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MEAN BEHAVIOUR OF
UNIFORMLY SUMMABLE q—MULTIPLICATIVE
FUNCTIONS

K.-H. Indlekofer, Y.-W. Lee and R. Wagner
(Paderborn, Germany)

Abstract. In this paper a complete characterization of g-multiplicative
functions f € L* is given.

1. Introduction

In 1968 G. Haldsz proved the following mean-value theorem for multiplica-
tive functions.

Theorem A. (Haldsz [5]). Let f be a multiplicative function, |f(n)] <1,
(n=1,2,...). If there is a real number a such that the series

3 (1 —Ref(p)p~™)

P p
converges, then as x — 00
pl+ia I
nz<;f 1+m1—£( ><1+Zp ‘W f(p )>+o(a:).

On the other hand, if there is no such number a, then

x_lzf(n)—>0 (x — 00).

n<z
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In either case there are constants D, «, and a slowly-oscillating function L(u)
with |L(u)| =1, so that as © — o0

Z f(n) = Dz'L(log ) + o(x).

n<zx

The function L and the constants «r, D may be given explicitely (see for example
Haldsz [5] and K.-H. Indlekofer [7]).

For f : Ny — C define, for any real number o > 1,

1) £l = (125“j;‘op11v > |f<n>|a> ,

n<N

and let
LY={f|f:No—C, |flla <00}

An arithmetical function! f : Ny — C is called uniformly summable in case

1

lim sup — f(n)|=0.

i sup 7L§<N [f(n)]
1f ()12 K

The set of all uniformly summable functions, denoted by L£*, is a proper subset
of £!. Obviously (a > 1)
£ecLr c .t
z  #

In [10] K.-H. Indlekofer has given a complete characterization of the

asymptotic behaviour of the sums Y f(n) (x — o0) for uniformly summable
n<lx

multiplicative functions. Putting

FB i f ) # 0,
1 otherwise,

he proves the following

Theorem B. (Indlekofer [10]). Let f € L* be multiplicative and || f]|1 >
> 0.Then the following two assertions hold.

L If f is defined on N we extend f to Ny by putting f(0) = 0.
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(i) If there exists a constant ap € R such that the series

@) 3 (1 —Reo(p)p™™)

p

p

converges for a = ag then there exists a constant cg € C such that, as
T — 00,

LS gy =am ey (L0 (0 4o,

n<x p<z

where

= 1+1ia01;[< ) <1+Z H ) {W}-

If

I —iag
p<z

then
lim sup |A*(y) — A*(z)| =0.

T00 p<y<a?

(i1) If the series (2) diverges for all a € R then the mean-value M(f) of f
erists and equals zero.

We will extend results of this kind to g-multiplicative functions. For this
let ¢ > 2 be an integer and A = {0,1,...,¢9 — 1}. The g-ary ezpansion of some

n € Ny is defined as the unique sequence eg(n),e1(n), ... for which
(3) n = Zar(n)qr , &r(n) €A
r=0
holds. €¢(n),e1(n),. .. are called the digits in the g-ary expansion of n. In fact,
1og n

er(n)=0ifr >1gq

A function f : Ny — C is called g-multiplicative if f(0) =1, and for every
n € Ny,

(4) f) =TT fern)a)
r=0
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A classical theorem of H. Delange [3] asserts that for g-multiplicative function

1
f with |f(n)| <1, where N, = {ngJ,
log g

1 prasey ,
o) = 23 s = T 3 (S st0) ) ot

n<x r=0 a€h

as r — Q.

From this he deduced that lim |m(x)| always exists and equals

r—00

1S fla)|.
r=0 q achA

which is nonzero if and only if

(5) Z flag") #0 (for all r € Np)

a€h

(6) > Re(l—f(ag")) < oo.

r=0a€cA

Furthermore, he proved that lim m(z) exists and is nonzero if and only
if (5) holds and the series

(7) D (1 flag")
r=0 a€A

is convergent.

