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MEAN BEHAVIOUR OF
UNIFORMLY SUMMABLE q–MULTIPLICATIVE

FUNCTIONS

K.-H. Indlekofer, Y.-W. Lee and R. Wagner

(Paderborn, Germany)

Abstract. In this paper a complete characterization of q-multiplicative

functions f ∈ L∗ is given.

1. Introduction

In 1968 G. Halász proved the following mean-value theorem for multiplica-
tive functions.

Theorem A. (Halász [5]). Let f be a multiplicative function, |f(n)| ≤ 1,
(n = 1, 2, . . .). If there is a real number a such that the series

∑
p

(1− Ref(p)p−ia)
p

converges, then as x →∞
∑

n≤x

f(n) =
x1+ia

1 + ia

∏

p≤x

(
1− 1

p

) (
1 +

∞∑
m=1

p−m(1+ia)f(pm)

)
+ o(x).

On the other hand, if there is no such number a, then

x−1
∑

n≤x

f(n) → 0 (x →∞).
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In either case there are constants D, α, and a slowly-oscillating function L(u)
with |L(u)| = 1, so that as x →∞

∑

n≤x

f(n) = Dx1+iαL(log x) + o(x).

The function L and the constants α, D may be given explicitely (see for example
Halász [5] and K.-H. Indlekofer [7]).

For f : N0 → C define, for any real number α ≥ 1,

(1) ‖f‖α :=

(
lim sup
N→∞

1
N

∑

n<N

|f(n)|α
) 1

α

,

and let
Lα := {f | f : N0 → C, ‖f‖α < ∞}.

An arithmetical function1 f : N0 → C is called uniformly summable in case

lim
K→∞

sup
N≥1

1
N

∑
n<N

|f(n)|≥K

|f(n)| = 0.

The set of all uniformly summable functions, denoted by L∗, is a proper subset
of L1. Obviously (α > 1)

Lα⊂
6=
L∗ ⊂

6=
L1.

In [10] K.-H. Indlekofer has given a complete characterization of the
asymptotic behaviour of the sums

∑
n≤x

f(n) (x → ∞) for uniformly summable

multiplicative functions. Putting

ρ(n) =





f(p)
|f(p)| if f(p) 6= 0,

1 otherwise,

he proves the following

Theorem B. (Indlekofer [10]). Let f ∈ L∗ be multiplicative and ‖f‖1 >
> 0.Then the following two assertions hold.

1 If f is defined on N we extend f to N0 by putting f(0) = 0.
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(i) If there exists a constant a0 ∈ R such that the series

(2)
∑

p

(1− Re%(p)p−ia)
p

converges for a = a0 then there exists a constant c0 ∈ C such that, as
x →∞,

1
x

∑

n≤x

f(n) = xia0 exp


∑

p≤x

f(p)p−ia0 − 1
p


 (c0 + o(1)),

where

c0 =
1

1 + ia0

∏
p

(
1− 1

p

) (
1 +

∞∑

k=1

f(pk)
pk(1+ia)

)
exp

{
1− f(p)p−ia0

p

}
.

If

A∗(x) :=
∑

p≤x

Imf(p)p−ia0

p
,

then
lim

x→∞
sup

x≤y≤x2
|A∗(y)−A∗(x)| = 0.

(ii) If the series (2) diverges for all a ∈ R then the mean-value M(f) of f
exists and equals zero.

We will extend results of this kind to q-multiplicative functions. For this
let q ≥ 2 be an integer and A = {0, 1, . . . , q − 1}. The q-ary expansion of some
n ∈ N0 is defined as the unique sequence ε0(n), ε1(n), . . . for which

(3) n =
∞∑

r=0

εr(n)qr , εr(n) ∈ A

holds. ε0(n), ε1(n), . . . are called the digits in the q-ary expansion of n. In fact,

εr(n) = 0 if r >
log n

log q
.

