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SOME PROPERTIES OF
POLYNOMIAL–LIKE BOOLEAN FUNCTIONS

J. Gonda (Budapest, Hungary)

Abstract. In [3] a linear algebraic aspect is given for the transformation of

a Boolean function to its Zhegalkin representation, and in [4] we determined

the eigenvectors of that transform. In [5] we introduced the notion of the

polynomial-like Boolean functions as the Boolean functions belonging to

the eigenvectors of the transform mentioned above. In this article some

simple properties of that type of Boolean functions are given.

In this article the elements of the field with two elements are denoted by
0 and 1; N0 denotes the non-negative integers, and N the positive ones.

In [3] we pointed out that if we consider the coefficients of a Boolean
function of n variables and the coefficients of the Zhegalkin polynomial of n
variables, respectively, as the components of an element of a 2n-dimensional
linear space over F2, then the relation between the vectors belonging to the
two representations of the same Boolean function of n variables could be
given by k = A(n)α. Here k is the vector containing the components of
the Zhegalkin polynomial, α is the vector, composed of the coefficients of the
Boolean representation of the given function, and A(n) is the matrix of the
transform in the natural basis. In the article mentioned above it is proved that

A(n) =





(1), if n = 0,
(

A(n−1) 0(n−1)

A(n−1) A(n−1)

)
, if n ∈ N

and as consequence that
A(n)2 = I(n),

where I(n) and 0(n) denote the 2n-dimensional identity and zero matrix,
respectively. From this follows that if k = A(n)α, then α = A(n)k.
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In [4] it is pointed out that the minimal polynomial of A(n) is λ2+1, except
for the case of n = 0, when the minimal polynomial is equal to λ+1. The only
eigenvector of the transform is 1, and the nullspace of the unique eigenvector
of A(n) is a 2n−1-dimensional space, if n > 0. u ∈ F2n

2 is an eigenvector of the

transform if and only if u =
(

u(0)

u(1)

)
, where u(1) is an arbitrary vector of the

2n−1-dimensional linear space over F2, and u(0) =
(
An−1 + In−1

)
u(1).

The definition of the polynomial-like Boolean functions can be found in
[5]. If f is a Boolean function of n variables, α is the spectrum of its canonical
disjunctive normal from, and k is the vector of the coefficients of its Zhegalkin
polynomial, then f is polynomial-like if and only if α = k.

In the following part of our article, we apply the results stated in [3], [4]
and [5] to the Boolean functions.

Notation. Let n ∈ N0, let T(n) be the 2n-dimensional linear space over
F2, for 2n > i ∈ N0 let m

(n)
i be the i-th minterm of n variables and S

(n)
i

the i-th elementary Zhegalkin polynomial of n indeterminates, that is m
(n)
i =

=
n−1∏
j=0

(
a
(i)
j ⊕ xj

)
and S

(n)
i =

n−1∏
j=0

(
a
(i)
j + xj

)
, where i =

n−1∑
j=0

a
(i)
j 2j , and ⊕ is

the Exclusive Or, and + denotes the logical sum. If α ∈ T(n), k = A(n)α,

and f =
2n−1∑
i=0

αim
(n)
i is a Boolean-function of n variables, then ϕ(f) = p =

=
2n−1⊕
i=0

kiS
(n)
i . For the previous f and p, f = f

(n)
r and p = p

(n)
s , where r =

=
2n−1∑
i=0

αi2i and s =
2n−1∑
i=0

ki2i.

Proposition 1. The EXCLUSIVE OR of polynomial-like Boolean func-
tions of the same variables is a polynomial-like Boolean function of these
variables.

Proof. This statement is obvious, as k = Aα, and then

m∑

i=1

k1 =
m∑

i=1

A(n)αi = A(n)
m∑

i=1

αi.

Proposition 2. The logical product (that is the And operation) of
polynomial-like Boolean functions over pairwise disjunctive sets of variables
is polynomial-like Boolean function over the union of these sets of variables.

Proof. Let f = f(x0, . . . , xr−1) and g = g(xr, . . . , xr+s−1) be polynomial-
like Boolean functions, where {x0, . . . , xr−1}

⋂{xr, . . . , xr+s−1 = ∅, and f =
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=
2r−1∑
i=0

α
(f)
i m

(r)
i , g =

2s−1∑
i=0

α
(g)
i m

(s)
i . Then ϕ(f) =

2r−1⊕
i=0

α
(f)
i S

(r)
i and ϕ(g) =

=
2s−1⊕
i=0

α
(g)
i S

(s)
i . As

m
(x0,...,xr−1)
i m

(xr,...,xr+s−1)
j =

r−1∏

k=0

(
a
(i)
k ⊕ xk

) s−1∏

l=0

(
a
(j)
l ⊕ xr+l

)
=

=
r−1∏

k=0

(
a
(i)
k ⊕ xk

) r+s−1∏

l=r

(
a
(2rj)
l ⊕ xl

)
=

r+s−1∏
t=0

(
a
(i+2rj)
t ⊕ xt

)
=

= m
(x0,...,xr−1,xr,...,xr+s−1)
i+2rj

and

S
(x0,...,xr−1)
i S

(xr,...,xr+s−1)
j =

r−1∏

k=0

(
a
(i)
k + xk

) s−1∏

l=0

(
a
(j)
l + xr+l

)
=

=
r−1∏

k=0

(
a
(i)
k + xk

) r+s−1∏

l=r

(
a
(2rj)
l + xl

)
=

r+s−1∏
t=0

(
a
(i+2rj)
t + xt

)
=

= S
(x0,...,xr−1,xr,...,xr+s−1)
i+2rj ,

so (α(f)
i m

(x0,...,xr−1)
i )(α(g)

