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ADDITIVE UNIQUENESS SETS
FOR MULTIPLICATIVE FUNCTIONS

K.-H. Indlekofer (Paderborn, Germany)
Bui Minh Phong (Budapest, Hungary)

Abstract. We proved that if a multiplicative function F and a positive

integer k satisfy F (2) 6= 0, F (5) 6= 1 and

F
(
n2 + m2 + k + 1

)
= F (n2 + k) + F (m2 + 1) for all n,m ∈ IN,

then F (n) = n for all positive integers n, (n, 2) = 1.

1. Introduction

In this paper, let IN and P stand for the set of positive integers and prime
numbers, respectively. We denote by M the set of all multiplicative functions
f such that f(1) = 1. Furthermore, we deal with the set B of non-negative
integers which can be represented as a sum of two squares of integers and with
S the set of all squares of positive integers.

In the following subsets A and B of IN are called additive uniqueness sets
(AU-sets) for M if f ∈M satisfies

f(a + b) = f(a) + f(b) for all a ∈ A and b ∈ B,

then f(n) = n for all n ∈ IN . In 1992 C.Spiro [6] showed that A = B = P are
AU-sets for M. In [1] it is proved that A = S and B = P are also AU-sets for
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M. Recently in [5] (see also [4]) the second author showed that if k ∈ IN and
f ∈M satisfy the conditions f(4)f(9) 6= 0 and

f
(
n2 + m2 + k

)
= f(n2) + f(m2 + k) for all n,m ∈ IN,

then f (n) = n for all n ∈ IN, (n, 2k) = 1. The proof of this result is used on
the following theorem of K.-H. Indlekofer and N. M. Timofeev [3]:

Theorem (IT). Let C be a non-zero integer and A,B ∈ IN such that
(A,B) = 1, (AB, 2C) = 1. Then there exists a positive constant θ = θ(A,B,C)
such that

|{n ≤ x : A(n + C) = B(m + C), (A,n + C) = 1, n, m ∈ B}| > θ
x

log x

holds for all x ≥ x0(A,B, C).

We are interested in characterizing all multiplicative functions F satisfying
the condition

(1) F (n2 + m2 + a + b) = F (n2 + a) + F (m2 + b) for all n, m ∈ IN,

where a, b are given positive integers. Presently we are unable to determine all
such solutions. Our purpose in this paper is to solve (1) for the case min(a, b) =
= 1.

Theorem. Assume that k ∈ IN and F ∈M satisfy the condition

F
(
n2 + m2 + k + 1

)
= F (n2 + 1) + F (m2 + k) for all n, m ∈ IN.

(a) If F (2) = 0, then

F
(
n2 + m2 + k + 1

)
= F (n2 + 1) = F (m2 + k) = 0 for all n,m ∈ IN.

(b) If F (2) 6= 0 and F (5) = 1, then k ≡ 3 (mod 4) and





F (n2 + 1) = χ2(n) + 1,

F (n2 + k) = χ2(n)− 1,

F (n2 + m2 + k + 1) = χ2(n) + χ2(m)

for all n,m ∈ IN , where χ2 denotes the principal character (mod 2).

(c) If F (2) 6= 0 and F (5) 6= 1, then F (n) = n for all n ∈ IN , (n, 2) = 1.
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2. Lemmas concerning an arithmetical function satisfying (1)

In this section we assume that a, b ∈ IN and F is an arithmetical function
with condition (1). Let

Sj := F (j2 + a) for all j ∈ IN.

First we note from (1) that

F (n2 + a) + F (m2 + b) = F (m2 + a) + F (n2 + b),

consequently

(2) F (n2 + b) = Sn + D and F (n2 + m2 + a + b) = Sn + Sm + D

hold for all n,m ∈ IN , where D := F (b + 1)− F (a + 1).

In the proof of our theorem, we shall use the following two lemmas.

Lemma 1. We have

(3) Sk + Sl = Su + Sv if k2 + l2 = u2 + v2

and

(4) Sx + Sy = Sz if x2 + y2 + a = z2.

