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A REMARK
ON THE PRODUCT PARTITION
OF INTEGERS INTO k PARTS

I. Kátai (Budapest, Hungary)
M.V. Subbarao†

Abstract. Let fk(n) be the number of solutions of the equation n =
= m1m2 . . . mk in integers (2 =) m1 < m2 < . . . < mk. The authors

analyze the question how
∑

n≤x

fk(n) can be estimated with good remainder

terms by using known result.

1. Let k ∈ Z be an integer, fk(n) be the number of solutions of the
equation

n = m1m2 . . .mk,

in integers (2 ≤)m1 < m2 < . . . < mk.

Let

F (t, s) =
∞∏

n=2

(
1 +

t

ns

)
.

The research of second author supported in part by a grant from NSERC.
He died February 5, 2006.

The research of first author supported by the Applied Number Theory
Research Group of the Hungarian Academy of Sciences, the Hungarian National
Foundation for Scientific Research under grant OTKA T46993 and in part by
a grant from NSERC.

Mathematics Subject Classification: 11M06, 11P99, 11N37
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Then

log F (t, s) =
∞∑

k=1

tk

k
· (−1)k−1

( ∞∑
n=2

1
nks

)
=

=
∞∑

k=1

(−1)k−1tk

k
(ζ(ks)− 1) =

= tζ(s)− t + a(t, s),

a(t, s) =
∞∑

k=2

(−1)k−1tk

k
(ζ(ks)− 1).

It is clear that for |t| < √
2, the function a(t, s) as a function of s is regular

and bounded in Re s >
1
2

+ δ where δ is an arbitrary positive constant.

Let

Fk(s) =
∞∑

n=1

fk(n)
ns

.

We have e−t+a(t,s) = b0(s) + b1(s)t + b2(s)t2 + . . . , b0(s) = 1, where bν(s)

are bounded in σ >
1
2

+ δ, they are polynomials of ζ(2s), . . . , ζ(νs) for every

ν. The explicit form of them can be computed.

Let x1 = log x, x2 = log x1, . . . .
Since

F (t, s) = 1 +
∞∑

k=1

tkFk(s),

etζ(s) =
∞∑

k=0

ζ(s)k

k!
tk,

therefore

(1.1) Fk(s) =
k∑

ν=0

bν(s)
(k − ν)!

ζk−ν(s).

We would like to estimate

Sk(x) =
∑

n≤x

fk(n).
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Since

e−t+a(t,s) =
(∑ (−t)ν0

ν0!

) ∞∏

k=2

( ∞∑
m=0

(−1)(k−1)mtkm

km
(ζ(ks)− 1)m

)
,

therefore

(1.2)
bν(s)

(k − ν)!
= E1 ·G1(s) + . . . + Ep ·Gp(s),

where the general form of Gl(s) can be written as

(1.3) G(s) = ζm1(a1s) . . . ζmq (aqs) =
∞∑

n=1

g(n)
ns

,

where (2 ≤)a1 < . . . < aq, m1, . . . ,ms are positive integers, and

m1a1 + . . . + mqaq ≤ ν.

Let

(1.4)

D(s) = D(s|G) =
∞∑

n=1

g(n)
ns

,

B(y) = (B(y|G) =)
∑

n≤y

g(n).

From (1.3) we have

(1.5) B(y) =
∑

n
a1
1 ...n

aq
q ≤x

dm1(n1) . . . dmq (nq).

Lemma 1. We have

(1.6) B(y) ≤ Cx1/a1xm1−1
1 ζ

(
a2

a1

)
. . . ζ

(
aq

a1

)

for q ≥ 2, and

(1.7) B(y) ≤ Cx1/a1xm1−1
1 if q = 1.
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Proof. Since

∑

na≤x

dm(n) =
∑

u1...um≤x1/a

1 =
∑

u1...um−1≤x1/a

x1/a

u1 . . . um−1
≤

≤ x1/a


 ∑

u<x1/a

1
u




m−1

≤

≤ x1/a

(
1
a
x1 + c

)m−1

,

therefore the assertion is true for q = 1.