A function f : N0 → C is called q-multiplicative if f(0) = 1, and for every
n ∈ N0,

(4) f(n) =
∞∏

r=0

f(εr(n)qr).
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A classical theorem of H. Delange [3] asserts that for q-multiplicative function

f with |f(n)| ≤ 1, where Nx =
⌊

log x

log q

⌋
,

m(x) :=
1
x

∑
n<x

f(n) =
Nx−1∏
r=0

1
q

(∑

a∈A
f(aqr)

)
+ o(1)

as x →∞.

From this he deduced that lim
x→∞

|m(x)| always exists and equals

∞∏
r=0

∣∣∣∣∣
1
q

∑

a∈A
f(aqr)

∣∣∣∣∣ ,

which is nonzero if and only if

(5)
∑

a∈A
f(aqr) 6= 0 (for all r ∈ N0)

and

(6)
∞∑

r=0

∑

a∈A
Re (1− f(aqr)) < ∞.

Furthermore, he proved that lim
x→∞

m(x) exists and is nonzero if and only

if (5) holds and the series

(7)
∞∑

r=0

∑

a∈A
(1− f(aqr))

is convergent.

The aim of this paper is to study the behaviour of the sums

1
N

∑

n<N

f(n) and
1
N

∑

n<N

|f(n)|α

as N →∞, α > 0, where f ∈ L∗ is q-multiplicative.
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2. Main results

We use the following notations.

Let Π̃R,α :=
∏

r<R

(1 + ũr,α) and ΠR :=
∏

r<R

(1 + ur) with ũr,α :=

:=
1
q

q−1∑
a=1

(|f(aqr)|α − 1) and ur :=
1
q

q−1∑
a=1

(f(aqr)− 1), respectively.

Definition 1. A function g is said to be finitely distributed if there are
positive constants c1 and c2, and an unbounded sequence of real numbers x1 <
< x2 < . . ., so that for each xj at least k positive integers a1 < a2 < . . . <
< ak ≤ xj may be found, with k ≥ c1xj , so that

|g(am)− g(an)| ≤ c2 1 ≤ m ≤ n ≤ k.

The following theorem describes a complete characterization of q-multiplic-
ative uniformly summable functions.

Theorem 1. Let f be a q-multiplicative function. Then the following
assertions are equivalent.
(i) f ∈ L∗ and ‖f‖1 > 0.
(ii) Let α > 0. The series

(8)
∞∑

r=0

1
q

q−1∑
a=0

(|f(aqr)|α − 1)2

is convergent, and for some constants c1(α), c2(α) ∈ R, for all R and for
some sequence {Ri}, Ri →∞, the inequalities

(9)
∑

r<R

1
q

q−1∑
a=0

(|f(aqr)|α − 1) ≤ c1(α) < ∞

and

(10)
∑

r<Ri

1
q

q−1∑
a=0

(|f(aqr)|α − 1) ≥ c2(α) > −∞

hold.
(iii) f ∈ Lα and ‖f‖α > 0 for all α > 0.
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The mean behaviour of such functions is given in

Theorem 2. Let f ∈ L∗ be a q-multiplicative function and ‖f‖1 > 0.
Further, let qR−1 ≤ N < qR, R ∈ N. Then, as N →∞,

1
N

∑

n<N

f(n) = ΠR + o(1)

and, for every α > 0,

1
N

∑

n<N

|f(n)|α = Π̃R,α + o(1).

An immediate consequence is the following

Corollary 1. Let f be q-multiplicative. Then the following assertions
hold.
(i) Let f ∈ L∗. If the mean-value M(f) of f exists and is different from zero

then the series

(11)
∞∑

r=0

q−1∑
a=0

(f(aqr)− 1)

and

(12)
∞∑

r=0

q−1∑
a=0

|f(aqr)− 1|2

converge and
q−1∑
a=0

f(aqr) 6= 0 for each r ∈ N0.

