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INVESTIGATION
ON ANTIKEYS AND MINIMAL KEYS

OF RELATION SCHEMES BY HYPERGRAPHS

Nguyen Hoang Son (Hue, Vietnam)

Abstract. Minimal keys and antikeys play a very important role in the

theory of the design of relational databases (see, e.g. [3, 6, 7]). The minimal

key and antikey results have been widely investigated. Hypergraphs theory

(see, e.g. [2]) is an important subfield of discrete mathematics with many

relevant applications in both theoretical and applied computer science. A

set of minimal keys and a set of antikeys form simple hypergraphs. The

aim of this paper is to investigate the minimal keys of relation schemes in

term of hypergraphs. The set of antikeys is also studied in this paper. We

present connections between the set of antikeys and the set of closures of

relation schemes.

1. Introduction

In this section we briefly present the main concepts of the theory of
relational databases which will be needed in sequel. The concepts and facts
given in this section can be found in [1, 3, 5, 7].

Let U be a finite set of attributes (e.g. name, age, etc). The elements of U
will be denoted by a, b, c . . . , x, y, z, if an ordering on U is needed, by a1, . . . , an.
A map dom associates with each a ∈ U its domain dom(a). A relation R on
U is a subset of Cartesian product

∏
a∈U

dom(a).

We can think of a relation R on U as a set of tuples: R = {h1, . . . , hm},

hi : U →
⋃

a∈U

dom(a), hi(a) ∈ dom(a), i = 1, 2, . . . ,m.
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A functional dependency (FD for short) on U is a statement of form
X → Y , where X, Y ⊆ U . The FD X → Y holds in a relation R if

(∀hi, hj ∈ R)((∀a ∈ X)(hi(a) = hj(a)) ⇒ (∀b ∈ Y )(hi(b) = hj(b))).

We also say that R satisfies the FD X → Y . Let FR be a family of all
FDs that holds in R. Then F = FR satisfies

(F1) X → X ∈ F ,
(F2) (X → Y ∈ F, Y → Z ∈ F ) ⇒ (X → Z ∈ F ),
(F3) (X → Y ∈ F, X ⊆ V,W ⊆ Y ) ⇒ (V → W ∈ F ),
(F4) (X → Y ∈ F, V → W ∈ F ) ⇒ (X ∪ V → Y ∪W ∈ F ).

A family of FDs satisfying (F1) - (F4) is called an f − family on U .

Clearly, FR is an f -family on U . It is known [1] that if F is an arbitrary
f -family, then there is a relation R on U such that FR = F .

Given a family F of FDs on U , there exists a unique minimal f -family F+

that contains F . It can be seen that F+ contains all FDs which can be derived
from F by the rules (F1)-(F4).

A relation scheme s is a pair (U,F ), where U is a set of attributes and F
is a set of FDs on U . Denote X+ = {a ∈ U | A → {a} ∈ F+}. X+ is called
the closure of X on s. It is obvious that X → Y ∈ F+ iff Y ⊆ X+.

Let s = (U,F ) be a relation scheme and K ⊆ U . Then K is a key of s
if K → U ∈ F+. K is a minimal key of s if K is a key of s and any proper
subset of K is not a key of s.

Denote Ks the set of all minimal keys of s. Now we define the set of
antikeys of Ks, denoted by K−1

s , as follows:

K−1
s = {A ∈ P(U) | (B ∈ Ks) ⇒ (B 6⊆ A) and

(A ⊂ C) ⇒ (∃B ∈ Ks)(B ⊆ C)}.

2. Hypergraphs and transversals

Let U be a nonempty finite set and put P(U) for the family of all subsets
of U . The family H = {Ei | Ei ∈ P(U), i = 1, 2, . . . ,m} is called a hypergraph
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on U if Ei 6= ∅ holds for all i (in [2] it is required that the union of Ei’s is U ,
in this paper we do not require this).

The elements of U are called vertices, and the sets Eis, . . . , Em the edges
of the hypergraph H.

A hypergraph H is called simple if it satisfies

∀Ei, Ej ∈ H : Ei ⊆ Ej ⇒ Ei = Ej .

It can be seen that simple hypergraphs are Sperner system [4]. Clearly, Ks and
K−1

s are simple hypergraphs.

In this paper we always assume that if a simple hypergraph plays the role
of set of minimal keys (antikeys), then this simple hypergraph is not empty
(does not contain U).

