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POLYNOMIAL–LIKE BOOLEAN FUNCTIONS
AND THE MAXIMAL CLOSED CLASSES

J. Gonda (Budapest, Hungary)

Abstract. A Boolean function f is polynomial-like if the coefficients in

its canonical disjunctive normal form are equal to the coefficients in its

Zhegalkin polynomial, that is if the vector of the coefficients of one of the

two representations is the eigenvector of the transformation to the other

form. In the following article we investigate how are these functions related

to the maximal closed classes of the Boolean functions.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation are
used in the same sense and they are denoted respectively by +, · (or simply
without any operation sign), ⊕ and . The elements of the field with two
elements and the elements of the Boolean algebra with two elements are denoted
by the same signs, namely by 0 and 1; N0 denotes the set of the non-negative
integers, and N denotes the set of the positive integers.

1. Introduction

Let f (x0, . . . , xn−1) be a Boolean function of n variables, that is f :

{0, 1}n −→ {0, 1}. If (u0, . . . , un−1) ∈ {0, 1}n
, i =

n−1∑
j=0

uj2j , f (u0, . . . , un−1) =

The research was supported by the Hungarian National Foundation for
Scientific Research under grant OTKA T-043657.

Mathematics Subject Classification: 06E30, 94C10



92 J. Gonda

= αi and l =
2n−1∑
j=0

αj2j , then f can be denoted by f
(n)
l , and it is uniquely

determined by a 2n-long series composed by the αi-s ordered by their indices. If

(a0, . . . , an−1) ∈ {0, 1}n is a given n-tuple and f (x0, . . . , xn−1) =
n−1∏
j=0

(aj ⊕ xj)

then αi = f (u0, . . . , un−1) = 1 if and only if (u0, . . . , un−1) = (a0, . . . , an−1).
This function is denoted by m

(n)
k , that is

(1) m
(n)
k =

n−1∏

j=0

(aj ⊕ xj) ,

where k =
n−1∑
j=0

aj2j and it is called the k-th minterm of n variables. Then

(2) f
(n)
l =

2n−1∑

i=0

αim
(n)
i

and this sum of the minterms is the canonical disjunctive normal form of f
(n)
l .

The series of the αi-s ordered by their indices is the spectrum of the canonical
disjunctive normal form of the l-th Boolean function f

(n)
l of n variables.

Another possibility to determine a Boolean function is the so called
Zhegalkin polynomial. If (a0, . . . , an−1) ∈ {0, 1}n is a given n-tuple, again,

and k =
n−1∑
j=0

aj2j , then

(3) S
(n)
k =

n−1∏

j=0

(aj + xj)

is the k-th monom of n variables. Let k0, . . . , k2n−1 be a 2n-long series of 0-s
and 1-s, then

(4) f =
2n−1⊕
i=0

kiS
(n)
i

is a uniquely determined Boolean function of n variables, and conversely, to
every Boolean function f of n variables belongs a uniquely determined 2n-long

series k0, . . . , k2n−1 of 0-s and 1-s so that f =
2n−1⊕
i=0

kiS
(n)
i . Now the series of
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the coefficients of k0, . . . , k2n−1 is the spectrum of the Zhegalkin polynomial of
the function.

There is a simple connection between the two above mentioned represen-
tations of the same Boolean function: if α is the spectrum of the disjunctive
normal form of the function and k is the spectrum of the Zhegalkin polynomial
of the same function then

(5) k = A(n)α,

where

(6) A(n) =





[ 1 ] if n = 0,
[
A(n−1) 0(n−1)

A(n−1) A(n−1)

]
if n ∈ N

(A(n) is a 2n × 2n matrix and 0(n) is the 2n × 2n zero matrix), and

(7)
(
A(n)

)−1

= A(n)

for any nonnegative integer n.