j m
(x0,...,xs−1)
j ) = α

(f)
i α

(g)
j m

(x0,...,xr−1,xr,...,xr+s−1)
i+2rj , and

a similar equality is true substituting m by S. Then, considering that the
logical product is distributive over both the OR and the EXCLUSIVE OR
operation, we get that

fg = f(x0, . . . , xr−1) · g(xr, . . . , xr+s−1) =

=

(
2r−1∑

i=0

α
(f)
i m

(x0,...,xr−1)
i

)


2s−1∑

j=0

α
(g)
j m

(xr,...,xr+s−1)
j


 =

=
2r−1∑

i=0

2s−1∑

j=0

α
(f)
i α

(g)
j m

(x0,...,xr−1)
i m

(xr,...,xr+s−1)
j =

=
2r+s−1∑

k=0

α
(f)
(k mod 2r)α

(g)

b k
2r cm

(x0 ...,xr−1,xr,...,xr+s−1)
k =
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=
2r+s−1∑

k=0

α
(fg)
k m

(x0 ...,xr−1,xr,...,xr+s−1)
k

and

ϕ(f)ϕ(g) = p(f)(x0, . . . , xr−1) · p(g)(xr, . . . , xr+s−1) =

=

(
2r−1∑

i=0

α
(f)
i S

(x0,...,xr−1)
i

)


2s−1∑

j=0

α
(g)
j S

(xr,...,xr+s−1)
j


 =

=
2r−1∑

i=0

2s−1∑

j=0

α
(f)
i α

(g)
j S

(x0,...,xr−1)
i S

(xr,...,xr+s−1)
j =

=
2r+s−1∑

k=0

α
(f)
(k mod 2r)α

(g)

b k
2r cS

(x0,...,xr−1,xr,...,xr+s−1)
k =

=
2r+s−1∑

k=0

α
(fg)
k S

(x0,...,xr−1,xr,...,xr+s−1)
k ,

where for any 2r+s > k ∈ N0 α
(fg)
k = α

(f)
(k mod 2r)α

(g)

b k
2r c, so fg is a

polynomial-like Boolean function of the variables belonging to {x0, . . . , xr−1}∪
∪{xr, . . . , xr+s−1}. From here we get the stated property by induction on the
number of the Boolean functions.

Remark. In Proposition 1 it is important, that the set of the variables
of the functions are the same, while for the product in Proposition 2 the
disjunctivity of these sets is important. For instance, both x0 ⊕ x1 and x2 are
polynomial-like Boolean functions, but x0⊕ x1⊕ x2 is not, and x0⊕ x1⊕ x1x2

is not a polynomial-like Boolean function, too, although x1x2 is a polynomial-
like Boolean function of two variables. For the product let us consider as
first example again the polynomial-like Boolean functions x0 ⊕ x1 and x1x2.
Their product is (x0 ⊕ x1)x1x2 = x1x2 ⊕ x0x1x2, and the right hand side
is equal to x1x2 ⊕ x0x1x2 = (1 ⊕ x0)x1x2 = x0x1x2. Now we can see, that
the Zhegalkin polynomial of the product is a binomial, while the canonical
disjunctive normal from of the same function contains only one term, so the
function is obviously not a polynomial-like Boolean function. Similarly, the
product of the polynomial-like Boolean functions x0x1⊕x0x2 and x0x1⊕x1x2 is
not polynomial-like, as the product function is equal to x0x1⊕x0x1x2 = x0x1x2.
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Proposition 3. If f = f
(n)
i is a polynomial-like Boolean function of n

variables, where n is a positive integer, and 22n

> i ∈ N0, then i is an even
number.

Proof. Every element of the first column and the diagonal of A(n) is
equal to 1. If i = 1 then k is equal to the first column of A(n), so w(α) =
= 1 6= 2n = w(k), where w is the weight of a vector, that is the number of the
components of the vector equal to 1. Now suppose i is an odd number greater
than 1. Then α0 = 1, and there is at least one index j so, that 0 < j < 2n,
and αj = 1. Let l be the smallest index with the previous property. Then
kl =

(
A(n)α

)
l
= al,0 ⊕ al,l = 1⊕ 1 = 0 6= 1 = αl, so α 6= k.

Proposition 4. f
(n)
0 , f

(n)

22n−1−2
, f

(n)

22n−1 and f
(n)

22n−2
are polynomial-like

Boolean functions of n-variables.

