Annales Univ. Sci. Budapest., Sect. Comp. 25 (2006) 65-77

ADDITIVE UNIQUENESS SETS
FOR MULTIPLICATIVE FUNCTIONS

K.-H. Indlekofer (Paderborn, Germany)
Bui Minh Phong (Budapest, Hungary)

Abstract. We proved that if a multiplicative function F' and a positive

integer k satisfy F'(2) # 0, F(5) # 1 and
F(n®+m*+k+1)=F®n*+k)+F(m*>+1) forall n,méeIN,

then F'(n) = n for all positive integers n, (n,2) = 1.

1. Introduction

In this paper, let IN and P stand for the set of positive integers and prime
numbers, respectively. We denote by M the set of all multiplicative functions
f such that f(1) = 1. Furthermore, we deal with the set B of non-negative
integers which can be represented as a sum of two squares of integers and with
S the set of all squares of positive integers.

In the following subsets A and B of IN are called additive uniqueness sets
(AU-sets) for M if f € M satisfies

fla+b) = f(a)+ f(b) forall a€ A and be B,

then f(n) =n for all n € IN. In 1992 C.Spiro [6] showed that A = B = P are
AU-sets for M. In [1] it is proved that A = S and B = P are also AU-sets for
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M. Recently in [5] (see also [4]) the second author showed that if & € IN and
f € M satisfy the conditions f(4)f(9) # 0 and

f(n2+m2+k) = f(n®) + f(m®+k) forall n,m € IN,

then f (n) =n for all n € IN, (n,2k) = 1. The proof of this result is used on
the following theorem of K.-H. Indlekofer and N. M. Timofeev [3]:

Theorem (IT). Let C be a non-zero integer and A, B € IN such that
(A,B) =1, (AB,2C) = 1. Then there exists a positive constant 0 = 0(A, B, C')
such that

{n<a: An+C)=B(m+C), (An+C)=1,n,me B} >9$

holds for all x > x¢(A, B,C).

We are interested in characterizing all multiplicative functions I satisfying
the condition

(1) F(n*+m?+a+b)=Fn*+a)+ F(m?+0b) foral n, me N,
where a, b are given positive integers. Presently we are unable to determine all

such solutions. Our purpose in this paper is to solve (1) for the case min(a,b) =
=1

Theorem. Assume that k € IN and F' € M satisfy the condition
F(n®*+m*+k+1)=Fn*>+1)+Fm®>+k) foral n,méeIN.
(a) If F(2) =0, then
F(n®+m*>+k+1)=Fn*>+1)=Fm?>+k)=0 foral n,m € IN.
(b) IfF(2)#0 and F(5) =1, then k=3 (mod 4) and
F(n?+1) =x2(n) + 1,
F(n® + k) =Xx2(n) - 1,
Fn?+m?+k+1) =x2(n)+ x2(m)

for all n,m € IN, where xo denotes the principal character (mod 2).
(¢) If F(2) #0 and F(5) # 1, then F(n)=mn for alln € IN, (n,2) = 1.
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2. Lemmas concerning an arithmetical function satisfying (1)

In this section we assume that a,b € IN and F' is an arithmetical function
with condition (1). Let

S;:=F(j? +a) forall jc IN.
First we note from (1) that
F(n?+a)+ F(m?* +b) = F(m* + a) + F(n® + ),
consequently
(2) F(n®>+b)=S8,+D and F(n*+m?+a+b)=S,+S,+D

hold for all n,m € IN, where D := F(b+1) — F(a+1).
In the proof of our theorem, we shall use the following two lemmas.

Lemma 1. We have

(3) S+ S =8,+8, if E+1%=u*+0?
and
(4) Se+ 8, =5, if 2*+y*+a=2"

Proof. Assume that positive integers k, [, u,v satisfy k2 + 12 = u® + v
Then by (2) we have

Fk*+P+a+b) =Sy +S+D and F(u?+v*+a+b)=S,+S,+D,

therefore (3) is true.

Now assume that positive integers z, y, z satisfy the equation 2 +y?>+a =
= 22, Then we infer from (2) that

F(z? +y*+a+b)=F(z*>+)

and
Fla®>+y2+a+b)=8,+8,+D, F(z2+b)=S5.+D.