Proof. Assume that positive integers k, l, u, v satisfy k2 + l2 = u2 + v2.
Then by (2) we have

F (k2 + l2 + a + b) = Sk + Sl + D and F (u2 + v2 + a + b) = Su + Sv + D,

therefore (3) is true.

Now assume that positive integers x, y, z satisfy the equation x2 +y2 +a =
= z2. Then we infer from (2) that

F (x2 + y2 + a + b) = F (z2 + b)

and
F (x2 + y2 + a + b) = Sx + Sy + D, F (z2 + b) = Sz + D.

Thus (4) is true.



68 K.-H. Indlekofer and Bui Minh Phong

Lemma 2. We have

(5) Sn+12 = Sn+9 + Sn+8 + Sn+7 − Sn+5 − Sn+4 − Sn+3 + Sn

for all n ∈ IN and

(6)





S7 = 2S5 − S1,
S8 = 2S5 + S4 − 2S1,
S9 = S6 + 2S5 − S2 − S1,
S10 = S6 + 3S5 − S3 − 2S1,
S11 = S6 + 4S5 − S3 − S2 − 2S1,
S12 = S6 + 4S5 + S4 − S2 − 4S1.

Proof. This is Lemma 1 of [5].

3. The proof of the theorem

In this section we assume that k ∈ IN and F ∈M satisfy the condition

F
(
n2 + m2 + k + 1

)
= F (n2 + 1) + F (m2 + k) for all n, m ∈ IN.

We shall use the notations and results of Lemma 1-2 with a = 1 and b = k.
Let Sj := f(j2 + 1). Then, by (2), we have

(7) F
(
n2 + m2 + k + 1

)
= Sn + Sm + D and F (n2 + k) = Sn + D

for all n,m ∈ IN ,where D = F (k + 1)− F (2).

First we note from Lemma 1 that if x2 + y2 + 1 = z2, then Sx + Sy = Sz.
Since 22 + 22 + 1 = 32 and 42 + 82 + 1 = 92, we have

(8)

{
S3 = 2S2,

S9 = S4 + S8.

On the other hand, by using the facts

F (10) = F (2)F (5) and F (2)F (65) = F (5)F (26),

we have

(9) S3 = S1S2 and S1S8 = S2S5.
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Therefore, we infer from (6), (8) and (9) that S4 = S9−S8 = S6−S4−S2 +S1,
consequently

(10)





S6 = 2S4 + S2 − S1,
S7 = 2S5 − S1,
S8 = 2S5 + S4 − 2S1,
S9 = 2S5 + 2S4 − 2S1,
S10 = 3S5 + 2S4 − S2 − 3S1,
S11 = 4S5 + 2S4 − 2S2 − 3S1,
S12 = 4S5 + 3S4 − 5S1.

Lemma 3. If S2 = 0, then S1 = 0.

Proof. In the following we assume that S2 = F (5) = 0. Hence we obtain
from (8)-(10) that

S3 = 0 and S8 = S12 = 0,

because S8 = F (65) = F (5)F (13) = 0 and S12 = F (145) = F (5)F (29) = 0.
An application of the formula of S8 and S12 in (10) shows that S4 = S1 and
S5 = 1

2S1. Consequently, one can check from (10) the following results:





S2 = S3 = S7 = S8 = S12 = 0,
S1 = S4 = S6 = S9 = S11,
S5 = S10 = 1

2S1.

Hence, it follows from (5) that the sequence {Sn}∞n=1 is also periodic, namely

(11) Sn = Sm if n ≡ m (mod 5) and Sj ∈
{

S1, 0, 0, S1,
1
2
S1

}

for all j ∈ IN .
We shall prove that S1 = 0. Assume that S1 6= 0. Then, by using (11), we

have
1
2
S1 = S5 = F (2)F (13) = S1F (13),

S1 = S21 = F (212 + 1) = F (2)F (13)F (17) = F (13)S1S4 = F (13)S2
1

and
S1 = S4 = S34 = F (342 + 1) = F (13)F (89),

which imply that

F (13) =
1
2
, S1 = 2 and F (89) = 4.
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Hence

1 =
1
2
S1 = S55 = F (552 + 1) = F (2)F (17)F (89) = S2

1F (89) = 22.4 = 16,

which is impossible.
Thus, S1 = 0 and the proof of Lemma 3 is complete.

