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SOME FURTHER REMARKS ON THE
ITERATES OF THE ϕ AND THE σ-FUNCTIONS

I. Kátai (Budapest, Hungary)
M.V. Subbarao†

1. Introduction

Notations. N = set of positive integers, P = set of primes; ω(n) = the
number of distinct prime factors of n, ϕ(n) = Euler’s totient function, σ(n) =
the sum of positive divisors of n. For some multiplicative function f : N→ N,
let f0(n) = n, f1(n) = f(n), fj+1(n) = f(fj(n)) (j = 1, 2, . . .). For the
variable x let x1 = log x, x2 = log x1, . . . . The letters p, q with or without
suffixes always denote prime numbers. The largest prime factor of n is denoted
by P (n), the smallest prime factor of n is p(n).

As usual let

(1.1) Ψ(x, y) = #{n ≤ x : P (n) ≤ y} (x ≥ y ≥ 2),

(1.2) Φ(x, y) = #{n ≤ x : p(n) > y}.

It is known (see Tenenbaum [1], Theorem I.4.2) that

(1.3) Φ(x, y) = x
∏

p≤y

(
1− 1

p

) {
1 + O

(
1

(log y)2

)}

if

2 ≤ y ≤ exp
(

x1

10x2

)
.
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Several questions on the prime factors of ϕk(n) (k-fold iterate of ϕ), and
on σk(n), furthermore the size of the set of n ≤ x satisfying (n, ϕk(n)) = 1
were investigated. A non-complete list of the relevant paper is: [2]-[14].

2. On the function Ek(n) := (n, ϕk(n))

Let k ≥ 1 be fixed,

(2.1) Ek(n) := (n, ϕk(n)).

(2.2) Kk(n) := (n, σk(n)).

Let

(2.3) A(n, y) :=
∏

pα‖n
p<y

pα.

Theorem 1. We have

(2.4)
1
x

#
{
n ≤ x : Ek(n) 6= A(n, xk

2)
}

= ox(1),

(2.5)
1
x

#
{
n ≤ x : Kk(n) 6= A(n, xk

2)
}

= ox(1).

Proof. We shall prove only (2.4). The proof of (2.5) is similar, so we omit
it. Let εx be a sequence tending to zero (slowly). Let A1 be the set of those

n ≤ x for which p|n holds for some p ∈ Lx =
[
xk−εx

2 , xk+εx
2

]
. Then

(2.6) #(A1) ≤
∑

p∈Lx

[
x

p

]
≤ x log

k + εx

k − εx
+ O

(
x

x3

)
= O

((
εx +

1
x3

)
x

)
.

Let A2 be the set of those n ≤ x for which q|E(n) for some q > xk
2 .

We shall say that p0, p1, . . . , pk is a chain of primes, if

pj+1 − 1 ≡ 0 (mod pj) (j = 0, . . . , k − 1)
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holds. Assume that p0|ϕk(n). Then either p2
0|ϕk−1(n), or not, and in the

second case p1|ϕk−1(n), where p1− 1 ≡ 0 (mod p0). We can proceed as we did
in [13] and deduce that

(2.7) #(A2) ¿
∑

q>xk
2

x

qpk
,

where we sum over all chains q = p0, p1, . . . , pk(≤ x).

The following assertion is proved in [4].

Lemma 1. Let
δ(x, k, l) :=

∑
p≤x

p≡l(mod k)

1/p.

For l = 1 or −1 and k ≤ x, x ≥ 3 we have

δ(x, k, l) ≤ c1x

ϕ(k)
,

where c1 is an absolute constant.

By using Lemma 1, we have

∑

(xk
2<q)

1
q

∑
p1

∑
p2

. . .
∑
pk

1
pk
≤ c1x2

∑
q

∑
p1

. . .
∑
pk−1

1
pk−1

≤

≤ . . . ≤ ck
1xk

2

∑

q>xk
2

1/q2 = O (1/x3) .

Thus

(2.8) #(A2) = O

(
x

x3

)
.

Let Yx be a sequence tending to infinity slowly. We assume that Yx =
= O(x4). Let κ(n) be the largest prime power divisor of n, with exponent at
least 2, i.e.

κ(n) := max
pα|n
α≥2

pα.

