MEAN BEHAVIOUR OF UNIFORMLY SUMMABLE q-MULTIPLICATIVE FUNCTIONS

K.-H. Indlekofer, Y.-W. Lee and R. Wagner

(Paderborn, Germany)

Abstract. In this paper a complete characterization of q-multiplicative functions $f \in \mathcal{L}^*$ is given.

1. Introduction

In 1968 G. Halász proved the following mean-value theorem for multiplicative functions.

Theorem A. (Halász [5]). Let f be a multiplicative function, $|f(n)| \leq 1$, (n = 1, 2, ...). If there is a real number a such that the series

$$\sum_{p} \frac{(1 - \operatorname{Re} f(p)p^{-ia})}{p}$$

converges, then as $x \to \infty$

$$\sum_{n \le x} f(n) = \frac{x^{1+ia}}{1+ia} \prod_{p \le x} \left(1 - \frac{1}{p} \right) \left(1 + \sum_{m=1}^{\infty} p^{-m(1+ia)} f(p^m) \right) + o(x).$$

On the other hand, if there is no such number a, then

$$x^{-1}\sum_{n\leq x}f(n)\to 0$$
 $(x\to\infty).$

Mathematics Subject Classification: Primary 11K65; Secondary 11N60, 11N69

In either case there are constants D, α , and a slowly-oscillating function L(u) with |L(u)| = 1, so that as $x \to \infty$

$$\sum_{n \le x} f(n) = Dx^{1+i\alpha} L(\log x) + o(x).$$

The function L and the constants α , D may be given explicitly (see for example Halász [5] and K.-H. Indlekofer [7]).

For $f : \mathbb{N}_0 \to \mathbb{C}$ define, for any real number $\alpha \ge 1$,

(1)
$$||f||_{\alpha} := \left(\limsup_{N \to \infty} \frac{1}{N} \sum_{n < N} |f(n)|^{\alpha}\right)^{\frac{1}{\alpha}},$$

and let

$$\mathcal{L}^{\alpha} := \{ f \mid f : \mathbb{N}_0 \to \mathbb{C}, \ \|f\|_{\alpha} < \infty \}.$$

An arithmetical function¹ $f : \mathbb{N}_0 \to \mathbb{C}$ is called *uniformly summable* in case

$$\lim_{K \to \infty} \sup_{N \ge 1} \frac{1}{N} \sum_{n < N \atop |f(n)| \ge K} |f(n)| = 0.$$

The set of all uniformly summable functions, denoted by \mathcal{L}^* , is a proper subset of \mathcal{L}^1 . Obviously $(\alpha > 1)$

$$\mathcal{L}^{\alpha}_{\substack{\neq}{\neq}} \mathcal{L}^{*}_{\substack{\neq}{\neq}} \mathcal{L}^{1}.$$

In [10] K.-H. Indlekofer has given a complete characterization of the asymptotic behaviour of the sums $\sum_{n \leq x} f(n) \ (x \to \infty)$ for uniformly summable multiplicative functions. Putting

$$\rho(n) = \begin{cases} \frac{f(p)}{|f(p)|} & \text{if } f(p) \neq 0, \\ 1 & \text{otherwise,} \end{cases}$$

he proves the following

Theorem B. (Indlekofer [10]). Let $f \in \mathcal{L}^*$ be multiplicative and $||f||_1 > 0$. Then the following two assertions hold.

¹ If f is defined on \mathbb{N} we extend f to \mathbb{N}_0 by putting f(0) = 0.

(i) If there exists a constant $a_0 \in \mathbb{R}$ such that the series

(2)
$$\sum_{p} \frac{(1 - \operatorname{Re}\varrho(p)p^{-ia})}{p}$$

converges for $a = a_0$ then there exists a constant $c_0 \in \mathbb{C}$ such that, as $x \to \infty$,

$$\frac{1}{x}\sum_{n\leq x} f(n) = x^{ia_0} \exp\left(\sum_{p\leq x} \frac{f(p)p^{-ia_0} - 1}{p}\right) (c_0 + o(1)),$$

where

$$c_0 = \frac{1}{1+ia_0} \prod_p \left(1 - \frac{1}{p}\right) \left(1 + \sum_{k=1}^{\infty} \frac{f(p^k)}{p^{k(1+ia)}}\right) \exp\left\{\frac{1 - f(p)p^{-ia_0}}{p}\right\}.$$

If

$$A^*(x) := \sum_{p \le x} \frac{\operatorname{Im} f(p) p^{-ia_0}}{p},$$

then

$$\lim_{x \to \infty} \sup_{x \le y \le x^2} |A^*(y) - A^*(x)| = 0.$$

(ii) If the series (2) diverges for all $a \in \mathbb{R}$ then the mean-value M(f) of f exists and equals zero.

We will extend results of this kind to q-multiplicative functions. For this let $q \ge 2$ be an integer and $\mathbb{A} = \{0, 1, \dots, q-1\}$. The q-ary expansion of some $n \in \mathbb{N}_0$ is defined as the unique sequence $\varepsilon_0(n), \varepsilon_1(n), \dots$ for which

(3)
$$n = \sum_{r=0}^{\infty} \varepsilon_r(n) q^r, \quad \varepsilon_r(n) \in \mathbb{A}$$

holds. $\varepsilon_0(n), \varepsilon_1(n), \ldots$ are called the *digits* in the *q*-ary expansion of *n*. In fact, $\varepsilon_r(n) = 0$ if $r > \frac{\log n}{\log q}$.

