(X) C Hp(’Cc(X))

Proof. Since zPy* for all £ € X therefore there does not exist z € X
such that zPy*. Consequently

(15) y" ¢ Hp(X).

Otherwise, there exist z* € K¢(X) \ X and y* € Q such that z*Py*. From
this follows that

(16) y* € Hp(Kc(X)).

(15) and (16) together imply that (14). , O

In the next proposition a necessary and sufficient condition will be given
for the strict inclusion in (14) if P = R.

Proposition 5.6. Let D = (2, B,C) be a real decision mechanism and
assume that R C S% holds between the C-revealed Richter- and Samuelson-
relations, and R is reflexive on 2 x Q. Then

(17) Hr(X) C Hr(Kc(X))
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holds for some X € B if and only if there exists Y € B such that

(18) (Ke(X)\X)NC(Y) #0
and
(19) Y\ J{AeB:C(A)nX #0} #£0.

Proof. Under the assumptions we have that CH¥4X(X) = C(X) for all
X eB.

Sufficiency: Let (18) and (19) be fulfilled. It means that there exist
y' € (Ke(X)\X)nC(Y)

and

greY\|J{AeB:C(A)NX #0}.
Because of y* € K¢(X)NC(Y) and z* € Y we obtain that
¥y eKe(X)NC(Y) Cc Ke(X) and y*Rz*.
By the definition of Hr(Kc (X)) therefore we have that
(20) z* € Hp(Kc(X)).

Otherwise 2* ¢ |J{A € B: C(A)N X # 0}. If A € B such that C(A) N X # 0,
then z* ¢ A. From this for all y € X does not exist A € B such that y € C(A)
and z* € A. So for all y € X the relation yRz* is satisfied. Therefore,

(21) z* ¢ Hp(X).

From (20) and (21) follows (17).

Necessity: Let us assume that Hg(X) C Hr(Kc(X)). Then there exists
z* € Q such that z* ¢ Hr(X) and z* € Hr(Kc(X)). z* ¢ Hr(X) means,
that for all y € X we have yRz*.

Let us introduce the set-system

A(z*,y)={YeB:z*eY,ye C(Y)}.
By the definition of the Richter-relation yRz* implies

(22) A(z*,y) =0 Vy e X.
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Otherwise, z* € Hgr(Kc(X)) means that there exists y* € Ko (X) such
that y*Rz*. From this follows that

(23) A(z*,y") #0.

From (22) and (23) we obtain that y* ¢ X, ie. y* € Ko(X)\X, but y* € C(Y)
for Y € A(z*,y*), consequently (20) fulfils.

Furthermore, (22) means that y € C(A) for some A € B implies z* ¢ A,
i.e.

¢ | J{AeB:CA)NX #0}.

From (23) follows that there exists Y € A(z*,y*) such that z* € Y,
therefore

s eY\|J{4eB:C(ANnX #£0}. o

The sufficiency and necessity of (18) and (19) will be illustrated in the
following example:

Example 5.2. Let the choice mechanism and the derived set-extensions
given by the following table:

X ) [ Ka(X) | HaX) [HaKa(X)
c c c cd c d
ab a ab ¢ a b c ab cd
a c a a b c ab cdilab cd
b ¢ b b ¢ b c d b ¢ d
c d c d c d c d c d
ab c a abdb c ab cdlabdb cd

The following two matrices show the derived C-revealed relations R and
S4. and it is seen that they satisfy the R C S¢ rule.

1. Let X = {a,b}. Choose Y = {¢,d}. Then

(Ke(X)\X)NC(Y) = {c} N {c,d} = {c} #0.
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Otherwise, the following subsets satisfy the condition C(4) N X # §:
{a,b},{a,c}, {b, c},{a,b,c}. Therefore,

Y \ (UA) = {c,d}\ {a,b,c} = {d} #0.

So, the conditions (18) and (19) are satisfied, and the inclusion between
Hr(X) and Hgr(Kc(X)) is strict, indeed.

2. Let X = {a,c}. The following subsets satisfy the condition C(4)NX # @:
{c},{a,b},{a,c},{c,d},{a,b,c}, so UA = {a,b,c,d}.
Otherwise, (K¢(X) \ X) N C(Y) # 0 will be satisfied if Y is one of the
following sets: {c}, {b,c}, {c,d}. But choosing any of them as Y, we obtain
that Y\ (UA) = @, i.e. the condition of the proposition is not fulfilled, and
between Hz(X) and Hr(Kc(X)) also the equality holds.

3. Let X = {b,c}. In this case the assumption (18) trivially does not fulfil,
and between Hr(X) and Hr(Kc(X)) the equality holds.

Finally, we will be interested in finding condition for the structure of the
option set B, which guarantees the equality of Hg(X) and Hg(Kc(X)).

Proposition 5.7. Let D = (Q,B,C) be a real decision structure, where
the option set B contains all two-point subsets of 2. Moreover, let us assume
that R C S% holds between the C-revealed Richter- and Samuelson-relations,
and R is reflexive on Q x Q. Then

(24) Hp(X) = Hr(Kc (X))

Julfils for some X € B if and only if for all £ € Hr(Kc(X))\ X there erists
y € X such that y € C({z,y}).

Proof. Sufficiency. According to the Proposition 3.1 X C K¢(X). Since
H g satisfies the third property of a closure operator defined in Definition 3.1,
therefore we have that

Hr(X) C Hr(Ke(X)).
Let now x € Hr(K¢c(X)). If z € X then X C Hg(X) implies = € Hp(X).
Let now z € Hr(Kc(X)) \ X. According to the assumptions there exists
y € X such that {z,y} € B and y € C({z,y}). Since under the condition
R C S? we know that C(X) = CMAX(X) for all X € B, we have that yRz,
i.e. z € Hr(X), consequently,

Hr(X) 2 Hr(Kc(X)).

Necessity. Let us assume that (24) is fulfilled for some X € B.

Choose an arbitrary z € Hr(Kc(X))\ X. Since z € Hr(X) also holds,
therefore there exists y € X such that yRz, i.e. for this y there exists Y € B



124

B. Bodé

such that y € C(Y) and z € Y. It means that y € C(Y) N X, consequently,

yRy and yRz. Therefore y € C({z,y}).

To illustrate the conditions of the proposition let us consider the following

example.

Example 5.3. Let the choice mechanism and the derived set-extensions

given by the following table:

X C(X) Ke(X) Hr(X) [Hr(Kc(X))

c c c c
ab b ab ¢ ab cdlab ¢ d
a c {a cdla cdlab cd
a d a cdlab cdlab cd
b ¢ b ab ¢ ab cdlabdb cd
b d b b dlab cdlabdb ¢ d
c d cd b ¢ d b ¢ d
a c d a cdlab cdlabdb cd

The following two matrices show the derived C-revealed relations R and

S4, and it is seen that they satisfy the R C S rule.

If we choose, for example,
1. X = {a,c}, then Hr(Kc(X))\X = {b,d} and a ¢ C({a,b}), c ¢ C({b,c}),
therefore the condition is injured. The equality between Hgr(X) and

Hr(Kc(X)) is not valid, indeed.

2. X = {c,d}, then Hr(Kc(X))\ X = {b} and d € C({b,d}), therefore the
condition is satisfied. The equality between Hg(X) and Hg(Kc (X)) is

valid, indeed.

3. X = {c}, then Hr(Kc(X)) \ X = 0, so the condition of the proposition
fulfils trivially. The equality between Hpz(X) and Hr(Kc(X)) is valid,

indeed.
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