Let H be a hypergraph on U . Then min(H) denotes the set of minimal
edges of H with respect to set inclusion, i.e.

min(H = {Ei ∈ H | 6 ∃Ej ∈ H : Ej ⊂ Ei},

and max(H) denotes the set of maximal edges ofH with respect to set inclusion,
i.e.

max(H) = {Ei ∈ H | 6 ∃Ej ∈ H : Ej ⊃ Ei}.
It is clear that, min(H) and max(H) are simple hypergraphs. Furthermore,
min(H) and max(H) are uniquely determined by H.

A set T ⊆ U is called a transversal ofH (sometimes it is called hitting set)
if it meets all edges of H, i.e.

∀E ∈ H : T ∩ E 6= ∅.

Denote by Trs(H) the family of all transversals of H. A transversal T of H is
called minimal if no proper subset T ′ of T is a transversal.

The family of all minimal transversal of H is called the transversal hyper-
graph of H, and denoted by Tr(H). Clearly, Tr(H) is a simple hypergraph.

Proposition 2.1. ([2]) Let H and G be two simple hypergraphs on U .
Then

(1) H = Tr(G) if and only if G = Tr(H),
(2) Tr(H) = Tr(G) if and only if H = G,
(3) Tr(Tr(H)) = H.
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By the definition of minimal transversal the following proposition is
obvious.

Proposition 2.2. [8] Let H be a hypergraph on U . Then

Tr(H) = Tr(min(H)).

The following algorithm finds the family of all minimal transverals of a
given hypergraph (by induction).

Algorithm 2.3. [4]
Input: let H = {E1, . . . , Em} be a hypergraph on U .
Output: Tr(H).
Method:
Step 0. We set L1 := {{a} | a ∈ E1}. It is obvious that L1 = Tr({E1}).
Step q + 1. (q < m) Assume that

Lq = Sq ∪ {B1, . . . , Btq
},

where Bi ∩ Eq+1 = ∅, i = 1, . . . , tq and Sq = {A ∈ Lq | A ∩ Eq+1 6= ∅}.
For each i (i = 1, . . . , tq) constructs the set {Bi ∪ {b} | b ∈ Eq+1}. Denote

them by Ai
1, . . . , A

i
ri

(i = 1, . . . , tq). Let

Lq+1 = Sq ∪ {Ai
p | A ∈ Sq ⇒ A 6⊂ Ai

p, 1 ≤ i ≤ tq, 1 ≤ p ≤ ri}.

Theorem 2.4. ([4]) For every q (1 ≤ q ≤ m) Lq = Tr({E1, . . . , Eq}), i.e.
Lm = Tr(H).

It can be seen that the determination of Tr(H) based on our algorithm
does not depend on the order of E1, . . . , Em.

Remark 2.5. ([4]) Denote Lq = S∪{B1, . . . , Btq}, and lq (1 ≤ q ≤ m−1)
be the number of elements of Lq. It can be seen that the worst-case time
complexity of our algorithm is

O
(
|U |2

m−1∑
q=0

tquq

)
,

where l0 = t0 = 1 and



Antikeys and minimal keys of relation schemes 83

uq =





lq − tq, if lq > tq;

1, if lq = tq.

Clearly, in each step of our algorithm, Lq is a simple hypergraph. It is
known that the siye of arbitrary simle hypergraph on U cannot be greater
than C

[n/2]
n , where n = |U |. C

[n/2]
n is asymptotically equal to 2n+1/2/(π.n)1/2.

From this, the worst-case time complexity of our algorithm cannot be more
than exponential in the number of attributes. In cases for which lq ≤ lm
(q = 1, . . . ,m− 1), it is easy to see that the time complexity of our algorithm
is not greater than O(|U |2 · |H| · |Tr(H)|2). Thus, in these cases this algorithm
finds Tr(H) in polynomial time in |U |, |H| and |Tr(H)|. Obviously, if the
number of elements of H is small, then this algorithm is very effective. It only
requires polynomial time in |U |.

The following proposition is obvious.

Proposition 2.6. ([4]) The time complexity of finding Tr(H) of a given
hypergraph H is (in general) exponential in the number of elements of U .

Proposition 2.6 is still true for a simple hypergraph. Let H be a simple
hypergraph on U . Now we define a set H−1 as follows:

H−1 = {A ∈ P(U) | (B ∈ H) ⇒ (B 6⊆ A) and (A ⊂ C) ⇒ (∃B ∈ H)(B ⊆ C)}.