A function $f : \mathbb{N}_0 \to \mathbb{C}$ is called *q*-multiplicative if f(0) = 1, and for every $n \in \mathbb{N}_0$,

(4)
$$f(n) = \prod_{r=0}^{\infty} f(\varepsilon_r(n)q^r).$$

A classical theorem of H. Delange [3] asserts that for q-multiplicative function f with $|f(n)| \leq 1$, where $N_x = \left\lfloor \frac{\log x}{\log q} \right\rfloor$,

$$m(x) := \frac{1}{x} \sum_{n < x} f(n) = \prod_{r=0}^{N_x - 1} \frac{1}{q} \left(\sum_{a \in \mathbb{A}} f(aq^r) \right) + o(1)$$

as $x \to \infty$.

From this he deduced that $\lim_{x\to\infty}|m(x)|$ always exists and equals

$$\prod_{r=0}^{\infty} \left| \frac{1}{q} \sum_{a \in \mathbb{A}} f(aq^r) \right|,$$

which is nonzero if and only if

(5)
$$\sum_{a \in \mathbb{A}} f(aq^r) \neq 0 \quad \text{(for all } r \in \mathbb{N}_0\text{)}$$

and

(6)
$$\sum_{r=0}^{\infty} \sum_{a \in \mathbb{A}} \operatorname{Re}\left(1 - f(aq^{r})\right) < \infty.$$

Furthermore, he proved that $\lim_{x\to\infty} m(x)$ exists and is nonzero if and only if (5) holds and the series

(7)
$$\sum_{r=0}^{\infty} \sum_{a \in \mathbb{A}} (1 - f(aq^r))$$

is convergent.

The aim of this paper is to study the behaviour of the sums

$$\frac{1}{N}\sum_{n < N} f(n)$$
 and $\frac{1}{N}\sum_{n < N} |f(n)|^{\alpha}$

as $N \to \infty$, $\alpha > 0$, where $f \in \mathcal{L}^*$ is q-multiplicative.

2. Main results

We use the following notations.

Let
$$\widetilde{\Pi_{R,\alpha}} := \prod_{r < R} (1 + \widetilde{u_{r,\alpha}})$$
 and $\Pi_R := \prod_{r < R} (1 + u_r)$ with $\widetilde{u_{r,\alpha}} := \frac{1}{q} \sum_{a=1}^{q-1} (|f(aq^r)|^{\alpha} - 1)$ and $u_r := \frac{1}{q} \sum_{a=1}^{q-1} (f(aq^r) - 1)$, respectively.

Definition 1. A function g is said to be *finitely distributed* if there are positive constants c_1 and c_2 , and an unbounded sequence of real numbers $x_1 < x_2 < \ldots$, so that for each x_j at least k positive integers $a_1 < a_2 < \ldots < a_k \leq x_j$ may be found, with $k \geq c_1 x_j$, so that

$$|g(a_m) - g(a_n)| \le c_2 \qquad 1 \le m \le n \le k.$$

The following theorem describes a complete characterization of q-multiplicative uniformly summable functions.

Theorem 1. Let f be a q-multiplicative function. Then the following assertions are equivalent.

(i) $f \in \mathcal{L}^*$ and $||f||_1 > 0$. (ii) Let $\alpha > 0$. The series

(8)
$$\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)|^{\alpha} - 1)^2$$

is convergent, and for some constants $c_1(\alpha), c_2(\alpha) \in \mathbb{R}$, for all R and for some sequence $\{R_i\}, R_i \to \infty$, the inequalities

(9)
$$\sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)|^{\alpha} - 1) \le c_1(\alpha) < \infty$$

and

(10)
$$\sum_{r < R_i} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)|^{\alpha} - 1) \ge c_2(\alpha) > -\infty$$

hold.

(iii) $f \in \mathcal{L}^{\alpha}$ and $||f||_{\alpha} > 0$ for all $\alpha > 0$.

The mean behaviour of such functions is given in

Theorem 2. Let $f \in \mathcal{L}^*$ be a q-multiplicative function and $||f||_1 > 0$. Further, let $q^{R-1} \leq N < q^R$, $R \in \mathbb{N}$. Then, as $N \to \infty$,

$$\frac{1}{N}\sum_{n$$

and, for every $\alpha > 0$,

$$\frac{1}{N}\sum_{n< N}|f(n)|^{\alpha}=\widetilde{\Pi_{R,\alpha}}+o(1).$$

An immediate consequence is the following

Corollary 1. Let f be q-multiplicative. Then the following assertions hold.

(i) Let $f \in \mathcal{L}^*$. If the mean-value M(f) of f exists and is different from zero then the series

(11)
$$\sum_{r=0}^{\infty} \sum_{a=0}^{q-1} (f(aq^r) - 1)$$

and

(12)
$$\sum_{r=0}^{\infty} \sum_{a=0}^{q-1} |f(aq^r) - 1|^2$$

converge and

$$\sum_{a=0}^{q-1} f(aq^r) \neq 0 \quad for \ each \ r \in \mathbb{N}_0.$$

(ii) If the series (11) and (12) converge then $f \in \mathcal{L}^*$, the mean-value M(f) of f exists,

$$M(f) = \prod_{r=0}^{\infty} \left(\frac{1}{q} \sum_{a=0}^{q-1} f(aq^r) \right)$$

and $||f - f_R||_1 \to 0$ as $R \to \infty$, where

$$f_R(n) = \prod_{r \le R} f(\varepsilon_r(n)q^r) \qquad 0 \le \varepsilon_r(n) < q.$$

(iii) Let $f \in \mathcal{L}^*$. If the mean-value M(f) of f exists and is different from zero then the mean-value $M(|f|^{\alpha})$ of $|f|^{\alpha}$ exists for each $\alpha > 0$ (and is different from zero).

The case of mean value zero is contained in

Corollary 2. Let $f \in \mathcal{L}^*$ be q-multiplicative. Then the mean-value M(f) of f is zero if and only if $\Pi_R = o(1)$ as $R \to \infty$.

Let us now turn to q-additive functions. Here the main results are as follows.

Theorem 3. Let g be q-additive. Then the following assertions hold.