Thus (4) is true.
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Lemma 2. We have
(5) Sn+12 = Sn+9 + Sn+8 + Sn+7 - Sn+5 - Sn+4 - Sn+3 + Sn
for all n € IN and
Sy =285 — 51,
Sg =285+ 5, — 251,
(©) Sg  =86+25 — 5 — 51,
S0 = Sg+3S5 —S3—254,

S11 =8 +4S55 — S3 — 5 — 251,
S1a = Sg+4S5 + 54— Sy —45.

Proof. This is Lemma 1 of [5].
3. The proof of the theorem

In this section we assume that k € IN and F' € M satisfy the condition
F(n®+m*+k+1)=Fn’+1)+Fm®+k) forall n,meIN.

We shall use the notations and results of Lemma 1-2 with ¢« = 1 and b = k.
Let Sj := f(j? + 1). Then, by (2), we have

(7)) F(n*+m’+k+1)=S5,4+S,+D and F(n®>+k)=S,+D

for all n,m € IN,where D = F(k + 1) — F'(2).

First we note from Lemma 1 that if 22 + 3% 4+ 1 = 22, then S, + Sy =85..
Since 22 +22 +1 =32 and 42 4+ 82 + 1 = 92, we have

Ss =25,
(8) {
Sg =54+ Ss.
On the other hand, by using the facts
F(10) = F(2)F(5) and F(2)F(65) = F(5)F(26),
we have

(9) Sg = 5152 and 5158 = 5255.
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Therefore, we infer from (6), (8) and (9) that Sy = Sg— Ss = Sg— Sy — Sa+ 51,
consequently

S¢ =284+ S5 — 51,

S; =285 - 5,
Ss =255+ 54 — 254,
(10) Sg =285 +25,— 25,

S0 =355+ 254 — Se — 351,
S11 =485+ 25, — 255, — 351,
Si12 =485 + 354 — 55.

Lemma 3. If S5 =0, then S; = 0.

Proof. In the following we assume that So = F(5) = 0. Hence we obtain
from (8)-(10) that
53:0 and 882512:0,

because Sg = F(65) = F(5)F(13) = 0 and S12 = F(145) = F(5)F(29) = 0.
An application of the formula of Sg and Si2 in (10) shows that Sy, = S; and
Sy = %Sl. Consequently, one can check from (10) the following results:

Sy =853 =57 = S = 512 =0,
S1 =54 =56 = Sg = S11,
S5 = S0 =18,

Hence, it follows from (5) that the sequence {S,}22, is also periodic, namely
1
(11) Sp=98n if n=m (mod5) and S; € {51,0,0751,251}

for all j € IN.

We shall prove that S; = 0. Assume that S; # 0. Then, by using (11), we
have

%Sl — S5 = F(2)F(13) = S1F(13),

Sy =8y =F(21° +1) = F(2)F(13)F(17) = F(13)S,S4 = F(13)5?

and
Sy =S4 = 83, = F(34* +1) = F(13)F(89),

which imply that

1
F(13)= 3, $1=2 and F(89) =4,
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Hence
1
1= §51 = Ss5 = F(55% +1) = F(2)F(17)F(89) = S?F(89) = 22.4 = 16,

which is impossible.
Thus, S; = 0 and the proof of Lemma 3 is complete.

Lemma 4. If S; =0, then

F(n®+m*+k+1)=Fn*>+1)=Fm?>+k)=0 foral n,m € IN.

Proof. We assume that S} = F'(2) = 0. In this case, we have
Sorp1 =F((2t+1)°+1) = F2)F2t* +2t+1) =0
for all ¢ € IN. Hence
S1=53=55=57=5 =51=0.
It is easy to check from the formula of S3 and Sy in (8)-(10) that
Sy =84 =0.

Hence, (10) gives
Sg = Sg = S10 = S12 = 0.

Thus we have proved that S; = 0 for all ¢ € IN, 1 <4 < 12, which with (5)
show that S, = F(n? +1) =0 for all n € IN.

Now we use Theorem (IT) to show that D = F(k+1)— F(2) = 0. Assume
that D # 0. Then, from (7) and from our assumptions, we have

(12) Fv+C)=D forall veb,

where C' = k+ 1. Let A := (2C)?> +1, B = 1. Then (A, B) = (AB,20) = 1,
therefore Theorem (IT) implies that there are positive integers v, u € B such
that

Av+C)=p+C and (A,v+C)=1.