The aim of this paper is to study the behaviour of the sums

g ad S )

n<N n<N

as N — 0o, a > 0, where f € L* is g-multiplicative.
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2. Main results

We use the following notations.

Let ﬁ;:a = H(l + Urq) and Iy = H(l + u,) with ., =
r<R r<R
11 13-
= 6Z(|f(aqr)|“ —1) and w, := 5Z(f(aq”) — 1), respectively.
a=1 a=1

Definition 1. A function g is said to be finitely distributed if there are
positive constants ¢; and cg, and an unbounded sequence of real numbers z; <
< x9 < ..., so that for each x; at least k positive integers a1 < as < ... <
< ar < z; may be found, with k£ > ¢z, so that

l9(am) — g(an)| < c2 L<m<n<k.

The following theorem describes a complete characterization of g-multiplic-
ative uniformly summable functions.

Theorem 1. Let f be a g-multiplicative function. Then the following
assertions are equivalent.

(i) feL* and| fl1>0.
(ii) Let o > 0. The series

(8) ZéZ Flag)|® — 1)

is convergent, and for some constants c1(a),ca(a) € R, for all R and for
some sequence {R;}, R; — oo, the inequalities

9) > - Z|faq —1) <e(a) < oo

T<R =
and
(10) - Z [F(ag")[* = 1) > ea(a) > —o0
r<R;

hold.
(i) f e LY and || flla > 0 for all a > 0.
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The mean behaviour of such functions is given in

Theorem 2. Let f € L* be a g-multiplicative function and ||f|x > 0.
Further, let ¢"~1 < N < ¢, R € N. Then, as N — oo,

5 3 ) = T +o(1)

n<N

and, for every a > 0,

—

1
= S @I = T +o(1).
n<N

An immediate consequence is the following

Corollary 1. Let f be g-multiplicative. Then the following assertions
hold.
(i) Let f € L*. If the mean-value M(f) of f exists and is different from zero
then the series

oo g—1
(1) YD (flag") ~1)
r=0 a=0
and
oo q—1
(12) YD Ifag) — 1P
r=0 a=0
converge and
qg—1
Z flag™) #0 for each r € Ny.
a=0

(ii) If the series (11) and (12) converge then f € L*, the mean-value M (f) of

f exists,
o] q—1
M =11 (; Zf(mz"))

r=0 a=0

and ||f — frlli1 — 0 as R — oo, where

fre) =[] fema)  0<em) <q

r<R
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(1ii) Let f € L*. If the mean-value M (f) of f exists and is different from zero
then the mean-value M(|f|*) of |f|* exists for each a > 0 (and is different
from zero).

The case of mean value zero is contained in

Corollary 2. Let f € L* be g-multiplicative. Then the mean-value M(f)
of [ is zero if and only if llgp = o(1) as R — oo.

Let us now turn to g-additive functions. Here the main results are as
follows.

Theorem 3. Let g be g-additive. Then the following assertions hold.
oo g—1
(i) If g is finitely distributed, then the series Z Z(g(aqr))2 converges.
r=0a=0
(i) If, for some a(x),

%ﬁ{n <z:g(n)—ar) <y} = Gy),

where G is a distribution function, then g is finitely distributed

oo g—1
(iii) Let ZZ(g(aqr)) converge and put oz Z Zg (aq")
r=0a=0 <Ny
= Uong, Then
ogq

%jj{n <x:g(n)—a(x) <y} = Gy),

where G is some distribution function.

Assertion (iii) of Theorem 3 has already been proved by J. Coquet (see
[1], Theorem II. 4).

3. Preliminary results

To prove our main theorem, we need to show the following lemmata.

Lemma 1. Let f € L* be g-multiplicative and || f||1 > 0. Then

[e’e) lq 1
> 2D (Iflad)l" = 1)* <o
7‘:0qa:O
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for all a > 0.