Let A3 := {n ≤ x : κ(n) ≥ Yx}. It is obvious that

(2.9) #(A3) ¿
∑

pa≥Yx
a≥2

x

pa
¿ x√

Yx

.
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Let π ∈ P, π < xk−εx
2 , and Aπ be the set of those n = πν ≤ x, ν ∈ N, for

which (π, ϕk(πν)) = 1. This holds only if (π, ϕk(ν)) = 1.

Let Bk(π) be the set of all those primes pk for which there exists a chain
the starting element of which is p0 = π (thus p0, p1, . . . , pk is a suitable chain).
It is clear that (π, ϕk(ν)) = 1 implies that (π,Bk(π)) = 1.

Thus, by Brun’s sieve we have

(2.10) #(Aπ) ≤ cx

π

∏
p∈Bk(π)

p<x

(1− 1/p).

By using the method given in [12], [13] we obtain that

∑
p∈Bk
p<x

1/p ≥ 1
2
x2 (say),

whence

(2.11) #(Aπ) ¿ x

π
exp

(
−1

2
x2

)
,

and so

(2.12)
∑

π<xk−εx
2

#(Aπ) ¿ xx2
√

x1.

If n ≤ x is such a number which does not belong to A1 ∪ A2 ∪ (∪Aπ),
then Ek(n) = A(n, xk

2). (2.4) is proved.

By similar method one can prove

Theorem 2. We have

(2.13) #{p ≤ x : Ek(p + a) 6= A(p + a, xk
2)} = o(π(x)),

(2.14) #{p ≤ x : Kk(p + a) 6= A(p + a, xk
2)} = o(π(x)),

as x →∞. Here a 6= 0 is an arbitrary integer.
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3. Some lemmas

3.1. Let πr(x) = #{n ≤ x : ω(n) = r}. Hardy and Ramanujan [14]
proved that

(3.1) πr(x) ≤ x

x1

(x2 + c)r−1

(r − 1)!

holds for every r ∈ N, x ≥ 3, with a suitable absolute constant c.
Hence one can prove immediately

Lemma 3. For every c1 ∈ R there exists c2 ∈ R such that

(3.2) #{n ≤ x : ω(n) ≥ c2x2} ¿ x

xc1
1

.

3.2. Let Q be an arbitrary prime in the interval xk
2 ≤ Q ≤ x

1/3
1 . Let

κ0, κ1, . . . be a sequence of completely additive functions defined for primes p
as follows:

(3.3) κ0(p) =

{ 1, if p = Q,

0, if p 6= 0,

(3.4) κj+1(p) =
∑
q∈P

q|p−1

κj(q).

Let

(3.5) Sj(y) :=
∑

p≤y

κj(p).

Lemma 4. Let x1/4 ≤ y ≤ x. Then, for j ≥ 2,

(3.6) Sj(y) =
(li y)(log log y)j−1

(j − 1)!(Q− 1)
+ O

(
(li y)(log log y)j−2

Q(m−1)/m

)

and

(3.7) S1(y) = π(y,Q, 1) =
li y

Q− 1
+ O

(
li y
Q

e−c
√

log y

)
.
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Here m is an arbitrary positive integer, the constants implied by the error terms
may depend on j and m.

Lemma 4 is proved in [3] (Lemma 7).

Let

(3.8) T (k)
Y := {ν ≤ Y : p(ν) > xk

2},

(3.9) T
(k)
Y (s) := #

{
ν ∈ T (k)

Y : ω(Ek(ν)) = s
}

.

Lemma 5. Let
√

x ≤ Y ≤ x, x ≥ 100. Then, with a suitable constant c
which may depend only on k, we have

(3.10) T
(k)
Y (s) ≤ 1

s!

(
c

x3

)s

Y

for every s ≥ 1, and for every fixed s0

(3.11) T
(k)
Y (s) ¿ 1

s!

(
c

x3

)s

Φ(y, xk
2),

if s = 1, . . . , s0. Here Φ is defined by (1.2).

Proof. Let (xk
2 ≤) Q1 < . . . < Qs be primes for which Q1 . . . Qs|Ek(ν).

Repeating the argument used in [13] one can see that the number of these
ν ∈ T (k)

y is less than

(3.12)
∑

p
(k)
1 ,...,p

(k)
s

Φ

(
Y

Q1 . . . Qs p
(k)
1 . . . p

(k)
s

, xk
2

)
,

where p
(k)
j is the final element of the chain of primes Qj(= p

(0)
j ), p

(1)
j , . . . , p

(k)
j .