(i) If g is finitely distributed, then the series $\sum_{r=0}^{\infty} \sum_{a=0}^{q-1} (g(aq^r))^2$ converges.

(ii) If, for some $\alpha(x)$,

$$\frac{1}{x} \sharp \{ n \le x : g(n) - \alpha(x) \le y \} \Rightarrow G(y).$$

where G is a distribution function, then g is finitely distributed.

(iii) Let
$$\sum_{r=0}^{\infty} \sum_{a=0}^{q-1} (g(aq^r))^2$$
 converge and put $\alpha(x) = \sum_{r < N_x} \frac{1}{q} \sum_{a=0}^{q-1} g(aq^r), N_x :=$
 $:= \left\lfloor \frac{\log x}{\log q} \right\rfloor$. Then
 $\frac{1}{x} \sharp \{n \le x : g(n) - \alpha(x) \le y\} \Rightarrow G(y),$

where G is some distribution function.

Assertion (iii) of Theorem 3 has already been proved by J. Coquet (see [1], Theorem II. 4).

3. Preliminary results

To prove our main theorem, we need to show the following lemmata. Lemma 1. Let $f \in \mathcal{L}^*$ be q-multiplicative and $||f||_1 > 0$. Then

$$\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)|^{\alpha} - 1)^2 < \infty$$

for all $\alpha > 0$.

Proof. Because of $||f||_1 > 0$ we can find a sequence $\{x_i\}$ such that $\sum_{\substack{n < x_i \\ \varepsilon < |f(n)|^{\alpha} < K}} 1 \gg x_i$, as $i \to \infty$ for some suitable $\varepsilon, K > 0$. We define an q-

additive function g by

$$g(aq^r) = \begin{cases} \log(|f(aq^r)|^{\alpha}) & \text{if } f(aq^r) \neq 0, \\ 1 & \text{if } f(aq^r) = 0. \end{cases}$$

Then $\sum_{\substack{n < x_i \\ -c_1 < g(n) < c_2}} 1 \asymp x_i$ with $c_1 = \log 1/\varepsilon$ and $c_2 = \log K$.

For real numbers t, define the functions

$$H(x,t) = \sum_{n < x} \exp(itg(n)),$$

for any x > 0.

Delange proved that the limit $l(t) = \lim_{x\to\infty} \frac{1}{x} |H(x,t)|$ always exists and $l(t) \neq 0$ holds if and only if

$$\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=1}^{q-1} (1 - \cos(tg(aq^r)))$$

converges. Further, define the function D by

$$D(\nu) = \begin{cases} \left(\frac{\sin \pi \nu}{\pi \nu}\right)^2 & \text{if } \nu \neq 0, \\ 1 & \text{if } \nu = 0. \end{cases}$$

Then, for each real number y,

$$\int_{-\infty}^{\infty} e^{2\pi i\nu y} D(\nu) d\nu = \begin{cases} 1 - |y| & \text{if } |y| \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Interchanging summation and integration shows that for positive λ

$$\int_{-\infty}^{\infty} \lambda |H(x,t)|^2 D(\lambda t) dt = \sum_{\substack{n_1, n_2 \le x \\ |g(n_1) - g(n_2)| \le \lambda}} (1 - \lambda^{-1} |g(n_1) - g(n_2)|).$$

We divide by x_i , let $x_i \to \infty$, and apply Lebesgue's theorem for dominated convergence. If λ is sufficiently large then

$$\int_{-\infty}^{\infty} \lambda l(t)^2 D(\lambda t) dt > 0.$$

More exactly, if g(n) satisfies the condition given in the definition of finitely distributed functions, and if $\lambda \geq 2c_2$, then the value of this integral is at least as large as $c_1^2/2$.

It follows that there is a set E, of positive Lebesgue measure, on which l(t) > 0.

Now
$$\sum_{\substack{r=0\\\infty}}^{\infty} (1 - \cos(tg(aq^r))) < \infty$$
 for every $1 \le a \le q - 1$ and for all $t \in E$.

It means $\sum_{r=0}^{\infty} (1 - \cos(tg(aq^r))) \le c$ for all $t \in E^*$ where E^* is some subset of

E and $m(E^*) > 0$. This is equivalent to $\sum_{r=0}^{\infty} \sin^2\left(\frac{t}{2}g(aq^r)\right) \le c < \infty$ for all $t \in E^*$.

In view of the inequality $\sin^2(x \pm y) \leq 2\sin^2 x + 2\sin^2 y$ and applying Steinhaus's lemma² we can find a T > 0, such that for all $1 \leq a \leq q - 1$ and for $|t| \leq T$

(13)
$$\sum_{r=0}^{\infty} (1 - \cos(tg(aq^r))) \le 4c < \infty.$$

Integrating (13) from 0 to T and multiplying with 1/T, we have

(14)
$$\sum_{r=0}^{\infty} h(Tg(aq^r)) \le 4c < \infty.$$

where $h(u) = 1 - \frac{\sin u}{u}$ for $u \neq 0$ and h(0) = 0.

Since $h(u) \ge 0$ for all real number u and $h(u) \ge 1/2$ for $u \ge 2$, we conclude that $|g(aq^r)| \ge 2/T$ for only finitely many r. Thus, there exists $M_a > 0$ such

 $^{^{2}}$ (See [4] Lemma (1.1). The differences generated by a set of real numbers of positive measure, cover an open interval about the origin.)

that $|g(aq^r)| \leq M_a$ for all $r \geq 0$, and there exists $m_a > 0$ so that $h(u) \geq m_a u^2$ for $|u| \leq TM_a$.

Hence

$$\sum_{r=0}^{\infty} (g(aq^r))^2 \le \frac{2q\log 2}{m_a T^2},$$

and the series $\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=1}^{q-1} (g(aq^r))^2$ converges. Since $(\log |x|)^2 \approx (|x|-1)^2$ if $||x|-1| \leq 1/2$, the proof of Lemma 1 is finished.