It is easy to see that if H−1 is a hypergraph on U, then H−1 is a simple
hypergraph.

Proposition 2.7. Let H be a simple hypergraph on U . Then

H−1 = Tr(H).

Proof. Suppose that A ∈ H−1. By the definition of H−1 we have A∩E 6=
6= ∅ for every E ∈ H, which mean that A ∈ Trs(H). On the other hand,
according to the definition of H−1, there exists an E ∈ H such that

A ∪ {a} ⊇ E ∀a ∈ A,

i.e. (A \ {a}) ∩ E = ∅. Therefore we obtain A ∈ Tr(H) or A ∈ Tr(H).
Conversely, assume that T ∈ Tr(H). Thus

T 6⊃ E ∀E ∈ H.
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By the definition of the transversal hypergraph, it is obvious that T \ {a} 6∈
6∈ Trs(H) for every a ∈ T , or (T \ {a}) ∩ E = ∅ for some E ∈ H. This means
that

T ∪ {a} ⊇ E ∀a ∈ T.

Consequently, according to the definition of H−1, we have T ∈ H−1. The
proposition is proved.

Note that, if H = ∅ then Tr(H) = {∅} = {U}. On the other hand,
according to the definition of H−1, we have H−1 = {U}. Consequently, if
H = ∅ then we have also H−1 = Tr(H).

3. Minimal keys

In this section we investigate the minimal keys of relation schemes. We
give two descriptions of the set of all minimal keys of relation schemes in term
of hypergraphs.

Let s = (U,F ) be a relation scheme. We set Ls = {X+ | X ⊆ U}, i.e. Ls

is the set of all closures of s. We define the family Ms as follows

Ms = Ls − {U}.

Then Ms = {U −A | A ∈Ms} is called the complemented of Ms.

Lemma 3.1. Let s = (U,F ) be a relation scheme. Then, if A ∈Ms then
U −A is not the key of s.

Proof. Assume that A ∈ Ms. Thus, U − A ∈ Ms. By the definition of
Ms we have

(U −A)+ = U −A

and
U −A 6= U.

Consequently, U −A is not a key of s. The lemma is proved.

Lemma 3.2. Let s = (U,F ) be a relation scheme. Then, A ∈ Trs(Ks) if
and only if U −A is not the key of s.

Proof. Suppose that U − A is a key of s. From this and the hypothesis
A ∈ Trs(Ks) we have

A ∩ (U −A) 6= ∅.
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This is a contradiction.

Conversely, assume that A 6∈ Trs(Ks). If there exists K ∈ Ks such that
A ∩K = ∅, then U − A is a key of s, which contradicts the hypothesis U − A
is not the key of s. The lemma is proved.

Theorem 3.3. Let s = (U,F ) be a relation scheme. Then

Tr(Ks) = min(Ms).

Proof. Suppose that A ∈ Tr(Ks). By Lemma 3.2 we obtain which U −A
is not a key of s. Clearly, A 6= ∅ and (U − A)+ 6= A. On the other hand, we
also have

U − (U −A)+ ∩K 6= ∅ ∀K ∈ Ks.

Hence, if
U −A ⊂ (U −A)+

then
A ⊃ U − (U −A)+.

This contradicts with the hypothesis A ∈ Tr(Ks). Consequently, (U − A)+ =
= U −A, i.e. U −A ∈Ms. Thus, A ∈Ms.

Now we assume that there exists B ⊂ A and B 6= ∅ such that B ∈ Ms.
Then, according to Lemma 3.1, U − B is not a key of s. By Lemma 3.2 we
obtain B ∈ Trs(Ks), which contradicts the fact that A ∈ Tr(Ks). Therefore,
A ∈ min(Ms) holds.

Conversely, assume that A ∈ min(Ms). Hence, A ∈ Ms. By Lemma 3.1
we have U −A is not a key of s. Thus, according to Lemma 3.2, A ∈ Trs(Ks).
Suppose that there is a B ⊂ A such that B ∈ Trs(Ks).

By the above proof we obtain B ∈ Ms. This contradicts with the fact
that A ∈ min(Ms). Hence, A ∈ Tr(Ks) holds. The theorem is proved.