Lemma 4. If S1 = 0, then

F
(
n2 + m2 + k + 1

)
= F (n2 + 1) = F (m2 + k) = 0 for all n,m ∈ IN.

Proof. We assume that S1 = F (2) = 0. In this case, we have

S2t+1 = F
(
(2t + 1)2 + 1

)
= F (2)F (2t2 + 2t + 1) = 0

for all t ∈ IN . Hence

S1 = S3 = S5 = S7 = S9 = S11 = 0.

It is easy to check from the formula of S3 and S9 in (8)-(10) that

S2 = S4 = 0.

Hence, (10) gives
S6 = S8 = S10 = S12 = 0.

Thus we have proved that Si = 0 for all i ∈ IN, 1 ≤ i ≤ 12, which with (5)
show that Sn = F (n2 + 1) = 0 for all n ∈ IN .

Now we use Theorem (IT) to show that D = F (k+1)−F (2) = 0. Assume
that D 6= 0. Then, from (7) and from our assumptions, we have

(12) F (ν + C) = D for all ν ∈ B,

where C = k + 1. Let A := (2C)2 + 1, B = 1. Then (A, B) = (AB, 2C) = 1,
therefore Theorem (IT) implies that there are positive integers ν, µ ∈ B such
that

A(ν + C) = µ + C and (A, ν + C) = 1.

From (12) we obtain

F (A)D = F (A)F (ν + C) = F (A(ν + C)) = F (µ + C) = D,
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which with D 6= 0 implies F (A) = 1. This is impossible, because

F (A) = F ((2C)2 + 1) = S2C = 0.

The part (a) of our theorem is proved.

Lemma 5. If F (2) 6= 0, then S1 = F (2) = 2 and S2 = F (5) ∈ {1, 5}.
Proof. Assume that S1 = F (2) 6= 0. First we note from Lemma 3 and

Lemma 4 that S1 6= 0 and S2 6= 0 are satisfied. It follows from (8) and (9) that
S3 = S1S2 = 2S2, consequently S1 = 2.

Next we prove that

(13) S5 = S4 + 2S2 − 1.

Indeed, using the following relations

172 + 1 = 2.(122 + 1), 12 + 132 = 72 + 112 and 12 + 172 = 112 + 132,

which with (3), using the fact S1 = F (2) = 2 and the multiplicativity of F ,
imply

(14) S17 = 2S12, 2 + S13 = S7 + S11 and 2 + S17 = S11 + S13.

Thus, we have established, in view of (10), that

S7 = 2 + S13 − S11 = 4 + S17 − 2S11 = 4 + 2S12 − 2S11

and so
S7 − 4 = 2(S12 − S11) = 2(S4 + 2S2 − 4).

Therefore (13) is true, because it is known from (10) that S7 − 4 = 2(S5 − 3).
Now we prove that

(15) S2 ∈ {1, 5}.

We obtain from (10) and (13)-(14) that

S13 = S7 + S11 − 2 = (2S5 − 2) + (4S5 + 2S4 − 2S2 − 6)− 2 =

= 6S5 + 2S4 − 2S2 − 10 = 6(S4 + 2S2 − 1) + 2S4 − 2S2 − 10 =

= 8S4 + 10S2 − 16

and
S13 = F (132 + 1) = F (2)F (5)F (17) = 2S2S4,
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which show that

(16) (S2 − 4)S4 = 5S2 − 8.

Let x := S2. It is obvious from the above relation that x − 4 6= 0, therefore
S4 = (5x− 8)/(x− 4).