Let q ≥ 2. Assume that the assertion is true for q − 1.
Then
∑

n
a1
1 ...n

aq
q ≤x

dm1(n1) . . . dmq
(nq) =

∑

n
a2
2 ...n

aq
q ≤x

dm2(n2) . . . dmq
(nq)

∑
n2,...nq

,

∑
n2,...,nq

=
∑

n1≤
(

x

n
a2
2

...n
aq
q

)1/a1

dm1(n1) ≤ cx1/a1xm1−1
1 · 1

n
a2/a1
2 . . . n

aq/a1
q

,

and so

(1.8) B(y) ≤ cx1/a1xm1−1
1 ζ

(
a2

a1

)m2−1

. . . ζ

(
aq

a1

)mq−1

.

Lemma 2. Let

Dk(x) :=
∑

n≤x

dk(n) = xQk−1(log x) + ∆k(x),

Qk−1(log x) := Res
s=1

xs−1ζk(s)s−1.

Let α2 ≤ α3 ≤ . . . be such a sequence for which α2 >
1
2
, and for each

ε > 0,
∆k(x) = O

(
xαk+ε

)

holds. Possible value of αk can be found in [1], Theorem 13.2.
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2. Let us estimate

(2.1) E(x | G, k, ν) =
∑

mn≤x

g(m)dk−ν(n),

where G is a function of form (1.3).
Then

E(x | G, k, ν) =
∑

m≤x

g(m)Dk−ν(x/m) =

=
∑

m≤x

g(m)
{

x

m
Qk−ν−1

(
log

x

m

)
+ O

(( x

m

)αk+ε
)}

=

=
∑

m≤x

g(m)
m

Qk−ν−1

(
log

x

m

)
+ O

(
xαk+ε

∑ g(m)
mαk+ε

)
.

Since αk−ν > 1/2, therefore

∑ g(m)
mαk−ν+ε

< ∞.

Let

Qk−ν−1(y) =
k−ν−1∑

µ=0

eµyµ.

Therefore

∑

m≤x

g(m)
m

k−ν−1∑
µ=0

eµ(x1 − (log m))µ =
k−ν−1∑

h=0

xh
1Uh(x),

Uh(x) =
k−ν−l−1∑

h=0

dh,l

∑

m≤x

g(m)
m

(log m)l.

Let

(2.2) ηl :=
∑ g(m)

m
(log m)l.

Since

∑

m≥x

g(m)
(log m)l

m
¿

∞∑
t=0

[log(2tx)]l

2tx

∑

2tx<m<2t+1x

g(m) ¿

¿
∞∑

t=0

(log 2tx)l

√
2tx

(log x)m1−1ζ(2)ν ¿ (log x)K

√
x
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holds with a suitable large K, therefore

Uh(x) =
k−ν−l−1∑

h=0

dh,lηl + O
(
x−1/2+ε

)
,

ε > 0 is an arbitrary small positive integer. Let us observe furthermore that in
(1.1) b0(s) = 1.

We proved the following

Lemma 3. For (2.1) we have

E(x | G, k, ν) = xQ̃k−ν−1(log x) + O
(
xαk+ε

)
.

From Lemma 3 the following assertion follows.

Theorem 1. Let k ≥ 2 be an arbitrary integer. Then

Sk(x) = xP̃k−1(log x) + O
(
xαk+ε

)
,

where P̃k−1(y) = πk−1 yk−1 + . . . + π0 is a polynomial, the leading coefficient

πk−1 satisfies πk−1 =
1
k!

.

Remarks.

1. A.F. Lavrik [2] counted the coefficients of the polynomials Qk−1 in
Lemma 2. By his method and by counting the coefficients of the expansions
bν(s) = b

(0)
ν + b

(1)
ν (s − 1) + . . ., one can determine the coefficients of P̃k−1 in

Theorem 1.

2. A.A. Karacuba [3] proved, by using the method of I.M. Vinogradov,
that ∑

n≤x

dk(n) = xPk−1(x1) + O
(
x

1− c

k2/3 +ε
)

uniformly as k/x2 ≤ εx, where εx → 0 arbitrarily, ε > 0, c > 0, the constant
implied by the error term is absolute, Pk−1 is a polynomial of degree k− 1, the
leading term of which is 1.

By using his theorem we can deduce that Theorem 1 remains valid

uniformly as
k

x2
≤ εx, with αk = 1− c

k2/3
.
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