The contribution of the extraordinary cases when p
(l1)
j1

= p
(l2)
j2

(j1 6= j2),

or if p
(t)2
l | ϕk−t(ν) is smaller than (3.13) (which is an upper bound of (3.12)).

Since Φ(Y, xk
2) ≤ Y , we obtain from Lemma 1 that (3.12) is less than

(3.13)
Y xks

2

Q2
1 . . . Q2

s

,
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whence by summing over all sets of primes (xk
2 ≤) Q1 < . . . < Qs (< x) we

obtain that

∑ 1
Q2

1 . . . Q2
s

≤ 1
s!





∑

xk
2<Q<x

1/Q2





s

≤ 1
s!

(
c

xk
2x3

)s

.

Hence (3.10) is immediate.

To prove (3.11), we estimate T
(k)
Y (s) by

∑

(xk
2<)Q1<...<Qs≤x

1/3
1

∑

p
(k)
1 ,...,p

(k)
s

Φ

(
Y

Q1 . . . Qs p
(k)
1 . . . p

(k)
s

, xk
2

)
+

+
∑

Q1<...<Qs

Qs>x
1/3
1

∑

p
(k)
1 ,...,p

(k)
s

[
Y

Q1 . . . Qs p
(k)
1 . . . p

(k)
s

]
=

∑
1
+

∑
2
.

As earlier, we obtain that

∑
2
≤

∑

Qs>x
1/3
1

1
Q2

s

· 1
(s− 1)!





∑

Q>xk
2

1/Q2





s−1

(c1x
k
2)s ¿ Y

x1
,

say. In
∑

1 first we sum over those p
(k)
1 , . . . , p

(k)
s for which max

l=1,...,k
p
(k)
l < x1/4s.

For such collection of p
(k)
1 , . . . , p

(k)
s :

(3.14) Φ

(
Y

Q1 . . . Qs p
(k)
1 . . . p

(k)
s

, xk
2

)
¿ Y · x−1

3

Q1 . . . Qs p
(k)
1 . . . p

(k)
s

,

and for the others we use the trivial inequality

(3.15) Φ

(
y

Q1 . . . Qs p
(k)
1 . . . p

(k)
s

, xk
2

)
≤

[
Y

Q1 . . . Qs p
(k)
1 . . . p

(k)
s

]
.

Summing up the right hand side of (3.14) over Q1, . . . , Qs we obtain the
bound

Y · x−1
3 · 1

s!

(
c

x3

)s

.
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It remains to estimate the cases when max p
(k)
l ≥ x1/4s. We shall estimate

(3.16)
∑

x>p
(k)
l

>x1/4s

1/p
(k)
l ,

where p
(k)
l is the final element of the chain Ql(= p

(0)
l ), p

(1)
l , . . . , p

(k)
l .

Let M := x1/4s, T be the smallest integer for which 2T M ≥ x. Thus
T = O(x1). Let us define the sequence of the completely additive functions κj

by the rules (3.3), (3.4) with the choice Q = Ql.

Applying Lemma 4 we get immediately that

T∑
r=0

1
2rM

Sk

(
2r+1M

) ¿




xk−1
2
Ql

+ xk−2
2 /Q

(m−1)/m
l if k ≥ 2,

1/Ql if k = 1.

The proof of Lemma 4 can be completed easily.

4. Some theorems

Let z ≥ 1 be a constant, h(n) := zω(n). Let

(4.1) Mk(x) :=
∑

n≤x

h(Ek(n)),

(4.2) Tk(x) :=
∑

n≤x

h(Kk(n)).

Theorem 3. We have

(4.3)
Mk(x)

x
= (1 + ox(1))C(kx3)z−1,

(4.4)
Tk(x)

x
= (1 + ox(1))C(kx3)z−1,

where C = C(z, k) is a nonzero constant.
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Proof. We shall prove only (4.1). The proof of (4.2) is similar, so we omit
it.

By using Lemma 3, we can find a constant c3 such that

(4.5)
∑

ω(n)>c3x2

h(Ek(n)) ¿ x/x2
1,

say.
Let

(4.6) R1 := {n ≤ x | ω(n) ≥ c3x2}.

Let

(4.7) R2(V ) := {n ≤ x | A(n, xk
2) ≥ V },

where V ∈ [x1, x
1/4].