Lemma 2. Let f be q-multiplicative and $R \in \mathbb{N}$. Then

$$\sum_{n=0}^{q^R-1} |f(n)|^{\alpha} = q^R \widetilde{\Pi_{R,\alpha}}$$

for every $\alpha > 0$, and

$$\sum_{n=0}^{q^R-1} f(n) = q^R \Pi_R.$$

Proof. Induction over R yields the following formulas

$$\sum_{n=0}^{q^{R+1}-1} |f(n)|^{\alpha} = \sum_{a=0}^{q-1} \left(\sum_{l=0}^{q^{R}-1} |f(aq^{R}+l)|^{\alpha} \right)$$

and

$$\sum_{n=0}^{q^{R+1}-1} f(n) = \sum_{a=0}^{q-1} \left(\sum_{l=0}^{q^{R}-1} f(aq^{R}+l) \right),$$

which prove Lemma 2.

Lemma 3. Let $f \in \mathcal{L}^*$ be q-multiplicative and $||f||_1 > 0$. Then

$$\widetilde{\Pi_{R,\alpha}} = (c(\alpha, |f|) + o(1)) \exp\left(\sum_{r < R} \widetilde{u_{r,\alpha}}\right)$$

for all $\alpha > 0$ with some constant $c(\alpha, |f|) \in \mathbb{R}$.

Proof. It is easy to see that, because of the convergence of the series in Lemma 1

$$\widetilde{\Pi_{R,\alpha}} = \prod_{r < R} (1 + \widetilde{u_{r,\alpha}}) =$$

$$= \exp\left(\sum_{r < R} \log(1 + \widetilde{u_{r,\alpha}})\right) =$$
$$= \exp\left(\sum_{r < R} \widetilde{u_{r,\alpha}} + O\left(\sum_{r < R} (\widetilde{u_{r,\alpha}})^2\right)\right) =$$
$$= (c(\alpha, |f|) + o(1)) \exp\left(\sum_{r < R} \widetilde{u_{r,\alpha}}\right)$$

for all $\alpha > 0$ and some constant $c(\alpha, |f|) \in \mathbb{R}$.

Lemma 4. Let $f \in \mathcal{L}^*$ be q-multiplicative with $||f||_1 > 0$ and $\alpha > 0$. Then there exist some constants $c_1(\alpha), c_2(\alpha) \in \mathbb{R}$ such that

(15)
$$\sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)|^{\alpha} - 1) \le c_1(\alpha) < \infty$$

for all R and

(16)
$$\sum_{r < R_i} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)|^{\alpha} - 1) \ge c_2(\alpha) > -\infty$$

for some sequence $\{R_i\}, R_i \to \infty$.

Proof. By Lemma 3, we get the inequalities (15) and (16) for $\alpha = 1$, since $f \in \mathcal{L}^1$ and $||f||_1 > 0$. Now, let $\alpha > 0$, and let $||f(aq^r)| - 1| \leq \frac{1}{2}$. Then

$$\begin{split} |f(aq^r)|^{\alpha} - 1 &= (|f(aq^r)| - 1 + 1)^{\alpha} - 1 = \\ &= \alpha (|f(aq^r)| - 1) + O((|f(aq^r)| - 1)^2), \end{split}$$

which implies the inequalities (15) and (16) for all $\alpha > 0$.

Remark 1. Let $f \in \mathcal{L}^*$ be q-multiplicative with $||f||_1 > 0$ and $\alpha > 0$. If $\sum_{n \leq x} |f(n)|^{\alpha} \asymp x$ then

$$\sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)|^{\alpha} - 1) = O(1)$$

as $R \to \infty$.

The next lemma shows a general method for getting upper estimates.

Lemma 5. Let f be q-multiplicative and $q^{R-1} \leq N < q^R$ with $R \in \mathbb{N}$. Then, for every $h \in \mathbb{N}$,

$$\begin{split} \left| \sum_{n < N} f(n) \right| &\leq \sum_{r=1}^{h} \left| q^{R-r} \prod_{R-r} \prod_{t=1}^{r-1} f(\varepsilon_{R-t}(N)q^{R-t}) \sum_{a=0}^{\varepsilon_{R-r}(N)-1} f(aq^{R-r}) \right| + \\ &+ \left(\prod_{r=R-h}^{R-1} \left| f(\varepsilon_r(N)q^r) \right| \right) \cdot O(q^{R-h}), \end{split}$$

where the O-constant depends only on f.

Proof. Let $N = cq^{R-1} + b$ where $1 \le c < q$ and $b = \sum_{r < R-1} \varepsilon_r(N)q^r < q^{R-1}$ where $0 \le \varepsilon_r(N) \le q - 1$. Then

$$\begin{split} \sum_{n < N} f(n) &= \sum_{a = 0}^{c-1} \left(\sum_{l = 0}^{q^{R-1}-1} f(aq^{R-1} + l) \right) + \sum_{l = 0}^{b-1} f(cq^{R-1} + l) = \\ &= \sum_{a = 0}^{c-1} f(aq^{R-1}) \sum_{l = 0}^{q^{R-1}-1} f(l) + f(cq^{R-1}) \sum_{l = 0}^{b-1} f(l) = \\ &= q^{R-1} \Pi_{R-1} \sum_{a = 0}^{c-1} f(aq^{R-1}) + \\ &+ q^{R-2} \Pi_{R-2} f(cq^{R-1}) \sum_{a = 0}^{\epsilon_{R-2}(N)-1} f(aq^{R-2}) + \\ &+ q^{R-3} \Pi_{R-3} f(cq^{R-1}) f(\epsilon_{R-2}(N)q^{R-2}) \sum_{a = 0}^{\epsilon_{R-3}(N)-1} f(aq^{R-3}) + \\ &\vdots \\ &+ q^{R-h} \Pi_{R-h} f(cq^{R-1}) f(\epsilon_{R-2}(N)q^{R-2}) \cdots \\ &\cdots f(\epsilon_{R-h+1}(N)q^{R-h+1}) \sum_{a = 0}^{\epsilon_{R-h}(N)-1} f(aq^{R-h}) + \\ &+ f(cq^{R-1}) f(\epsilon_{R-2}(N)q^{R-2}) \cdots \\ &\cdots f(\epsilon_{R-h+1}(N)q^{R-h+1}) f(\epsilon_{R-h}(N)q^{R-h}) \sum_{l = 0}^{b-1} f(l), \end{split}$$