Proof. Because of ||f|]1 > 0 we can find a sequence {z;} such that
Z 1> x;, as ¢ — oo for some suitable ¢, K > 0. We define an g¢-

n<z,
e<|f(n)|*<K

additive function g by
log(|f(ag")[*) if f(aq") # O,

1 if f(ag™) =0.

glaq") =

Then Z 1 =< x; with ¢y =log1/e and ¢s = log K.

n<x;
—c1<g(n)<cg

For real numbers ¢, define the functions

£) = 3" explitg(n))

n<x

for any =z > 0.

1
Delange proved that the limit I(¢t) = lim —|H(z,t)| always exists and
T—00 I
I(t) # 0 holds if and only if

>

converges. Further, define the function D by

. 2
sin v ,
D(v) = ( v ) ity #0,

-1

(1 — cos(tg(ag™)))

».Q

1
q

a

1 if v =0.
Then, for each real number y,
7o L=yl if lyl <1,
/ A Y D(v)dy =
N 0 otherwise.
Interchanging summation and integration shows that for positive A
/ MH (@ )PDOtdt = Y (1= A"Yg(m) = g(ne)])-
—00 ni,ng<x

lg(n1)—g(ng)|<A
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We divide by x;, let ; — oo, and apply Lebesgue’s theorem for dominated
convergence. If X is sufficiently large then

/ MN(t)2D(Xt)dt > 0.

— 00

More exactly, if g(n) satisfies the condition given in the definition of finitely
distributed functions, and if A > 2¢s, then the value of this integral is at least
as large as c¢?/2.

It follows that there is a set F, of positive Lebesgue measure, on which
1(t) > 0.

Now Z(l —cos(tg(aq™))) < oo forevery 1 <a<g—1and forallte E.
r=0

It means Z(l —cos(tg(aq™))) < c for all t € E* where E* is some subset of

r=0

- t

E and m(E*) > 0. This is equivalent to Zsin2 (2g(aqT)) < ¢ < oo for all
r=0

te B

In view of the inequality sin?(z & y) < 2sin®z + 2sin®y and applying
Steinhaus’s lemma? we can find a T > 0, such that for all 1 < a < ¢ — 1 and
for |t| <T

oo
(13) Z(l —cos(tg(aq))) < 4c < 0.
r=0

Integrating (13) from 0 to T" and multiplying with 1/7, we have

(14) > h(Tg(ag")) < 4e < oo,
r=0

sinu

where h(u) =1 — for u # 0 and h(0) = 0.

u

> 0 for all real number w and h(u) > 1/2 for u > 2, we conclude
2

Since h(u
| /T for only finitely many r. Thus, there exists M, > 0 such

)
that |g(aq™)| >

2 (See [4] Lemma (1.1). The differences generated by a set of real numbers
of positive measure, cover an open interval about the origin.)
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that |g(aq")| < M, for all > 0, and there exists m, > 0 so that h(u) > mgu>
for |u| < TM,.
Hence

2qlog 2
7\\2
> _(9(aq")* < S =0,

and the series Z Z g(aq"))? converges. Since (log|z|)? < (Jz| — 1)? if

[lz] — 1] < 1/2, the proof of Lemma 1 is finished.
Lemma 2. Let f be g-multiplicative and R € N. Then

qf—1

ST )Y = ¢*llp,
n=0

for every a > 0, and
¢ -1

> fn) =

Proof. Induction over R yields the following formulas

N a—1 [q%-1
Yo It =>"{ X If(ag® +1)
n=0 a=0 \ (=0
and
gt -1 q—1 [q"-1
Yooty =D flag®+1) |,
n=0 a=0 =0

which prove Lemma 2.

Lemma 3. Let f € L* be g-multiplicative and || f||1 > 0. Then

Mra = (e | f]) + exp< u>
r<R

for all & > 0 with some constant c(a,|f]) € R.