Let f (x0, . . . , xn−1) be a Boolean function of n variables. Then f is
• 0-preserving if and only if f (0, . . . , 0) = 0;
• 1-preserving if and only if f (1, . . . , 1) = 1;

• self-dual if and only if f (u0, . . . , un−1) = f (u0, . . . , un−1) for any
(u0, . . . , un−1) ∈ {0, 1}n;

• monotone if and only if f (u0, . . . , un−1) ≤ f (v0, . . . , vn−1) in all of the
cases when ui ≤ vi for every n > i ∈ N0;

• affine if and only if f = c⊕ n−1⊕
i=0

cixi where c and the ci-s are either 0 or 1

and linear if and only if affine and c = 0.

Let T0, T1, SF , M and A denote the set of zero preserving, one preserving,
self-dual, monotone and affine Boolean functions, respectively. As these sets
are closed classes of the set B of all of the Boolean functions, so if C is such
a subset of B that its closure is B, then C has to contain a not 0 preserving,
a not 1 preserving, a not self-dual, a nonmonotone and a nonaffine function
(not unconditionally different from each other). The before-mentioned classes
of the Boolean functions are maximal, and a not 1 preserving function is either
not self-dual or not 0 preserving, so four functions are enough to generate each
Boolean function. If C is minimal with respect to the property generating B,
then C is a basis of B. It follows from the previous statements that a basis
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contains at most four Boolean functions. If a function itself is the basis of B,
then it is a universal Boolean function. Universal Boolean functions are for
instance the Sheffer function and the Peirce function, that is the NAND and
the NOR functions.

We refer to a Boolean function as a polynomial-like Boolean function if
and only if the spectra belonging to its canonical disjunctive normal form and
its Zhegalkin polynomial are identical, that is, if k = α. Both of the Boolean
functions of zero variables are polynomial-like. If n is a positive integer then the
set of the polynomial-like Boolean functions of n variables is a 2n−1-dimensional
subspace of the 2n-dimensional space of all of the Boolean functions of n

variables, so there are altogether 22n−1
polynomial-like Boolean functions of

n variables. The Boolean function f of n variables determined by α as the
spectrum of its canonical disjunctive normal form is polynomial-like if and
only if

(8) α =
[
A(n−1) + I(n−1)

I(n−1)

]
u,

where I(n) is the 2n × 2n identity matrix, and u is an arbitrary element of the
2n−1-dimensional linear space over F2, that is u is the spectrum of the canonical
disjunctive normal form of an arbitrary Boolean function of n− 1 variables [3].
In another way, if the spectrum of the canonical disjunctive normal form of the
Boolean function f of n variables is

(9) α =




α0
...

α2n−1−1

α2n−1

...
α2n−1




=
[

α(0)

α(1)

]
,

then f is polynomial-like if and only if α(0) =
(
A(n−1) + I(n−1)

)
α(1). This

means that if α is the spectrum of the canonical disjunctive normal form of
an arbitrary Boolean function f1 of n − 1 variables, and f0 is the Boolean
function with

(
A(n−1) + I(n−1)

)
α as the spectrum of its canonical disjunctive

normal form, then f = xn−1f0 + xn−1f1 is a polynomial-like Boolean function
of n variables (xn−1 is the new variable). Of course if f is a polynomial-like
Boolean function and α is the spectrum of its canonical disjunctive normal form,
then α is the spectrum of its Zhegalkin polynomial, too. From the previous
results follows that for any positive integer n, f

(n)
0 , f

(n)

22n−1−2
, f

(n)

22n−1 and f
(n)

22n−2
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are polynomial-like Boolean functions of n variables. If f is a polynomial-like
Boolean function then all of its variables are essential.

2. Development

Theorem 1. The index of a polynomial-like Boolean function of at least
one variable is even.

Proof. This statement was proved in [4].

Corollary 1. A polynomial-like Boolean function of at least one variable
is zero preserving.

