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A REMARK
ON THE PRODUCT PARTITION
OF INTEGERS INTO ¢ PARTS

I. Kéatai (Budapest, Hungary)
M.V. Subbaraof

Abstract. Let f;(n) be the number of solutions of the equation n =

= mimsz ... My in integers (2 :) m; < mg < ... < mg. The authors
analyze the question how Y fir(n) can be estimated with good remainder
n<x

terms by using known result.

1. Let k € Z be an integer, fr(n) be the number of solutions of the
equation
n=mmsy...Mmg,
in integers (2 <)m; < may < ... < my.
Let

peo =11 1),

n=2
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Then
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It is clear that for |t| < v/2, the function a(t, s) as a function of s is regular
1
and bounded in Re s > B + § where § is an arbitrary positive constant.

Let

ilfkn

We have e #+9(45) = by (s) + by (s)t + ba(s)t2 + ..., bo(s) = 1, where b, (s)
1
are bounded in ¢ > 5 + 0, they are polynomials of {(2s),...,((vs) for every
v. The explicit form of them can be computed.

Let x1 =logx, o =logxy,... .

Since
F(t,s) =1+ t*Fi(s)
k=1
therefore
" b(
(1.1) =Y 4 <k (s).
V*O

We would like to estimate

Sp(x) =Y fu(n).

n<z



A remark on the product partition of integers into k parts

45

Since
—t+a(t,s) U - — )(k 1)mtkm m
ertrete) - (Y UL S -7 ).
k=2 \m=0
therefore
b,
(1.2) (SV) ! =E1-G1(s)+ ...+ E, - Gp(s),

where the general form of G;(s) can be written as

m m - 9(n
(1.3) G(s) = (™ (ar5)...CM(ags) = Y 7(7,)
n=1
where (2 <)a; < ... < aq, m1,...,ms are positive integers, and

miay + ... +mgag < V.

Let

8

D(s) = D(s|G) =

B(y) = (B(y|G) = Z

From (1.3) we have

(1.5) Bly)= > dm(m)...dm,(ng).

Lemma 1. We have

(1.6) Bly) < CxV/arg™1¢ (‘”) ¢

ay
forq>2, and

(1.7) B(y) < Cat/mgm™=t if ¢=1.



46 I. Katai and M.V. Subbarao

Proof. Since

xl/a
S )= S 1= S T o
Uy ... Um—1
n*<z UL Uy <l/a UL Uy —1 <l/@
m—1
1
<x1/a 2 - S
u
u<lzgl/a

therefore the assertion is true for ¢ = 1.

Let ¢ > 2. Assume that the assertion is true for ¢ — 1.

Then
> (1) diy(ng) = > dmy(n2). ..qu(nq)znz o
n{ll'l...n;q <z n;24..n2q§x e
S - Y dam ety L
n2,...,Ng 1/ay n¢27«2 ai e nqq 1
n1<("a2 = “q)
2 Mg
and so
a mo—1 a mg—1
(1.8) B(y) < cat/ g™ —I¢ (2) . ¢ <q) .
a1 ai
Lemma 2. Let
Dy(x) = di(n) = 2Qp_1(logz) + Ap(z),
n<lzx
Qr-1(logz) :== Rffisflck(s)fy
. 1
Let s < a3 < ... be such a sequence for which as > > and for each

e >0,
Ap(z) = O (z*+19)

holds. Possible value of ay, can be found in [1], Theorem 13.2.
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2. Let us estimate

(2.1) E(z |G kv)= Y g(m)ds_,(n),

mn<zx

where G is a function of form (1.3).

Then
Bz | G,k,v) = 7;: 9(m) Dy, (x/m) =
= ngxg(m) {;Qkul (log %) +0 < akﬁ)} -
= Z: 7Qk v-1 (log ) +0 (ma’”gz niii?g) )

Since ag_, > 1/2, therefore

g(m)
ooy < 00.
Let
k—v—1
Qrv1(y) = > ey
©n=0
Therefore
g(m k—v—1
Zi Z (w1 — (logm))* = > @}Un(x),
m<zx m pn=0 h=0
k—v—1-—1
5 Y L gy
h=0 m<zx
Let
g(m l
(2.2) Z logm
Since

Z o(m logm Z log 2t Z o(m) <

m>x =0 2tr<m<2ttly

IOg mq—1 v (logl')K
1 ! 2 —_—
EO (log ) ((2)" < NG
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holds with a suitable large K, therefore

k—v—1—1

Un(z) = Z dpam + O <$71/2+€) ;

h=0
€ > 0 is an arbitrary small positive integer. Let us observe furthermore that in
(1.1) bo(s) = 1.
We proved the following

Lemma 3. For (2.1) we have
E(z | G k,v) = 2Qp—,—1(logz) + O (z+te).

From Lemma 3 the following assertion follows.

Theorem 1. Let k > 2 be an arbitrary integer. Then
Sk(z) = xﬁk,l(logm‘) +0 (m(’”s) ,

where 15k_1(y) = me_1 y* + ...+ 7o is a polynomial, the leading coefficient

. 1
Tp_1 satisfies mp_1 = Pk

Remarks.

1. A.F. Lavrik [2] counted the coefficients of the polynomials Qf_; in
Lemma 2. By his method and by counting the coefficients of the expansions
b,(s) = b0 4 bl(,l)(s — 1)+ ..., one can determine the coefficients of Pj_; in
Theorem 1.

2. A.A. Karacuba [3] proved, by using the method of I.M. Vinogradov,
that

Z di(n) =xPr_1(x1) + O (m17ﬁ+5)

n<x

uniformly as k/xy < €., where €, — 0 arbitrarily, € > 0, ¢ > 0, the constant
implied by the error term is absolute, Px_1 is a polynomial of degree k — 1, the
leading term of which is 1.

By using his theorem we can deduce that Theorem 1 remains valid

. k . c
uniformly as - <eg, withap=1-— R
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