Proof. It is easy to see that, because of the convergence of the series in
Lemma 1

ﬁl\%:v: H(1+“T,a):

r<R
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= exp (Z log(1 + m)) =

r<R
= exp (Z o +0 (Z(ur,m)) =
r<R r<R

= (ca, [f]) +o(1) eXP( um>
r<R

for all & > 0 and some constant c(a, |f]) € R.

Lemma 4. Let f € L* be g-multiplicative with ||f||1 > 0 and a > 0. Then
there exist some constants c1(), ca(a) € R such that

(15) > - Z\faq —1) <ala) <oo

7‘<R

for all R and

(16) Z Z (If(ag")|* = 1) > ca(a) > —o0
r<R;
for some sequence {R;}, R; — 0.

Proof. By Lemma 3, we get the inequalities (15) and (16) for o = 1, since
f €L and [|f[1 > 0. Now, let a > 0, and let ||f(ag")| — 1| < . Then

|flag")® = 1= (|flag")| -1+ 1) —1=
= a(|f(ag")| = 1)+ O((|f(aq")| - 1)?),

which implies the inequalities (15) and (16) for all a > 0.
Remark 1. Let f € £* be g-multiplicative with || f||; > 0 and a > 0. If

Z|f(n) “ =< x then

S LS ag) - 1) = o)
r<R a=0
as B — oo.

The next lemma shows a general method for getting upper estimates.
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Lemma 5. Let f be g-multiplicative and ¢"~' < N < ¢ with R € N.
Then, for every h € N,

h r—1 er—r(N)—1
Yo <Y |d e [ flene N D flad® )|+
n<N r=1 t=1 a=0

R—1
+< II |f(6r(N)qT)|) L0(g" M),

r=R—h

where the O-constant depends only on f.

Proof. Let N = cg® '+bwhere1 <c < gand b= Z e (N)qg" < ¢!
r<R—1
where 0 < &,.(N) < g—1. Then

c—1 [qf -1 b—1
PNIOEDS ( > flag®™! +l>> +> fleg™ 1) =
=0

n<N a=0 =0
e—1 gf1-1 b—1
= flag™h) Y FO+ fled™ D F0) =
a=0 1=0 1=0

c—1
=¢" ' Mr1 Y flag™ M)+

a=0

+q" PR o f (g™ Y flag" )+

+ ¢ Mg p f(cg™ ) fer—a(N)g""2) - -
er—n(N)—1

o f(Ethle(N)qR_hJ'_l) Z f(aqR—}z)+

a=0
+ feg® M) flep—a(N)gR2) -
bp—1

o fEr i (NG Fern(N)g™) Y 1),

=0



Mean behaviour of uniformly summable g-multiplicative functions 183

R—h_q

Y 1FOI= 0",

=0

bp—1

> o)<

=0

q
where b, < ¢*~" and

In the following lemmata 6, 7 and 8 we collect some more properties of
g-multiplicative functions f € £* with ||f||; > 0.

Lemma 6. Let f € L* be g-multiplicative and || f||1 > 0. Then the series

[} 1 q—1
SN I (ag) - 12
r=0 4q a=0

is convergent if and only if

Z ZRefaq —1)> e3> -

r<R;

for some constant c3 € R and some sequence {R;}, R; 1 c©.

Proof. We have

v Z|f agn) — 12 =3 $Z<\f<aqr>\ —1)24

T<R r<R " a=0

+2) - Z|faq ) —1)—

T<R

722 ZRefaq )—1) =

T<R
=y 2y 2.
1 2 3

By Lemma 1, ), is convergent and, by Lemma 4, ), is bounded from above
for some sequence {R;}, R; — oo. Thus Lemma 6 holds true.