(ii) If the series (11) and (12) converge then f ∈ L∗, the mean-value M(f) of
f exists,

M(f) =
∞∏

r=0

(
1
q

q−1∑
a=0

f(aqr)

)

and ‖f − fR‖1 → 0 as R →∞, where

fR(n) =
∏

r≤R

f(εr(n)qr) 0 ≤ εr(n) < q.
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(iii) Let f ∈ L∗. If the mean-value M(f) of f exists and is different from zero
then the mean-value M(|f |α) of |f |α exists for each α > 0 (and is different
from zero).

The case of mean value zero is contained in

Corollary 2. Let f ∈ L∗ be q-multiplicative. Then the mean-value M(f)
of f is zero if and only if ΠR = o(1) as R →∞.

Let us now turn to q-additive functions. Here the main results are as
follows.

Theorem 3. Let g be q-additive. Then the following assertions hold.

(i) If g is finitely distributed, then the series
∞∑

r=0

q−1∑
a=0

(g(aqr))2 converges.

(ii) If, for some α(x),

1
x

]{n ≤ x : g(n)− α(x) ≤ y} ⇒ G(y),

where G is a distribution function, then g is finitely distributed.

(iii) Let
∞∑

r=0

q−1∑
a=0

(g(aqr))2 converge and put α(x) =
∑

r<Nx

1
q

q−1∑
a=0

g(aqr), Nx :=

:=
⌊

log x
log q

⌋
. Then

1
x

]{n ≤ x : g(n)− α(x) ≤ y} ⇒ G(y),

where G is some distribution function.

Assertion (iii) of Theorem 3 has already been proved by J. Coquet (see
[1], Theorem II. 4).

3. Preliminary results

To prove our main theorem, we need to show the following lemmata.

Lemma 1. Let f ∈ L∗ be q-multiplicative and ‖f‖1 > 0. Then

∞∑
r=0

1
q

q−1∑
a=0

(|f(aqr)|α − 1)2 < ∞
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for all α > 0.

Proof. Because of ‖f‖1 > 0 we can find a sequence {xi} such that∑
n<xi

ε<|f(n)|α<K

1 À xi, as i → ∞ for some suitable ε,K > 0. We define an q-

additive function g by

g(aqr) =





log(|f(aqr)|α) if f(aqr) 6= 0,

1 if f(aqr) = 0.

Then
∑
n<xi

−c1<g(n)<c2

1 ³ xi with c1 = log 1/ε and c2 = log K.

For real numbers t, define the functions

H(x, t) =
∑
n<x

exp(itg(n)),

for any x > 0.

Delange proved that the limit l(t) = lim
x→∞

1
x
|H(x, t)| always exists and

l(t) 6= 0 holds if and only if

∞∑
r=0

1
q

q−1∑
a=1

(1− cos(tg(aqr)))

converges. Further, define the function D by

D(ν) =





(
sin πν

πν

)2

if ν 6= 0,

1 if ν = 0.

Then, for each real number y,

∞∫

−∞
e2πiνyD(ν)dν =

{
1− |y| if |y| ≤ 1,

0 otherwise.

Interchanging summation and integration shows that for positive λ

∞∫

−∞
λ|H(x, t)|2D(λt)dt =

∑
n1,n2≤x

|g(n1)−g(n2)|≤λ

(1− λ−1|g(n1)− g(n2)|).
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We divide by xi, let xi → ∞, and apply Lebesgue’s theorem for dominated
convergence. If λ is sufficiently large then

∞∫

−∞
λl(t)2D(λt)dt > 0.

More exactly, if g(n) satisfies the condition given in the definition of finitely
distributed functions, and if λ ≥ 2c2, then the value of this integral is at least
as large as c2

1/2.

It follows that there is a set E, of positive Lebesgue measure, on which
l(t) > 0.

Now
∞∑

r=0

(1− cos(tg(aqr))) < ∞ for every 1 ≤ a ≤ q − 1 and for all t ∈ E.

It means
∞∑

r=0

(1 − cos(tg(aqr))) ≤ c for all t ∈ E∗ where E∗ is some subset of

E and m(E∗) > 0. This is equivalent to
∞∑

r=0

sin2

(
t

2
g(aqr)

)
≤ c < ∞ for all

t ∈ E∗.