where
$$b_h < q^{R-h}$$
 and $\left| \sum_{l=0}^{b_h-1} f(l) \right| \le \sum_{l=0}^{q^{R-h}-1} |f(l)| = O(q^{R-h}).$

In the following lemmata 6, 7 and 8 we collect some more properties of q-multiplicative functions $f \in \mathcal{L}^*$ with $||f||_1 > 0$.

Lemma 6. Let $f \in \mathcal{L}^*$ be q-multiplicative and $||f||_1 > 0$. Then the series

$$\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=0}^{q-1} |f(aq^r) - 1|^2$$

is convergent if and only if

$$\sum_{r < R_i} \frac{1}{q} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^r) - 1) \ge c_3 > -\infty$$

for some constant $c_3 \in \mathbb{R}$ and some sequence $\{R_i\}, R_i \uparrow \infty$.

Proof. We have

$$\begin{split} \sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} |f(aq^r) - 1|^2 = & \sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)| - 1)^2 + \\ &+ 2 \sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)| - 1) - \\ &- 2 \sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^r) - 1) = \\ &= \sum_1 + 2 \sum_2 - 2 \sum_3 . \end{split}$$

By Lemma 1, $\sum_{i=1}^{n}$ is convergent and, by Lemma 4, $\sum_{i=1}^{n}$ is bounded from above for some sequence $\{R_i\}, R_i \to \infty$. Thus Lemma 6 holds true.

Lemma 7. Let $f \in \mathcal{L}^*$ be q-multiplicative and $||f||_1 > 0$. If

$$\sum_{r < R_i} \frac{1}{q} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^r) - 1) \ge c_3 > -\infty$$

for some constant c_3 and for some sequence $\{R_i\}, R_i \uparrow \infty$, then

$$\Pi_R := \prod_{r < R} (1 + u_r) = (c(f) + o(1)) \exp\left(\sum_{r < R} u_r\right)$$

with some constant $c(f) \neq 0$.

Proof. If $\sum_{r < R_i} \frac{1}{q} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^r) - 1) \ge c_3 > -\infty$ for some constant c_3 and

for some sequence $\{R_i\}, R_i \uparrow \infty$, then by Lemma 6

$$\sum_{r=0}^{\infty} |u_r|^2 \le \sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=0}^{q-1} |f(aq^r) - 1|^2 < \infty,$$

and we obtain

$$\Pi_R := \prod_{r < R} (1 + u_r) =$$
$$= \exp\left(\sum_{r < R} u_r + O\left(\sum_{r < R} |u_r|^2\right)\right) =$$
$$= (c(f) + o(1)) \exp\left(\sum_{r < R} u_r\right)$$

with some constant $c(f) \neq 0$.

Lemma 8. Let $f \in \mathcal{L}^*$ be q-multiplicative and $||f||_1 > 0$. If

$$\lim_{R \to \infty} \sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^{r}) - 1) = -\infty,$$

then $\Pi_R \to 0$ as $R \to \infty$.

Proof. Obviously

$$|\Pi_R| = \exp\left(\sum_{r < R} \log|1 + u_r|\right)$$

and

$$\log |1 + u_r| = \frac{1}{2} \log((1 + \operatorname{Re} u_r)^2 + (\operatorname{Im} u_r)^2) =$$
$$= \frac{1}{2} \log(1 + 2\operatorname{Re} u_r + |u_r|^2) \leq$$
$$\leq \operatorname{Re} u_r + \frac{1}{2}|u_r|^2.$$

Since

$$|u_r|^2 \le \frac{q-1}{q} \cdot \frac{1}{q} \sum_{a=0}^{q-1} |f(aq^r) - 1|^2 =$$

= $\frac{q-1}{q} \left\{ \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)| - 1)^2 + \frac{2}{q} \sum_{a=0}^{q-1} (|f(aq^r)| - 1) - 2\operatorname{Re} u_r \right\},$

we observe

Re
$$u_r + \frac{1}{2} \left(\frac{q-1}{q} \cdot (-2 \operatorname{Re} u_r) \right) = \frac{1}{q} \operatorname{Re} u_r$$

which implies

$$|\Pi_R| \ll \exp\left(\sum_{r < R} \frac{1}{q} \cdot \frac{1}{q} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^r) - 1)\right),$$

and the assertion of Lemma 8 follows.

Remark 2. Let $f \in \mathcal{L}^*$ be q-multiplicative and $||f||_1 > 0$. Then by Lemma 7 and Lemma 8 $\Pi_R = o(1)$ if and only if

$$\sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^r) - 1) \to -\infty$$

as $R \to \infty$.

Observing that q-additive functions are sums of "almost independent random variables", we prove the following inequality which is interesting in itself.