Lemma 7. Let f € L* be g-multiplicative and || f]|1 > 0. If

Z ZRefaq )—1)>¢c3>—0

r<R;

for some constant c3 and for some sequence {R;}, R; T 0o, then

Mg = [](1+u) = (c(f) + o(1)) exp (Z u>

r<R r<R
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with some constant ¢(f) # 0.

132
Proof. If Z - Z(Ref(aqr) —1) > ¢3 > —oo for some constant ¢z and

r<R; * a=0
for some sequence {R;}, R; 1 oo, then by Lemma 6

oo

[eS) 1 q—1
D e <D= N f(ag”) - 1P < o,
r=0 r=0 q a=0

and we obtain

HR:: H(1+Ur):

r<R

=exp (Zur +0 (Z ur|2>> =

r<R r<R

~(c(f) + (1)) exp (Z u>

r<R

with some constant ¢(f) # 0.
Lemma 8. Let f € L* be g-multiplicative and || f]l1 > 0. If

R—oo
r<R a=

lim Z ;2}(Ref(aqr) —1) = —o0,

then IIg — 0 as R — oo.

Proof. Obviously

[IIg| = exp <Z log |1+ uT|>

r<R

and

1
log |1 4 u| 3 log((1 + Re u,)* + (Im u,)?) =
1
= 5 log(1 + 2Re uy + lu,|?) <

1
< Re u, + §|ur|2 .
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Since
-1
g—1 1%
up* < === "|f(aqg") = 1> =
q ) R—

q_l lq_l T 2 2q_1 T
= L 3D a)] = 1) 4+ = Yo aa)] - 1)~ 2Re e

we observe

1 -1 1
Re u, + = (q - (—2Re uT)> = ~Re u,,
2\ ¢ q

which implies

q—1
] < exp (Z oot Y (Ref(ag’) - 1>) ,
r<R a=0

and the assertion of Lemma 8 follows.

Remark 2. Let f € £* be ¢g-multiplicative and | f|; > 0. Then by
Lemma 7 and Lemma 8 IIp = o(1) if and only if

Z ZRefaq —-1)— -

r<R

as R — oo.

Observing that g-additive functions are sums of “almost independent
random variables”, we prove the following inequality which is interesting in
itself.

Turan-Kubilius inequality for g-additive functions

Let g : Ng — C be g-additive, ™' < N < (¢ + 1)¢%~! with R € N and
some c € N with 0 < ¢ < q. Put

R—2 qg—1
1
Fr(g) = - g(a
r=0 q a=0
and
1 C
ER,c(g) = + E g

a=1
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Then

R—-2 c
Z l9(n) — Eg.o( )|2§2<Z Zlg (ag")* + Zlg(aqR‘l)F)-

n<N r=0

The result is well-known (see for example M. Peter and J. Spilker [11]).
We give here a new proof of (17) which is much shorter than the proof present
n [11].

Proof.

S (g(n) — Erel9))? <
N

n<N

v X (6 Fr9)’ <

n<(c+1)gh—1

c+1 1 .
Sy S 15 ()~ Erelg),

R—-1
c  (c+1)q n<(erDgh 1

where g*(aq") = g(ag") forr < R—1,0<a<g—lorr=R-1,0<a<c
and g*(aq") =0forr>R—-1,0<a<g—lorr=R-1,c<a<g-1

Since in the Laplace space {0,1,...,(c+ 1)¢f*~'} a g-additive function is
a sum of independent random variables, we obtain

3 lon) — Erelo)l? < (ZOig Z\g )

n<N

Using the Turan-Kubilius inequality we prove

Lemma 9. Let f € L* be g-multiplicative, || f||1 > 0 and ¢%~ ! < N < ¢t
where R € N. Further, let

o 14z
S8 e -1 < o
O —

Then, for any h € N,

<ég "+ o(1)

1
sz(n)f

n<N

as N — oo, with some constant ¢ € R depending only on f.
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Proof. Put

Then, for any h € N,

1
N > f(n)—Tg <* > 1) = fron(n)+

n<N n<N

1
tw > fr-n(n) = Ng_pyr |+ Mp_pis — g| =
n<N
=yt tA
Ad Y-
We choose rg € N so that |f(ag") — 1| < {5, for all 7 > 79, 0 < a < ¢

r, a € N and define the function gr

> log f(er(n)g") for R > ro,
gR(n) = r>R
0 for R < ryp.