Proof. This corollary is an almost obvious consequence of the previous
theorem, but we give a formal proof for the sake of the completeness. Let

f =
2n−1∑
i=0

αim
(n)
i , where m

(n)
i =

n−1∏
j=0

(
a
(i)
i ⊕ xj

)
and i =

n−1∑
j=0

a
(i)
j 2j for every

2n > i ∈ N0. Then t =
2n−1∑
j=0

αj2j is the index of f . A Boolean function is zero

preserving if and only if α0 = 0, and t is even if and only if α0 = 0. In Theorem
1 it was stated that the index of a polynomial-like Boolean function depending
on at least one variable is even, so a polynomial-like Boolean function of n > 0
variables is zero preserving.

Theorem 2. Exactly half of the polynomial-like Boolean functions is 1
preserving.

Proof. f
(n)

22n−1 is a polynomial-like Boolean function of n variables, and

f̃ = f ⊕ f
(n)

22n−1 if and only if f = f̃ ⊕ f
(n)

22n−1 , furthermore f̃ is the function of

the variables of the two functions so f 7→ f ⊕ f
(n)

22n−1 is a bijective involution on
the set of the Boolean functions of n variables. In [4] it was proved that the
EXCLUSIVE OR of two polynomial-like Boolean functions is a polynomial-
like Boolean function, too, so f̃ is polynomial-like if and only if f has the same
property. But in α belonging to f

(n)

22n−1 there is only one component with the

value of 1, namely α2n−1, so all of the components of f and f⊕f
(n)

22n−1 are equal
with the exception of that belonging to the index of 2n − 1. This means that
one and exactly one of the two functions is 1 preserving, and then the mapping
f 7→ f ⊕ f

(n)

22n−1 is one to one from the set of the 1 preserving polynomial-like
Boolean functions of n variables onto the set of the polynomial-like Boolean
functions of the same variables not preserving 1.
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Theorem 3. The only self-dual polynomial-like Boolean function is the
identity function of one variable.

Proof.

(10)
(
f

(1)
2 (x0)

)D

= f
(1)

2 (x̄0) = x0 = x0 = f
(1)
2 (x0) ,

so the identity function of one variable, that is the only proper polynomial-like
Boolean function of one variable is self-dual.

(11) f
(0)

0 () = 0̄ = 1 6= 0 = f
(0)
0 () ,

and similarly

(12) f
(0)

1 () = 1 = 0 6= 1 = f
(0)
1 () ,

so none of the Boolean functions of 0 variables is self-dual. Now let n ≥ 2, and
let α be the spectrum of the Boolean function f of n variables.

(13) α =
[

α(0)

α(1)

]
,

where both α(0) and α(1) are vectors of the 2n−1-dimensional linear space. If
f is self-dual, then for 0 ≤ i < 2n−1

(14) α
(0)
i = α

(1)
2n−1−1−i = 1⊕ α

(1)
2n−1−1−i,

so

(15)

w (α) = w
(
α(0)

)
+ w

(
α(1)

)
=

=
2n−1−1∑

i=0

((
1⊕ α

(1)
2n−1−i

)
+ α

(1)
2n−1−i

)
=

=
2n−1−1∑

i=0

((
1 + α

(1)
2n−1−i − 2 · 1 · α(1)

2n−1−i

)
+ α

(1)
2n−1−i

)
=

=
2n−1−1∑

i=0

(
1− α

(1)
2n−1−i + α

(1)
2n−1−i

)
=

2n−1−1∑

i=0

1 = 2n−1
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and as n ≥ 2, so 2 | 2n−1, that is w (α) is even. Now let f be polynomial-like.
Then α0 = 0, because f is zero preserving, so α2n−1 = 1, because f is self-dual.
But f is polynomial-like, so

(16)
2n−1⊕
i=0

αi =
(
A(n)α

)
2n−1

= k2n−1 = α2n−1 = 1,

and then

(17) 1 =
2n−1⊕
i=0

αi =

(
2n−1∑

i=0

αi mod 2

)
= (w (α) mod 2) ,

that means w (α) is odd. But earlier we saw that this is impossible if f is a
self-dual function.

Theorem 4. The zero-function, the identity function of one variable
and x1 ⊕ x0 as a function of two variables are linear polynomial-like Boolean
functions, and there is no other linear polynomial-like Boolean function. The
only affine polynomial-like Boolean function, which is not linear, is the 1-
function of zero variables.