On the other hand, we infer from (9), (10) and (13) that

2S8 = S2S5 = S2(S4 + 2S2 − 1) = x

(
5x− 8
x− 4

+ 2x− 1
)

and

2S8 = 2(2S5 + S4− 2S1) = 4(S4 + 2S2− 1) + 2S4− 8 = 6
(

5x− 8
x− 4

)
+ 8x− 12.

After simplifications of these relations of 2S8, we obtain the equation of the
form

x(x− 1)(x− 5) = 0,

consequently x = S2 ∈ {0, 1, 5}. Thus (15) is proved, since x = S2 6= 0. The
Lemma 5 is proved.

Lemma 6. If F (2) 6= 0 and F (5) = 1, then k ≡ 3 (mod 4), D = −2 and
Sn = χ2(n) + 1 for all n ∈ IN .

Proof. Assume that F (2) 6= 0 and F (5) = 1. Then it follows from (8),
(13) and (16) that S3 = S5 = 2 and S4 = 1. Consequently, we infer from (10)
that

Sn = S(n,2) for n ∈ IN, 1 ≤ n ≤ 12,

which by (5) implies that the sequence {Sn}∞n=1 is periodic, namely

(17) Sn = S(n,2) = χ2(n) + 1 for all n ∈ IN,

where χ2 denotes the principal character (mod 2).

In order to prove that k is odd, we note from (7) and (17) that

F (k + 25 + 1) = F (32 + 42 + k + 1) = S3 + S4 + D = 3 + D,

F (k + 26 + 1) = F (12 + 52 + k + 1) = S1 + S5 + D = 4 + D

and

F (k + 26)F (k + 27) = F
(
(k + 26)2 + 52 + k + 1

)
= Sk+26 + 2 + D,
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which imply

(18) Sk = χ2(k) + 1 = D2 + 6D + 10.

Hence χ2(k) = (D + 3)2 ∈ {0, 1}, consequently

(19) D ∈ {−4,−3,−2}.

Assume that k is even. Then (18) implies that D = −3. By

(
k

2

)2

+ 1 + k + 1 =
(

k

2
+ 1

)2

+ 1,

we have
S k

2 +1 = S k
2

+ S1 + D = S k
2
− 1,

which gives

1 = χ2

(
k

2

)
− χ2

(
k

2
+ 1

)
.

This is true for the case when k ≡ 2 (mod 4).

Since F (n2 + k) = Sn + D = χ2(n)− 2 and F (2) = S1 = 2, we have

F

(
2`2 +

k

2

)
= −1 for all ` ∈ IN.

Let p = 4Q + 1 ∈ P and p > k. Then

(
2Q2 +

k

2
, (2Q + 1)2 + k

)
=

(
2Q2 +

k

2
, 4Q + 1

)
=

= (4Q2 + k, p) = (k −Q, p) = 1

and (
2Q2 +

k

2

) [
(2Q + 1)2 + k

]
= 2

(
Q(2Q + 1) +

k

2

)2

+
k

2

imply that

F

(
2Q2 +

k

2

)
F

[
(2Q + 1)2 + k

]
= F

[
2

(
Q(2Q + 1) +

k

2

)2

+
k

2

]
.
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Hence we infer that

S2Q+1 + D = S2Q+1 − 3 = 1, i.e. S2Q+1 = 4.

This is impossible. Therefore k is odd.

Assume that k is odd. Then the relation

F

[(
k + 3

2

)2

+ 22 + k + 1
]

= F

[(
k + 5

2

)2

+ 1
]
,

with (7) and (18)-(19) implies

D = S k+5
2
− S k+3

2
− S2 = S k+5

2
− S k+3

2
− 1 ∈ {−4,−3,−2}.

This is true for the case when k ≡ 3 (mod 4) and D = −2.
Lemma 6 and the part (b) of our theorem is proved.

Lemma 7. If F (2) 6= 0 and F (5) 6= 1, then

(20)





F (n2 + 1) = n2 + 1,

F (n2 + k) = n2 + k,

F (n2 + m2 + k + 1) = n2 + m2 + k + 1

are satisfied for all n,m ∈ IN .