Then the functions gr are g-additive. Now,

% S 17(n) — frn(n)| =

n<N
~ Z | fr-n(n)|lexp(gr-n(n)) — 1] <
n<N
1/2
Z\th )|+ fr-n(n ( > lgr-n(n) ) x
n<N n<N
) 1/2 ) 1/2
X (N > |f(”)2> + (N > |fR—h(”)2>
n<N n<N

Applying the Turdan-Kubilius inequality for ¢g-additive functions, we obtain

3 lonam)P <

n<N
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2

S% gr-n(n) = ZQR n(aq")
n<N R-h<r<r
2
+% Z Z ZQR n(aq")| <
n<N |R— h<r<R

§4< > qZIIngaq )2+ Z\logf |>

R—h<r<R—1 " a=0
2

+2

Z Zlogf (aq")

R— h<7‘<R

Y

where cg®! < N < (c+ 1)¢f*!, with some integer ¢, 0 < ¢ < q.
Now, h is fixed and log f(ag") — 0 for r — oo, so that

lim lim — Z lgr—n( =

R—oo N—oo N
n<N

Using Lemmata 1, 3 and 4 for o = 2 shows f, fr_n € £2, and thus

& 1) Fronm)] = (1)

n<N
Ad 3y
Forall0<a<gq,0<n<qglt—ht!

fron(ag™ " 4+ n) = f(n)

and for all [ € N

lgR—rt1_q gBh 1
Jr-n(n) =1 f(n) =1g" " I py.
>
n=0 n=0

Further, for N = lg"*~"*! we obtain

1
N > fron(n) —Tgp_p1 =0

n<N
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and for lgft ="+ < N < (I +1)¢f"="*1, 1 > 1 we conclude

Z fr-n(n) — NUg_pi1| =

n<N

= |—(N —1g" "™ p_p1 + Z fr—n(n)| =

n=lgR—h+1

N—lgR-+1_1

= |=(N = 1g" "™ g1 + fron(lg™ ") Yo fm)| <

SC(N _ lqR_h+1) <

<CqR—h+1

with some constant ¢ depending only on f.

Ad A: Obviously (cf. proof of Lemma 8)

(i i)

r=R h+1
-1

g —Or_pt1] = Hr—n41]

s}

(f(ag") = 1)|.

Q| =

R-1
<e )
r=R—h+1

Since h is fixed and f(aq") tends to 1 as r runs to infinity, we have |[IIp —
—IIg_n| =0(1) as R — 0.

a=0

4. Proof of the main results

Proof of Theorem 1. The implication (i) = (ii) is proved as follows.

If f € £ and ||f|l1 > 0 we conclude, by Lemma 1, that the series (8) is
convergent. Lemma 4 shows the inequalities (9) and (10) for all « > 0.

Proof of (ii) = (iii).

By Lemma 2 and the convergence of (8) we show as in the proof of Lemma

qfl

RZ|f [ = M0 = (cla, | f]) +o(1) exp<§:um)

r<R
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for all @ > 0 and some constant c(a, |f|) € R. Observing, if ¢gF~1 < N < ¢

v = 1 |°‘<<— > ) =Tk
n<N n<qf
and the inequality (9) gives f € £L* and (10) implies || f||o > 0.
The implication (iii) = (i) is obvious.