Proof. All of the enumerated functions are affine and polynomial-like.
Now let f be a polynomial-like Boolean function of at least one variable. Then
f is not degenerative and f is zero preserving, so if f is an affine function,

then it is linear, too, and f =
n−1⊕
i=0

xi, so the weight of f is equal to n. As f is

polynomial-like, so the spectrum of the function has the form of

(18)
[ (

A(n−1) + I(n−1)
)
α

α

]
,

where α belongs to the 2n−1-dimensional linear space.

(19) f =
n−1⊕
i=0

xi = xn−1 · 1⊕
n−2⊕
i=0

xi,

so αi = 1 is true only if i = 0, and then

[ (
A(n−1) + I(n−1)

)
α

α

]
=

[ (
A(n−1) + I(n−1)

)
e
(n−1)
0

e
(n−1)
0

]
=

(20) =
2n−1∑

i=1

e
(n)
i .
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From this follows that w (f) = 2n−1, and so n = 2n−1. But this is true if and
only if n = 1 or n = 2.

Theorem 5. Every polynomial-like Boolean function of less than two
variables is monotone, but in the case when n ≥ 2 , for any n there are both
monotone and nonmonotone polynomial-like Boolean functions of n variables.

Proof. The zero function, the one function of zero variables and the
identity function of one variable f

(1)
2 (x0) = x0 are polynomial-like monotone

Boolean functions. As α2n−1 is the only component with the value of 1 in
the spectrum of the canonical disjunctive normal form of f

(n)

22n−1 (and also in

the spectrum of its Zhegalkin polynomial as f
(n)

22n−1 is polynomial-like for any
nonnegative integer n), this function is a monotone polynomial-like Boolean
function. But f is polynomial-like if and only if f ⊕ f

(n)

22n−1 is polynomial-
like, too, and in the spectra of these two functions differ only the components
belonging to the greatest index, so at most one of the two functions can be
monotone, if f is not the zero function.

Remark 1. Let g be an arbitrary Boolean function of n variables indexed
from 0 to n− 1 and let f = xng⊕h be the polynomial-like Boolean function of
n+1 variables generated by g. g 7→ f is a one to one mapping of the set of the
Boolean functions of n variables onto the set of the polynomial-like Boolean
functions of n + 1 variables. If g is nonmonotone, then f is nonmonotone, too.
A Boolean function not preserving the 1 is nonmonotone with exception of the
0 function. Similarly, the Boolean functions containing all of the minterms
with exception of at least one of those minterms having exactly one negated
variable are nonmonotone, but one preserving if the polynomial is of at least
two variables. The number of these latter type of the nonmonotone Boolean
functions is 2n − 1. As half of the polynomial-like Boolean functions are not 1
preserving, and 2n − 1 > 1 if n ≥ 2, so more than half of the polynomial-like
Boolean functions of at least three variables are nonmonotone.

Theorem 6. The closure of the set of the polynomial-like Boolean
functions is the set of all of the Boolean functions.

Proof. By the earlier results in the set of the polynomial-like Boolean
functions there exist not 1 preserving functions, not self-dual functions, non-
affine functions and nonmonotone functions, and the 1-function of zero variables
is polynomial-like and it is not zero preserving, so the closure of the polynomial-
like Boolean functions is the whole set B of the Boolean functions.

Remark 2. The previous theorem is a direct consequence of the fact that
the 1 function of zero variables, the AND function and the EXCLUSIVE OR
function of two variables are polynomial-like and the set of these three Boolean
functions is a basis of the set B of all of the Boolean functions.
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Corollary 2. The set of the polynomial-like Boolean functions of n given
variables is closed if and only if n ≤ 1.