Turán-Kubilius inequality for q-additive functions

Let $g : \mathbb{N}_0 \to \mathbb{C}$ be q-additive, $cq^{R-1} \leq N < (c+1)q^{R-1}$ with $R \in \mathbb{N}$ and some $c \in \mathbb{N}$ with 0 < c < q. Put

$$E_R(g) = \sum_{r=0}^{R-2} \frac{1}{q} \sum_{a=0}^{q-1} g(aq^r)$$

and

$$E_{R,c}(g) = E_R(g) + \frac{1}{c} \sum_{a=1}^{c} g(aq^{R-1}).$$

Then

(17)
$$\frac{1}{N}\sum_{n$$

The result is well-known (see for example M. Peter and J. Spilker [11]). We give here a new proof of (17) which is much shorter than the proof present in [11].

Proof.

$$\frac{1}{N} \sum_{n < N} (g(n) - E_{R,c}(g))^2 \leq \\
\leq \frac{1}{N} \sum_{n < (c+1)q^{R-1}} (g^*(n) - E_{R,c}(g))^2 \leq \\
\leq \frac{c+1}{c} \cdot \frac{1}{(c+1)q^{R-1}} \sum_{n < (c+1)q^{R-1}} |g^*(n) - E_{R,c}(g)|^2,$$

where $g^*(aq^r) = g(aq^r)$ for r < R-1, $0 \le a \le q-1$ or r = R-1, $0 \le a \le c$ and $g^*(aq^r) = 0$ for r > R-1, $0 \le a \le q-1$ or r = R-1, $c < a \le q-1$.

Since in the Laplace space $\{0, 1, \dots, (c+1)q^{R-1}\}$ a q-additive function is a sum of independent random variables, we obtain

$$\frac{1}{N}\sum_{n$$

Using the Turán-Kubilius inequality we prove

Lemma 9. Let $f \in \mathcal{L}^*$ be q-multiplicative, $||f||_1 > 0$ and $q^{R-1} \leq N < q^R$ where $R \in \mathbb{N}$. Further, let

$$\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=0}^{q-1} |f(aq^r) - 1|^2 < \infty.$$

Then, for any $h \in \mathbb{N}$,

$$\left|\frac{1}{N}\sum_{n$$

as $N \to \infty$, with some constant $\tilde{c} \in \mathbb{R}$ depending only on f.

Proof. Put

$$f_R(n) = \prod_{r=0}^R f(e_r(n)q^r).$$

Then, for any $h \in \mathbb{N}$,

$$\begin{aligned} \left| \frac{1}{N} \sum_{n < N} f(n) - \Pi_R \right| &\leq \frac{1}{N} \sum_{n < N} |f(n) - f_{R-h}(n)| + \\ &+ \frac{1}{N} \left| \sum_{n < N} f_{R-h}(n) - N \Pi_{R-h+1} \right| + |\Pi_{R-h+1} - \Pi_R| =: \\ &=: \sum_1 + \sum_2 + \Delta. \end{aligned}$$

Ad \sum_1 :

We choose $r_0 \in \mathbb{N}$ so that $|f(aq^r) - 1| \leq \frac{1}{10}$, for all $r > r_0$, $0 \leq a < q$ r, $a \in \mathbb{N}$ and define the function g_R

$$g_R(n) := \begin{cases} \sum_{r>R} \log f(e_r(n)q^r) & \text{for } R \ge r_0, \\ 0 & \text{for } R < r_0. \end{cases}$$

Then the functions g_R are q-additive. Now,

$$\frac{1}{N} \sum_{n < N} |f(n) - f_{R-h}(n)| =$$

$$= \frac{1}{N} \sum_{n < N} |f_{R-h}(n)| |\exp(g_{R-h}(n)) - 1| \leq$$

$$\leq \frac{1}{N} \sum_{n < N} |g_{R-h}(n)| (|f(n)| + |f_{R-h}(n)|) \leq \left(\frac{1}{N} \sum_{n < N} |g_{R-h}(n)|^2\right)^{1/2} \times$$

$$\times \left(\left(\frac{2}{N} \sum_{n < N} |f(n)|^2\right)^{1/2} + \left(\frac{2}{N} \sum_{n < N} |f_{R-h}(n)|^2\right)^{1/2} \right).$$

Applying the Turán-Kubilius inequality for q-additive functions, we obtain

$$\frac{1}{N}\sum_{n< N}|g_{R-h}(n)|^2 \le$$

$$\begin{split} &\leq & \frac{2}{N} \sum_{n < N} \left| g_{R-h}(n) - \sum_{R-h < r < R} \frac{1}{q} \sum_{a=0}^{q-1} g_{R-h}(aq^r) \right|^2 + \\ & + \frac{2}{N} \sum_{n < N} \left| \sum_{R-h < r < R} \frac{1}{q} \sum_{a=0}^{q-1} g_{R-h}(aq^r) \right|^2 \leq \\ &\leq & 4 \left(\sum_{R-h < r < R-1} \frac{1}{q} \sum_{a=0}^{q-1} |\log f(aq^r)|^2 + \frac{1}{c} \sum_{a=1}^c |\log f(aq^{R-1})|^2 \right) + \\ & + 2 \left| \sum_{R-h < r < R} \frac{1}{q} \sum_{a=0}^{q-1} \log f(aq^r) \right|^2, \end{split}$$

where $cq^{R-1} \leq N < (c+1)q^{R-1}$, with some integer c, 0 < c < q. Now, h is fixed and $\log f(aq^r) \to 0$ for $r \to \infty$, so that

$$\lim_{R \to \infty} \overline{\lim_{N \to \infty}} \frac{1}{N} \sum_{n < N} |g_{R-h}(n)|^2 = 0.$$

Using Lemmata 1, 3 and 4 for $\alpha = 2$ shows $f, f_{R-h} \in \mathcal{L}^2$, and thus

$$\frac{1}{N}\sum_{n < N} |f(n) - f_{R-h}(n)| = o(1).$$

Ad \sum_2 :