Proof of Corollary 1. (i) Let f € £* be ¢g-multiplicative. If the mean-
value M (f) of f exists and is nonzero then obviously ||f]|1 > 0. We know that
(see the proof of Lemma 8)

1 ,
i s (32 2 S mosan) - 1)
'r<Rq a=0
%) 1q71
Further, Z - Z(Ref(aqr) — 1) > ¢3 > —oo for some constant c¢3 € R, since
r=0 * a=0

the mean-value M(f) of f exists and is different from zero.
By Lemma 6 the series (12) converges, and Lemma 7 yields

He=]] ¢ Zf

r<R

with some constant ¢(f) # 0.

Since the mean-value M(f) of f exists and is nonzero, the series (11)
qg—1
converge and Z flag™) # 0 for each r € Ny.
a=0

(ii) If the series (11) and (12) converge then the infinite product Rlim Mg

exists and is zero if and only if a factor equals zero. Thus 0 < ﬁ;: for all R

and
Z Z|faq ) —1)>¢q >—00

7’<R
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for some constant ¢, € R. Now

q—
> - Z\faq ) -1 =) Zlfaq )| = 1)+
7<R r<R 1 a=0
+2) - Z\faq )| =1)-

7‘<R

—22 ZRefaq )—1)

r<R

rQ\'—‘

holds, and the convergence of the series (11) and (12) shows that the series

> - Zlfaq ) =1)°

T<R

and
> - Z |flag")] —1)
T<R

converge. Then, by Theorem 1 we have f € £L* and || f]|o > 0.
Furthermore by Lemma 6 and Lemma 9 we know that the mean-value

M(f) of f exists and M(f H( Zfaq )

r=0

A small modification of the proof for the estimate of 3, in Lemma 9 yields,
because of the convergence of the series (11) and (12), that ||f — frll1 — 0 as
R — o0.

(iii) Using Theorem 1 and the same arguments as above we conclude that

the series
q—1

> > (fag)* = 1)

r=0a=0

and
0o g—
ZZ |f(ag")|* = 1)
r=0 a=0

converge, and thus the mean-value M(|f|%) of |f|* exists for each a > 0 (and
is different from zero).

Proof of Theorem 2.
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1
First, we assume that IIp = o(1). Then, by Lemma 5 i Z f(n) =o0(1).
n<N
Now, let IIg # o(1). Then by Lemma 6 and Lemma 9 we have

% > f(n) =TIg +o(1).

n<N

Furthermore ﬁ]\{,/a # o(1), because of 0 < ||f|li < || f]la for all & > 0.
Then, by Lemma 1 and Lemma 9 the second assertion of Theorem 2 follows.

The proof of Corollary 2 is obvious.
Proof of Theorem 3.

Ad (i) The assertion is an immediate consequence of the proof of Lemma

Ad (ii) We choose the number v sufficiently large, and such that +v are
continuity points of the limiting distribution of g(n) — a(z). Then

S = iﬁ{nﬁz:g(n)—a(m) <7}> %

Moreover, let m and n be any two elements of S, then
lg(m) = g(n)| < lg(m) — a(z)] + |a(z) — g(n)] < 27,

from which it is clear that g(n) is finitely distributed.
Ad (iii) Let

1 .
pelt) = 2 37 eitam),

n<x

Then we shall prove that, for all t € R,
u(t)e™ ) — (1) (z — o0),

where ¢(t) is continuous at ¢ = 0.
By Theorem 2 we have

q—1
Lot - ] (1 £ 15 (o - g) +o(l)

n<z r<Ng,
192/, it <2

Let u.(t) = — (e”g(aq ) — 1) and v, (t) = —Zg(aqr). For |t|] < T we
q a=1 a=1

obtain

T,
Jup (8)] < EZL‘J(W] )l;
a=1
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q—1

2(, _
(1) 2 < W S (g(ag")?

=1

e

and

ur(t) = vr(t)] <

(o]

Hence the infinite product H(l + up(t))e” ™ is uniformly convergent for
r=0

t € [-T,T] and defines the characteristic function of a distribution function G.
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