Proof. The closure of the set of the 0 and the 1 function of zero variables,
as well as the closure of the set of the 0 and the identity function of one variables
are themselves, so these sets are closed for the superposition of functions from
these sets. At the same time if n ≥ 2, then f

(n)

22n−2
and f

(n)

22n−1 are polynomial-

like. Substituting xn−1 by the latter function in f
(n)

22n−2
we get

(21)

f
(n)

22n−2

(
f

(n)

22n−1 , xn−2, . . . , x0

)
=

n−2∑

i=0

xi +
n−1∏

i=0

xi =

=
n−2∑

i=0


xi + xi

n−1∏

j=0

xj


 =

=
n−2∑

i=0

xi = f
(n−1)

22n−1−2
(xn−2, . . . , x0)

and then we can see that the Boolean function of n variables on the left side
of the expression is degenerated in one of its variables, so this function is not
polynomial-like.

Theorem 7. For any n ≥ 3 there exist polynomial-like Boolean func-
tions which are simultaneously not 1 preserving, not self-dual, nonaffine and
nonmonotone.

Proof. All of the polynomial-like Boolean functions of more than two vari-
ables are zero preserving, not self-dual, nonaffine, and half of the polynomial-
like Boolean functions of these variables are not 1 preserving, so if such a
function is not the zero function, then it is nonmonotone. For instance for any
n greater than 2 f

(n)

22n−1−2
is a polynomial-like Boolean function and it is not

the zero function, and as 22n−1 − 2 < 22n−1, so α2n−1 = 0 in the spectrum
of the canonical disjunctive normal form of f

(n)

22n−1−2
. From this follows that

f
(n)

22n−1−2
is not 1 preserving.

Corollary 3. There exists a basis of the set of Boolean functions contain-
ing two polynomial-like Boolean functions, from which one is the 1 function of
zero variables.

Proof. The 1 function of zero variables is a polynomial-like Boolean
function not preserving the 0, but preserving the 1 for instance. From Theorem
7 it follows that there exist polynomial-like Boolean functions, which are not
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1 preserving, not self-dual, nonaffine and nonmonotone, but these functions
must be 0 preserving, so such a function in itself is not a basis, but with the 1
function of zero variables they can generate all of the Boolean functions.

Theorem 8. The linear part of a polynomial-like Boolean function of n

variables is either lf = 0 or lf =
n−1⊕
i=0

xi. Exactly half of the polynomial-like

Boolean functions of at least one variable belong to one of these two groups.
The affine part of a Boolean function of at least one variable is equal to the
linear part of that function.

Remark 3. Let p =
2n−1⊕
i=0

kiS
(n)
i be the Zhegalkin-polynomial of the Boolean

function f of n variables. Then lf =
n−1⊕
i=0

k2ixi is the linear part of f , and the

affine part of f is af = k0 ⊕ lf .

Proof. For n = 0 the statement is obviously true, so let n > 0. f (n) is
polynomial-like if and only if its spectrum α belongs to the linear space spanned
by the columns of the matrix

(22) U(n) =
[
A(n−1) + I(n−1)

I(n−1)

]
.

In the rows of A(n−1) belonging to the indices 2k, where n − 1 > k ∈ N0,
A

(n−1)

2k,0
= 1 and A

(n−1)

2k,2k = 1, and A
(n−1)

2k,j
= 0 for any other 2n−1 > j ∈ N, so

A
(n−1)

2k,j
= 1 is true in the matrix A(n−1) + I(n−1) if and only if j = 0. Then it is

true in U(n), too, that U
(n)

2k,l
= 1 if and only if l = 0, where now n > l ∈ N0, as

if l < n−1, then in U(n) the rows with the indices of 2l are the rows belonging
to the indices of 2l in the matrix A(n−1) + I(n−1), and if l = n − 1 then this
row is the row of the identity matrix I(n−1) indexed by 0. Now suppose f (n)

is polynomial-like, and α2r = 1 for a 0 ≤ r < n. By the previous results it is

possible only if c0 = 1 in α = U(n)c =
2n−1−1∑

i=0

ciU
(n)
i . But in that case α2t = 1

for all of n > t ∈ N0.
If in the spectrum α = U(n)c of the polynomial-like Boolean function f of