Proof. If α = 0, then A(n)α = 0, too. For α = (0, 0, ..., 0, 1), A(n)α is the
last column of A(n), which is equal to (0, 0, ..., 0, 1)T . As the number of ones in
all of the rows of A(n) with a positive indices is even, and the first element of
any row is equal to one, too, furthermore the first row of the matrix contains
exactly one 1, the image of α = (0, 1, ..., 1, 1) is equal to the original vector.
Finally, as (0, 1, ..., 1, 0) is the sum of (0, 1, ..., 1, 1) and (0, 0, ..., 0, 1), and the
transform is closed for the addition of the vectors, from the previous results we
get that the image of (0, 1, ..., 1, 0) is equal to itself.

Proposition 5. f
(n)
i is a polynomial-like Boolean function if and only if

f
(n)

i+1 is a polynomial-like Boolean function, too.

Proof. As the set of the polynomial-like Boolean functions of the same
variables is closed for the EXCLUSIVE OR, and f

(n)

22n−2
is a polynomial-

like Boolean function of n variables, the Boolean function f of n variables
is polynomial-like if and only if f∗ = f ⊕ f

(n)

22n−2
is polynomial-like. In the

spectrum of the canonical disjunctive normal form of f
(n)

22n−2
every coefficient

but the one belonging to the index of 0 is equal to 1, so in the spectra of f

and f ⊕ f
(n)

22n−2
the members belonging to the index of 0 are identical, while

all other coefficients are different. If f is polynomial-like, then α0 = 0 and so

f
(n)
1 ⊕ f ⊕ f∗ = f

(n)
1 ⊕ f

(n)

22n−2
= f

(n)

22n−1
, that is f∗ = f

(n)
1 ⊕ f, and if f = f

(n)
i ,

then - considering that α0 = 0 - f
(n)
1 ⊕ f = f

(n)
i+1.

Proposition 6. If f(xn−1, . . . , xi+1, xi, xi−1, . . . , x0) is a polynomial-like
Boolean function, then f(xn−1, . . . , xi+1, xi, xi−1, . . . , x0) is a polynomial-like
Boolean function if and only if f = 0 or f = 1.
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Remark. f = 1 is a polynomial-like Boolean function if and only if f is
a Boolean function of 0 variables.

Proof. As the polynomial-like-property is invariant with respect to
the permutation of the indices of the variables, it is enough to prove, that
if f(xn−1, xn−2, . . . , x0) polynomial-like, then f(xn−1, xn−2, . . . , x0) is not
polynomial-like, except of the case when f is a constant function.

If f is a Boolean function of zero variables, then it is obvious that inverting
any variable of the function we get the same function, so the new function is
polynomial-like if and only if the original one is polynomial-like, and both of
the Boolean functions of zero variables are polynomial-like.

Now suppose that n is a positive integer, and f is a polynomial-like
Boolean function of n variables. Every Boolean function of n variables can be
written as f = xn−1f

[0] ⊕ xn−1f
[1], where f [0] and f [1] are Boolean functions

of x0, . . . , xn−2, and f(xn−1, xn−2, . . . , x0) = xn−1f
[1] ⊕ xn−1f

[0]. If f is
polynomial-like, then α[0] =

(
A(n)+I(n)

)
α[1], and if also f(xn−1, xn−2, . . . , x0)

is polynomial-like, then α[1] =
(

A(n) + I(n)
)

α[0]. It means that in the latter
case

α[1] =
(
A(n) + I(n)

)
α[0] =

(
A(n) + I(n)

)2
α[1] = 0

and then α[0] =
(
A(n) + I(n)

)
α[1] = 0, too, so f = 0.

Remark. If f is a Boolean function of n variables, and n > j > i ≥ 0,
then both of the two Boolean functions

f
(

xn−1, . . . , xj+1, xj , xj−1, . . . , xi+1, xi, xi−1, . . . , x0

)

and
f

(
xn−1, . . . , xj+1, xj , xj−1, . . . , xi+1, xi, xi−1, . . . , x0

)

can be polynomial-like. For instance, if

f = f
(3)
158 = x2x1x0 + x2x1x0 + x2x1x0 + x2x1x0 + x2x1x0,

then α(158) = (0, 1, 1, 1, 1, 0, 0, 1)T , and




1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1







0
1
1
1
1
0
0
1




=




0
1
1
1
1
0
0
1
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so f is a polynomial-like Boolean function. Now

f(x2, x1, x0) = x2x1x0 + x2x1x0 + x2x2x0 + x2x1x0 + x2x1x0 =

= x2x1x0 + x2x1x0 + x2x1x0 + x2x1x0 + x2x1x0 = f
(3)
214

and the spectrum of this function is equal to α(214) = (0, 1, 1, 0, 1, 0, 1, 1)T . In
that case 



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1







0
1
1
0
1
0
1
1




=




0
1
1
0
1
0
1
1




that means, that this function is a polynomial-like Boolean function, too.
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