From (12) we obtain

F(A)D = F(A)F(v + C) = F (A(v + C)) = F(u + C) = D,
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which with D # 0 implies F(A) = 1. This is impossible, because
F(A) = F((20)* + 1) = Sac = 0.

The part (a) of our theorem is proved.
Lemma 5. If F(2) #0, then S1 = F(2) =2 and Sz = F(5) € {1,5}.

Proof. Assume that S; = F(2) # 0. First we note from Lemma 3 and
Lemma 4 that S; # 0 and Sy # 0 are satisfied. It follows from (8) and (9) that
S3 = 5152 = 255, consequently S; = 2.

Next we prove that

(13) S5 =S5, 4+ 2S5, — 1.
Indeed, using the following relations
177 4+1=2(122+1), 12+132=7>411% and 12 +17% = 11% +13?,

which with (3), using the fact S; = F(2) = 2 and the multiplicativity of F,
imply

(14) Si7=2512, 2+ 513 =57+ 511 and 24 Si7 = Si1 + Sis.
Thus, we have established, in view of (10), that
Sr=2+8513—- 511 =4+ 517 —2511 =4+4+2512 -25;

and so
S; —4 = 2(512 — Sll) = 2(54 + 2S5 — 4)

Therefore (13) is true, because it is known from (10) that S7 — 4 = 2(S5 — 3).
Now we prove that

(15) Sy € {1,5}.
We obtain from (10) and (13)-(14) that

313:S7+SH—2:(255—2)+(4S5—|—25’4—252—6)—2:
— 655 + 254 — 255 — 10 = 6(Sy + 255 — 1) + 25, — 255 — 10 =
=85, + 1055 — 16

and
S13=F(132 +1) = F(2)F(5)F(17) = 25554,
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which show that
(16) (S2 —4)Sy =552 — 8.
Let z := S5. It is obvious from the above relation that x — 4 # 0, therefore
Sy = (bz —8)/(x —4).
On the other hand, we infer from (9), (10) and (13) that

5x_48+2x—1>

255 = 5585 = SQ(S4 + 2855, — 1) =z (

P
and

be _48> F8z—12.

258_2(235+S4—251)_4(S4+252—1)+254—8_6<

After simplifications of these relations of 2Ss, we obtain the equation of the
form

z(x —1)(x —5) =0,

consequently x = Sy € {0,1,5}. Thus (15) is proved, since z = Sz # 0. The
Lemma 5 is proved.

Lemma 6. If F(2) #0 and F'(5) =1, then k=3 (mod 4), D = -2 and
Sp = x2(n) 4+ 1 for alln € IN.

Proof. Assume that F'(2) # 0 and F(5) = 1. Then it follows from (8),
(13) and (16) that S3 = S5 = 2 and Sy = 1. Consequently, we infer from (10)
that

SnZS(n’g) for ne IN, 1<n<12,

which by (5) implies that the sequence {S,}5°; is periodic, namely
(17) Spn = Smn,2) = x2(n) +1 forall nec IN,

where x2 denotes the principal character (mod 2).

In order to prove that & is odd, we note from (7) and (17) that
Flk+25+1)=F((3%+4>4+k+1)=S3+S4+D=3+D,

Fk+26+1)=F(1°+5*+k+1)=5+S+D=4+D

and

F(k+26)F(k+27)=F ((k+26)>+5%+ k+1) = Sg06 + 2+ D,
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which imply

(18) S = x2(k) + 1 = D? 4+ 6D + 10.
Hence x2(k) = (D + 3)% € {0, 1}, consequently

(19) D e {-4,-3,-2}.

Assume that k is even. Then (18) implies that D = —3. By

2 2
(g) +1+k+1:<§+1> +1,

S§+1:S§+S1+D:S§—l,

o) u(e)

This is true for the case when k=2 (mod 4).
Since F(n? +k) =S, + D = x2(n) — 2 and F(2) = S; = 2, we have

we have

which gives

F(%M’é) =—1 forall ¢€ IN.