n variables c0 = 0, then the linear part of the function is the 0 function, while

in the case when c0 = 1 this linear part is equal to
n−1⊕
i=0

xi. This means that

exactly for half of the polynomial-like Boolean functions of n variables 0 is the
linear part.
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which is 1-preserving. The zero function of two variables, the EXCLUSIVE
OR function, the AND and the OR functions of two variables are the two
variable polynomial-like Boolean functions. Three of them are monotone and
the fourth, the EXCLUSIVE OR function is linear, so none of them can belong
to a basis with two functions. The last eight functions in Table 1 are 1-
preserving and the first is monotone, but each other function in Table 1 is
suitable for our purpose as they are not 1-preserving, not self-dual, nonlinear
and nonmonotone. Let us consider these functions. The set of these functions
is A =

{
f

(3)
30 , f

(3)
40 , f

(3)
54 , f

(3)
72 , f

(3)
86 , f

(3)
96 , f

(3)
126

}
.

(23)

f
(3)
30 = x2x1x0 + x2x1x0 + x2x1x0 + x2x1x0 =

= x2 (x1x0 + x1x0 + x1x0) + x2x1x0 =

= x2 (x1 + x0) + x2x1 + x0 = x2 ⊕ (x1 + x0) .

As polynomial-like Boolean functions are invariant with respect to the permu-
tations of their variables (see in [3]), and the above function is symmetrical in
x1 and x0, so we have three different polynomial-like Boolean functions of the
same form. The weight of these functions is four, and in A there are exactly
three functions containing four 1’s in their spectra, f

(3)
30 , f

(3)
54 and f

(3)
86 . The

next function in A is f
(3)
40 :

(24)
f

(3)
40 = x2x1x0 + x2x1x0 =

= (x2x1 + x2x1)x0 = (x2 ⊕ x1)x0

and again we have three similar functions, namely f
(3)
40 , f

(3)
72 and f

(3)
96 . Finally

f
(3)
126 is a function the weight of which is equal to 6 and this is the only fuction

in A with this property. (By the proof of Theorem 7 the n-variable f
(n)

22n−1−2
is

always polynomial-like, if n ≥ 3, and now n = 3, so 22n−1 − 2 = 126). Now

(25) f
(3)
126 = x2x1x0 + x2x1x0 = (x2 + x1 + x0) (x2 + x1 + x0) .

Altogether we have three different classes containing seven different bases
consisting of two polynomial-like Boolean functions of at most three variables,
more exactly consisting of a zero variable and a three variable polynomial-like
Boolean function. These bases are shown in Table 2.
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{
f

(0)
1 , f

(3)
30

}
= {1, x2 ⊕ (x1 + x0)}

{
f

(0)
1 , f

(3)
40

}
= {1, (x2 ⊕ x1)x0}

{
f

(0)
1 , f

(3)
54

}
= {1, x1 ⊕ (x0 + x2)}

{
f

(0)
1 , f

(3)
72

}
= {1, (x0 ⊕ x2)x1}

{
f

(0)
1 , f

(3)
86

}
= {1, x0 ⊕ (x2 + x1)}

{
f

(0)
1 , f

(3)
96

}
= {1, (x1 ⊕ x0)x2}

{
f

(0)
1 , f

(3)
126

}
= {1, (x2 + x1 + x0) (x2 + x1 + x0)}

Table 2.

3. Conclusion

Although there are infinitely many Boolean functions, but the minimal
generating systems, the bases of them are always finite and contain at most four
functions. In the article above we pointed out that there are bases containing
only polynomial-like Boolean functions and among such bases we can find
two element ones, too. As all of the nonconstant polynomial-like Boolean
functions are zero-preserving, there is no basis containing only one polynomial-
like Boolean function, but one of the two functions of a basis consisting of two
polynomial-like Boolean functions is always the simplest possible, namely the
constant 1-function of zero variables. There are infinitely many such bases, as
for instance {1, f

(n)

22n−1−2
} is a basis for any integer n ≥ 3 (see Theorem 7).
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