For all $0 \le a < q, 0 \le n < q^{R-h+1}$

$$f_{R-h}(aq^{R-h+1}+n) = f(n)$$

and for all $l \in \mathbb{N}$

$$\sum_{n=0}^{lq^{R-h+1}-1} f_{R-h}(n) = l \sum_{n=0}^{q^{R-h+1}-1} f(n) = lq^{R-h+1} \Pi_{R-h+1}.$$

Further, for $N = lq^{R-h+1}$ we obtain

$$\frac{1}{N}\sum_{n$$

and for $lq^{R-h+1} < N < (l+1)q^{R-h+1}, \, l \geq 1$ we conclude

$$\left| \sum_{n < N} f_{R-h}(n) - N \Pi_{R-h+1} \right| =$$

$$= \left| -(N - lq^{R-h+1}) \Pi_{R-h+1} + \sum_{n=lq^{R-h+1}}^{N-1} f_{R-h}(n) \right| =$$

$$= \left| -(N - lq^{R-h+1}) \Pi_{R-h+1} + f_{R-h}(lq^{R-h+1}) \sum_{n=0}^{N-lq^{R-h+1}-1} f(n) \right| \leq$$

$$\leq c(N - lq^{R-h+1}) <$$

$$< cq^{R-h+1}$$

with some constant c depending only on f.

Ad \triangle : Obviously (cf. proof of Lemma 8)

$$\begin{aligned} |\Pi_R - \Pi_{R-h+1}| &= |\Pi_{R-h+1}| \left| \left(\prod_{r=R-h+1}^{R-1} \frac{1}{q} \sum_{a=0}^{q-1} f(aq^r) \right) - 1 \right| \leq \\ &\leq c \sum_{r=R-h+1}^{R-1} \left| \frac{1}{q} \sum_{a=0}^{q-1} (f(aq^r) - 1) \right|. \end{aligned}$$

Since h is fixed and $f(aq^r)$ tends to 1 as r runs to infinity, we have $|\Pi_R - \Pi_{R-h}| = o(1)$ as $R \to \infty$.

4. Proof of the main results

Proof of Theorem 1. The implication (i) \Rightarrow (ii) is proved as follows.

If $f \in \mathcal{L}^*$ and $||f||_1 > 0$ we conclude, by Lemma 1, that the series (8) is convergent. Lemma 4 shows the inequalities (9) and (10) for all $\alpha > 0$.

Proof of (ii) \Rightarrow (iii).

By Lemma 2 and the convergence of (8) we show as in the proof of Lemma 3

$$\frac{1}{q^R} \sum_{n=0}^{q^R-1} |f(n)|^{\alpha} = \widetilde{\Pi_{R,\alpha}} = (c(\alpha, |f|) + o(1)) \exp\left(\sum_{r < R} \widetilde{u_{r,\alpha}}\right)$$

for all $\alpha > 0$ and some constant $c(\alpha, |f|) \in \mathbb{R}$. Observing, if $q^{R-1} \leq N < q^R$

$$\frac{1}{N}\sum_{n < N} |f(n)|^{\alpha} \ll \frac{1}{q^R}\sum_{n < q^R} |f(n)|^{\alpha} = \widetilde{\Pi_{R,\alpha}}$$

and the inequality (9) gives $f \in \mathcal{L}^{\alpha}$ and (10) implies $||f||_{\alpha} > 0$.

The implication (iii) \Rightarrow (i) is obvious.

Proof of Corollary 1. (i) Let $f \in \mathcal{L}^*$ be q-multiplicative. If the meanvalue M(f) of f exists and is nonzero then obviously $||f||_1 > 0$. We know that (see the proof of Lemma 8)

$$|\Pi_R| \ll \exp\left(\sum_{r < R} \frac{1}{q^2} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^r) - 1)\right).$$

Further, $\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^r) - 1) > c_3 > -\infty$ for some constant $c_3 \in \mathbb{R}$, since

the mean-value M(f) of f exists and is different from zero.

By Lemma 6 the series (12) converges, and Lemma 7 yields

$$\Pi_R := \prod_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} f(aq^r) =$$
$$= (c(f) + o(1)) \exp\left(\sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (f(aq^r) - 1)\right),$$

with some constant $c(f) \neq 0$.

Since the mean-value M(f) of f exists and is nonzero, the series (11) converge and $\sum_{a=0}^{q-1} f(aq^r) \neq 0$ for each $r \in \mathbb{N}_0$.

(ii) If the series (11) and (12) converge then the infinite product $\lim_{R\to\infty} \Pi_R$ exists and is zero if and only if a factor equals zero. Thus $0 < \widetilde{\Pi_{R,1}}$ for all R and

$$\sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)| - 1) > c_4 > -\infty$$

for some constant $c_4 \in \mathbb{R}$. Now

$$\begin{split} \sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} |f(aq^r) - 1|^2 = & \sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)| - 1)^2 + \\ & + 2 \sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)| - 1) - \\ & - 2 \sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (\operatorname{Re} f(aq^r) - 1) \end{split}$$

holds, and the convergence of the series (11) and (12) shows that the series

$$\sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)| - 1)^2$$

and

$$\sum_{r < R} \frac{1}{q} \sum_{a=0}^{q-1} (|f(aq^r)| - 1)$$

converge. Then, by Theorem 1 we have $f \in \mathcal{L}^{\alpha}$ and $||f||_{\alpha} > 0$.

Furthermore by Lemma 6 and Lemma 9 we know that the mean-value

$$M(f)$$
 of f exists and $M(f) = \prod_{r=0}^{\infty} \left(\frac{1}{q} \sum_{a=0}^{q-1} f(aq^r)\right).$

A small modification of the proof for the estimate of \sum_{1} in Lemma 9 yields, because of the convergence of the series (11) and (12), that $||f - f_R||_1 \to 0$ as $R \to \infty$.