Let p=4Q +1 € P and p > k. Then
2 K 2 2 K

=(4Q*+k,yp)=(k-Q,p =1

and

(2622 + ];) [(2Q+1)* + k] =2 (Q(?QH) + ’;)2+’;

imply that

(a0 1)+ )+

F<2Q2+§)F[(2Q+1)2+k]:F 5 5




74 K.-H. Indlekofer and Bui Minh Phong

Hence we infer that
SQQ+1 + D = SQQ+1 —-3=1, ie. SQQ+1 =4.

This is impossible. Therefore k is odd.
Assume that k is odd. Then the relation

F{<T>2+22+k+1] = F{<l€;5)2+1],
with (7) and (18)-(19) implies

D:SM_SH_SQZS@_SM_16{—4,—3,—2}.
3 2 2 2

This is true for the case when k=3 (mod 4) and D = —2.
Lemma 6 and the part (b) of our theorem is proved.

Lemma 7. If F(2) #0 and F(5) # 1, then
F(n?+1) =n?+1,
(20) F(n?+k) =n?+k,
Fn?+m?+k+1) =n2+m?+k+1

are satisfied for all n,m € IN.

Proof. First we note from Lemma 5 that F'(2) # 0 and F(5) # 1 imply
that S; = F(2) = 2 and S; = F(5) = 5. Hence we infer from (8) and (16) that
53 = 252 =10 and
(552 —8)

Sy —4
These with (10) and (13) imply that S, = F(n? +1) =n? + 1 for 1 <n < 12.
Hence we infer from (5) that the first relation of (20) is true.

Next we prove that

Sy = =17.

(21) D=k—1.

Indeed, if k is odd, then

CO R COR
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with the first relation of (20) implies

E+5)\2 k4 3\
D:SM—SM—SQ=(+> +1—<+> —1-5=Fk—1.
) 2z 2 2

If k£ is even, then by

E\?2 k 2
(2> +1+k+1:<2+1> +1,

we also obtain from the first relation of (20) that

k 2 E\?
D=S§+1—S§—51=<2+1> +1—(2> —1-2=k—-1.

Thus (21) is proved, therefore all relations of (20) follow from (7). The proof
of Lemma 7 is complete.

In order to complete the proof of our theorem, it remains to deduce from
(20) the following result.

Lemma 8. If (20) holds, then
(22) F(n)=n forall (n,2)=1.

Proof. First we prove (22) for n € IN with the condition (n,2(k+1)) = 1.
Assume that n € IN, (n,2(k + 1)) = 1. Then the Theorem (IT) implies that
there are positive integers p and v such that

nu+k+1)=v+k+1 and (n,p+k+1)=1
Thus, from (20) we have
np+k+1)=v+k+1=Fw+k+1)=Fn(p+k+1)]=

=Fn)F(u+k+1)=F(n)(u+k+1),

which proves (22) under the condition (n,2(k + 1)) = 1.
Next we prove that

(23) F(p*)=p~ for peP,p>2 and p |k+ 1.
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Let 2,p1,...,p, be all distinct prime divisors of 2(k + 1). Let p € {p1,...,pr}
and « € IN. We consider the equation

(24) 22 4+ k= py.
Since k = —1 (mod p), therefore there are 2, y, € IN such that

w24k =yap” and (p° —za)’ +k = (p” — 270 +ya) .

It is obvious that one of y, and p® — 2x, + y, is coprime to p. Assume
that ©,,y, € IN satisfy (24) and (yo,p) = 1. Let © = p*t + 2, and y =
= p*t? 4 224t + yo. Then (x,7) is also a solution of (24).

Since p*t? 4+ 224t +1yo =0 (mod p;) has at most two solutions and p; > 3
for all 1 <i < r, consequently there is t; € IN such that

(Pt + 220t; +ya,pi) =1 for i=1,... 7
On the other hand, it is easy to see that
("W + 1)? +220Ha + 1)+ ¥a,2) = (o + 1+ ya,2) = 1.
Hence an application of the Chinese Remainder Theorem shows that there is

to € IN for which
(p“td + 2zato + Yo, 2(k + 1)) = 1.

Thus we have proved that
— (e g2
- )
(z0,%0) = (p™to + T, P15 + 22at0 + Ya)

is a solution of (24) with the condition (yo,2(k + 1)) = 1.
Finally, we infer from (20) and (22) that

pyo =g +k=F (a5 +k) =F (p"y) = F (p*) F(yo) = F (p) o,

which proves (23). The proof of Lemma 8 is complete.
The theorem is proved.
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