By using the known inequality

(4.8) Ψ(x, y) ¿ x exp
(
−1

2
log x

log y

)
as 2 ≤ y ≤ x

(see e.g. [1] Chapter III. 5. Theorem 1), we can deduce that

(4.9) #R2(V ) ¿ x · kx3 exp
(
−1

2
log V

kx3

)
.

Indeed,

(4.10) #R2(V ) ≤ x
∑

V≤D≤x

P (D)≤xk
2

1
D
≤ x ·

j0∑

j=0

1
2jV

Ψ
(
2j+1V, xk

2

)
,

where j0 is the smallest integer for which 2j0V ≥ x. From (4.8), (4.10) the
inequality (4.9) follows.

Let now V = exp(x2
2). We have

(4.11) #R2(exp(x2
2)) ¿ x/xB

1 ,

where B is an arbitrary large positive constant.
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Let D ≤ exp(x2
2) be fixed and let

U1(D) :=
∑∗

h(Ek(n))

for those n = Dν, for which ν ∈ T k
x/D and ω(Ek(ν)) 6= 0. If ω(Ek(ν)) = s,

then h(Ek(n)) ≤ zω(D) · zs, consequently, by Lemma 5,

(4.12)
U1(D) ¿ zω(D)x

Dx3





s0∑
s=1

1
s!

(
cz

x3

)s

+ x3

∑

s≥s0+1

1
s!

(
cz

x3

)s


 ¿

¿ zω(D)x

Dx2
3

.

Collecting our inequalities we obtain that

(4.13)

Mk(x) ≤
∑

D≤exp(xk
2)

P (D)≤xk
2

zω(D)φ
( x

D
, xk

2

)
+

+ O




x

x2
3

∑

D≤exp(xk
2)

P (D)≤xk
2

zω(D)

D




+ O (x/x1) , say.

Let εx be a sequence tending to zero slowly. Let us count for a fixed D

those ν ∈ Tx/D for which there exists at least one prime π < xk−εx
2 , such that

π|D and (π, ϕk(Dν)) = 1.
By using the Brun sieve and repeating the argument for getting the

inequality (2.10), (2.11) we can deduce that the size of these ν is less than

(4.14) ¿ x

D

x2√
x1

.

Thus

(4.15)

Mk(x) ≥
∑

D1≤exp(xk
2)

P (D1)≤x
k(1−εx)
2

zω(D1)φ

(
x

D1
, x

k(1−εx)
2

)
+

+ O

(
xx2√

x1

∑ z

D1

)
.
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Hence, by using (1.3) we deduce that

(4.16)
Mk(x)

x
≥ (1 + ox(1))

∏

p<x
k(1−εx)
2

(1− 1/p)
∏

p<x
k(1−εx)
2

(
1 +

z

p− 1

)
.

On the other hand, from (4.13) we obtain that

(4.17)
Mk(x)

x
≤ (1 + ox(1))

∏

p<xk
2

(1− 1/p)
(

1 +
z

p− 1

)
.

Since ∏

x
k(1−εx)
2 <p<xk

2

(
1− 1

p

)(
1 +

z

p− 1

)
→ 1 as εx → 0,

therefore

Mk(x)
x

= (1 + ox(1)) exp


(z − 1)

∑

p<xk
2

1/p + B1 + O

(
1
x3

)
 =

= (1 + ox(1))(kx3)z−1C

with a suitable constant C = C(k, z) ( 6= 0). Thus (4.3) is true.
By a somewhat complicated argument we would be able to prove the

following

Theorem 4. Let a 6= 0, z ≥ 1, h(n) := zω(n),

Uk(x) :=
∑

p≤x

h(Ek(p + a)),

Vk(x) :=
∑

p≤x

h(Kk(p + a)).

Then
Uk(x)
π(x)

= (1 + ox(1))C∗(kx3)z−1,

Vk(x)
π(x)

= (1 + ox(1))C∗(kx3)z−1,

where C∗ = C∗(z, k) is a nonzero constant.
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[6] Erdős P., Some remarks on Euler’s ϕ-function and some related problems,
Bull. Amer. Math. Soc., 51 (1945), 540-544.

[7] Bateman P.T., The distribution of values of the Euler-function, Acta
Arith., 21 (1972), 329-345.

[8] Balazard M. and Smati A., Elementary proof of a theorem of Bateman,
Analytic number theory. Proc. of Conf. in honor of P.T. Bateman, eds.
B.C. Berndt et al., Birkhäuser, Boston, 1990, 41-46.
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