Theorem 3.4. Let s = (U,F ) be a relation scheme. Then

(1) Ks = Tr(min(Ms)).

(2) Ks = Tr(min(Ls − {∅})).
Proof. (1) It is obvious from Proposition 2.2 and Theorem 3.3.
(2) It is clear that from the definition of Ms and (1).

The theorem is proved.
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4. Antikeys

In this section, firstly, we study the set of antikeys by hypergraphs. We
present connections between the set of antikeys and the set of closures of
relation schemes.

Let A be a family of subsets of U . We define

min(A) = {Ai ∈ A | 6 ∃Aj : Aj ⊂ Ai}

and
max(A) = {Ai ∈ A | 6 ∃Aj : Aj ⊃ Ai},

where A is the complemented of A.

Lemma 4.1. Let A be a family of subsets of U . Then

min(A) = max(A).

Proof. We shall prove that min(A) = max(A). Suppose A ∈ min(A).
Hence, A ∈ min(A). This means that

∀B ∈ A : B 6⊂ A

or
∀B ∈ A : B 6⊃ A.

Thus, we obtain A ∈ max(A).

On the other hand, let A ∈ max(A). By an argument analogous to the

previous one, we get A ∈ min(A). The lemma is proved.

Lemma 4.2. Let s = (U,F ) be a relation scheme. Then

Tr(Ks) = max(Ms).

Proof. According to Theorem 3.3 we have

Tr(Ks) = min(Ms).

From this and Lemma 4.1, we obtain

Tr(Ks) = max(Ms).
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The lemma is proved.
The Lemma 4.2 means that

∀X+ ⊂ U, ∃A ∈ Tr(Ks) : X+ ⊆ A.

Theorem 4.3. Let s = (U,F ) be a relation scheme. Then

K−1
s = max(Ms).

Proof. Because Ks is a simple hypergraph, and by Proposition 2.7, we
have

K−1
s = Tr(Ks).

From this and Lemma 4.2, we immediately get

K−1
s = max(Ms).

The theorem is proved.

Note that a set of minimal keys and set of antikeys form simple hyper-
graphs. Let H be a simple hypergraph on U . The time complexity of finding
H−1 is (in general) exponential in the number of elements of U [4]. However,
if we restrict the number of elements of H, then the time complexity of finding
H−1 is polynomial time.

Lemma 4.4. Let H be a simple hypergraph on U . If |H| ≤ c (c is a
constant) then H−1 is computable in polynomial time.

Proof. Assume that H = {E1, . . . , Ec} where c ≥ 1. Certainly, Ei 6= ∅
for all i = 1, 2, . . . , c. We construct the set

G = {{a1} ∪ . . . ∪ {ak} | ai ∈ Ei, 1 ≤ i ≤ c}.

Denote elements of G by G1, . . . , Gt. Clearly, Gi ∈ Trs(H) for all i = 1, 2, . . . , t.
Then, we compute

min(G) = {Gi ∈ G | 6 ∃Gj ∈ G : Gj ⊂ Gi}.

According to the definition of transversal hypergraphs, we have

Tr(H) = min(G).

By Proposition 2.7, we obtain

H−1 = min(G).
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Obviously, |G| ≤ |U |c. Consequently, min(G) is computable in polynomial time.
The lemma is proved.

Algorithm 4.5. (Finding H−1)
Input: let H = {E1, . . . , Ec} be a simple hypergraph on U , where c is a

constant.
Output: H−1.
Method:
Step 1. We construct the set

G = {{a1} ∪ . . . ∪ {ac} | ai ∈ Ei, 1 ≤ i ≤ c}.

Step 2. Compute

min(G) = {Gi ∈ G | 6 ∃Gj ∈ G : Gj ⊂ Gi}.

Step 3. Let H−1 = min(G).

By Lemma 4.4, it is clear that Algorithm 4.5 computes H−1. Furthermore,
the time complexity of Algorithm 4.5 is polynomial time in the size of U .
Obviously, if c is small then our algorithm is very effective.

5. Conclusion

We have characterized the set of all minimal keys of relation schemes in
term of hypergraphs. Furthermore, the set of antikeys is also studied in this
paper. We present connections between the set of antikeys and the set of
closures of relation schemes.

It can be seen that, if the number of elements of H is constant, i.e. |H| ≤
≤ c for some constant c, then the time complexity of finding H−1 of a given
hypergraph H is polynomial time.
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