Proof. First we note from Lemma 5 that F (2) 6= 0 and F (5) 6= 1 imply
that S1 = F (2) = 2 and S2 = F (5) = 5. Hence we infer from (8) and (16) that
S3 = 2S2 = 10 and

S4 =
(5S2 − 8)
S2 − 4

= 17.

These with (10) and (13) imply that Sn = F (n2 + 1) = n2 + 1 for 1 ≤ n ≤ 12.
Hence we infer from (5) that the first relation of (20) is true.

Next we prove that

(21) D = k − 1.

Indeed, if k is odd, then

F

[(
k + 3

2

)2

+ 22 + k + 1
]

= F

[(
k + 5

2

)2

+ 1
]
,
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with the first relation of (20) implies

D = S k+5
2
− S k+3

2
− S2 =

(
k + 5

2

)2

+ 1−
(

k + 3
2

)2

− 1− 5 = k − 1.

If k is even, then by

(
k

2

)2

+ 1 + k + 1 =
(

k

2
+ 1

)2

+ 1,

we also obtain from the first relation of (20) that

D = S k
2 +1 − S k

2
− S1 =

(
k

2
+ 1

)2

+ 1−
(

k

2

)2

− 1− 2 = k − 1.

Thus (21) is proved, therefore all relations of (20) follow from (7). The proof
of Lemma 7 is complete.

In order to complete the proof of our theorem, it remains to deduce from
(20) the following result.

Lemma 8. If (20) holds, then

(22) F (n) = n for all (n, 2) = 1.

Proof. First we prove (22) for n ∈ IN with the condition (n, 2(k+1)) = 1.
Assume that n ∈ IN, (n, 2(k + 1)) = 1. Then the Theorem (IT) implies that
there are positive integers µ and ν such that

n(µ + k + 1) = ν + k + 1 and (n, µ + k + 1) = 1.

Thus, from (20) we have

n(µ + k + 1) = ν + k + 1 = F (ν + k + 1) = F [n(µ + k + 1)] =

= F (n)F (µ + k + 1) = F (n) (µ + k + 1) ,

which proves (22) under the condition (n, 2(k + 1)) = 1.
Next we prove that

(23) F (pα) = pα for p ∈ P, p > 2 and p |k + 1.
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Let 2, p1, . . . , pr be all distinct prime divisors of 2(k + 1). Let p ∈ {p1, . . . , pr}
and α ∈ IN . We consider the equation

(24) x2 + k = pαy.

Since k ≡ −1 (mod p), therefore there are xα, yα ∈ IN such that

x2
α + k = yαpα and (pα − xα)2 + k = (pα − 2xα + yα) pα.

It is obvious that one of yα and pα − 2xα + yα is coprime to p. Assume
that xα, yα ∈ IN satisfy (24) and (yα, p) = 1. Let x = pαt + xα and y =
= pαt2 + 2xαt + yα. Then (x, y) is also a solution of (24).

Since pαt2+2xαt+yα ≡ 0 (mod pi) has at most two solutions and pi ≥ 3
for all 1 ≤ i ≤ r, consequently there is ti ∈ IN such that

(pαt2i + 2xαti + yα, pi) = 1 for i = 1, . . . , r.

On the other hand, it is easy to see that

(pα(yα + 1)2 + 2xα(yα + 1) + yα, 2) = (yα + 1 + yα, 2) = 1.

Hence an application of the Chinese Remainder Theorem shows that there is
t0 ∈ IN for which (

pαt20 + 2xαt0 + yα, 2(k + 1)
)

= 1.

Thus we have proved that

(x0, y0) = (pαt0 + xα, pαt20 + 2xαt0 + yα)

is a solution of (24) with the condition (y0, 2(k + 1)) = 1.
Finally, we infer from (20) and (22) that

pαy0 = x2
0 + k = F

(
x2

0 + k
)

= F (pαy0) = F (pα) F (y0) = F (pα) y0,

which proves (23). The proof of Lemma 8 is complete.
The theorem is proved.
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