(iii) Using Theorem 1 and the same arguments as above we conclude that the series

$$\sum_{r=0}^{\infty} \sum_{a=0}^{q-1} (|f(aq^r)|^{\alpha} - 1)$$

and

$$\sum_{r=0}^{\infty} \sum_{a=0}^{q-1} (|f(aq^r)|^{\alpha} - 1)^2$$

converge, and thus the mean-value $M(|f|^{\alpha})$ of $|f|^{\alpha}$ exists for each $\alpha > 0$ (and is different from zero).

Proof of Theorem 2.

First, we assume that $\Pi_R = o(1)$. Then, by Lemma 5 $\frac{1}{N} \sum_{n < N} f(n) = o(1)$.

Now, let $\Pi_R \neq o(1)$. Then by Lemma 6 and Lemma 9 we have $\frac{1}{N} \sum_{n \leq N} f(n) = \Pi_R + o(1)$.

Furthermore $\widetilde{\Pi_{R,\alpha}} \neq o(1)$, because of $0 < ||f||_1 \leq ||f||_{\alpha}$ for all $\alpha > 0$. Then, by Lemma 1 and Lemma 9 the second assertion of Theorem 2 follows.

The proof of Corollary 2 is obvious.

Proof of Theorem 3.

Ad (i) The assertion is an immediate consequence of the proof of Lemma 1.

Ad (ii) We choose the number γ sufficiently large, and such that $\pm \gamma$ are continuity points of the limiting distribution of $g(n) - \alpha(x)$. Then

$$S := \frac{1}{x} \sharp \{ n \le x : g(n) - \alpha(x) \le \gamma \} > \frac{1}{2}.$$

Moreover, let m and n be any two elements of S, then

 $|g(m) - g(n)| \le |g(m) - \alpha(x)| + |\alpha(x) - g(n)| \le 2\gamma,$

from which it is clear that g(n) is finitely distributed.

Ad (iii) Let

$$\varphi_x(t) := \frac{1}{x} \sum_{n < x} e^{itg(n)}$$

Then we shall prove that, for all $t \in \mathbb{R}$,

$$\varphi_x(t)e^{-it\alpha(x)} \to \varphi(t) \qquad (x \to \infty)$$

where $\varphi(t)$ is continuous at t = 0.

By Theorem 2 we have

$$\frac{1}{x}\sum_{n < x} e^{itg(n)} = \prod_{r < N_x} \left(1 + \frac{1}{q} \sum_{a=1}^{q-1} \left(e^{itg(aq^r)} - 1 \right) \right) + o(1).$$

Let $u_r(t) = \frac{1}{q} \sum_{a=1}^{q-1} \left(e^{itg(aq^r)} - 1 \right)$ and $v_r(t) = \frac{it}{q} \sum_{a=1}^{q-1} g(aq^r)$. For $|t| \le T$ we obtain

obtain

$$|u_r(t)| \le \frac{T}{q} \sum_{a=1}^{q-1} |g(aq^r)|,$$

$$|u_r(t)|^2 \le \frac{T^2(q-1)}{q^2} \sum_{a=1}^{q-1} (g(aq^r))^2$$

and

$$|u_r(t) - v_r(t)| \le \frac{T^2}{2q} \sum_{a=1}^{q-1} (g(aq^r))^2.$$

Hence the infinite product $\prod_{r=0}^{\infty} (1 + u_r(t))e^{-v_r(t)}$ is uniformly convergent for $t \in [-T, T]$ and defines the characteristic function of a distribution function G.

References

- Coquet J., Sur les fonctions S-multiplicatives et S-additives, Thése de doctorat de Troisième Cycle, Université Paris-Sud, Orsay, 1975.
- [2] **Daboussi H.,** Charactérisation des fonctions multiplicatives presque périodiques \mathcal{B}^{λ} à spectre non vide, Ann. Inst. Fourier Grenoble, **30** (1980), 141-166.
- [3] Delange H., Sur les fonctions q-additives ou q-multiplicatives, Acta Arith., 21 (1972), 285-298.
- [4] Elliott P.D.T.A., Probabilistic number theory I., Grundlehren Math. Wiss. 239, Springer, 1979.
- [5] Halász G., Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hung., 19 (1968), 365-403.
- [6] Indlekofer K.-H., A mean-value theorem for multiplicative functions, Math. Z., 172 (1980), 255-271.
- [7] Indlekofer K.-H., Remark on a theorem of G. Halász, Arch. Math., 36 (1980), 145-151.
- [8] Indlekofer K.-H., Some remarks on almost-even and almost-periodic functions, Arch. Math., 37 (1981), 353-358.
- [9] Indlekofer K.-H., Limiting distribution and mean-values of multiplicative arithmetical functions, J. Reine Angew. Math., 328 (1981), 116-127.
- [10] Indlekofer K.-H., Properties of uniformly summable multiplicative functions, *Periodica Math. Hung.*, 17 (1986), 143-161.
- [11] Peter M. and Spilker J., Value distribution of g-additive functions, Manuscripta Math., 105 (2001), 519-536.

- [12] Schwarz W. and Spilker J., Arithmetical functions, London Math. Soc. LNS 184, Cambridge Univ. Press, 1994.
- [13] Spilker J., Almost-periodicity of g-additive and g-multiplicative functions, Anal. Probab. Methods Number Theory, (2002), 256-264.
- [14] Wirsing E., Das asymptotische Verhalten von Summen über multiplikative Funktionen II., Acta Math. Acad. Sci. Hung., 18 (1967), 411-467.

(Received July 12, 2005)

K.-H. Indlekofer, Yi-Wei Lee and R. Wagner

Institut für Mathematik Fakultät für Elektrotechnik, Informatik und Mathematik Universität Paderborn

Warburger Str. 100

D-33098 Paderborn, Germany

k-heinz@uni-paderborn.de

yiwei@uni-paderborn.de

robert@uni-paderborn.de