In view of the inequality sin2(x ± y) ≤ 2 sin2 x + 2 sin2 y and applying
Steinhaus’s lemma2 we can find a T > 0, such that for all 1 ≤ a ≤ q − 1 and
for |t| ≤ T

(13)
∞∑

r=0

(1− cos(tg(aqr))) ≤ 4c < ∞.

Integrating (13) from 0 to T and multiplying with 1/T , we have

(14)
∞∑

r=0

h(Tg(aqr)) ≤ 4c < ∞,

where h(u) = 1− sinu

u
for u 6= 0 and h(0) = 0.

Since h(u) ≥ 0 for all real number u and h(u) ≥ 1/2 for u ≥ 2, we conclude
that |g(aqr)| ≥ 2/T for only finitely many r. Thus, there exists Ma > 0 such

2 (See [4] Lemma (1.1). The differences generated by a set of real numbers
of positive measure, cover an open interval about the origin.)
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that |g(aqr)| ≤ Ma for all r ≥ 0, and there exists ma > 0 so that h(u) ≥ mau2

for |u| ≤ TMa.
Hence

∞∑
r=0

(g(aqr))2 ≤ 2q log 2
maT 2

,

and the series
∞∑

r=0

1
q

q−1∑
a=1

(g(aqr))2 converges. Since (log |x|)2 ³ (|x| − 1)2 if

||x| − 1| ≤ 1/2, the proof of Lemma 1 is finished.

Lemma 2. Let f be q-multiplicative and R ∈ N. Then

qR−1∑
n=0

|f(n)|α = qRΠ̃R,α

for every α > 0, and
qR−1∑
n=0

f(n) = qRΠR.

Proof. Induction over R yields the following formulas

qR+1−1∑
n=0

|f(n)|α =
q−1∑
a=0




qR−1∑

l=0

|f(aqR + l)|α



and
qR+1−1∑

n=0

f(n) =
q−1∑
a=0




qR−1∑

l=0

f(aqR + l)


 ,

which prove Lemma 2.

Lemma 3. Let f ∈ L∗ be q-multiplicative and ‖f‖1 > 0. Then

Π̃R,α = (c(α, |f |) + o(1)) exp

(∑

r<R

ũr,α

)

for all α > 0 with some constant c(α, |f |) ∈ R.

Proof. It is easy to see that, because of the convergence of the series in
Lemma 1

Π̃R,α =
∏

r<R

(1 + ũr,α) =
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= exp

(∑

r<R

log(1 + ũr,α)

)
=

= exp

(∑

r<R

ũr,α + O

(∑

r<R

(ũr,α)2
))

=

= (c(α, |f |) + o(1)) exp

(∑

r<R

ũr,α

)

for all α > 0 and some constant c(α, |f |) ∈ R.

Lemma 4. Let f ∈ L∗ be q-multiplicative with ‖f‖1 > 0 and α > 0. Then
there exist some constants c1(α), c2(α) ∈ R such that

(15)
∑

r<R

1
q

q−1∑
a=0

(|f(aqr)|α − 1) ≤ c1(α) < ∞

for all R and

(16)
∑

r<Ri

1
q

q−1∑
a=0

(|f(aqr)|α − 1) ≥ c2(α) > −∞

for some sequence {Ri}, Ri →∞.

Proof. By Lemma 3, we get the inequalities (15) and (16) for α = 1, since
f ∈ L1 and ‖f‖1 > 0. Now, let α > 0, and let ||f(aqr)| − 1| ≤ 1

2 . Then

|f(aqr)|α − 1 = (|f(aqr)| − 1 + 1)α − 1 =

= α(|f(aqr)| − 1) + O((|f(aqr)| − 1)2),

which implies the inequalities (15) and (16) for all α > 0.

Remark 1. Let f ∈ L∗ be q-multiplicative with ‖f‖1 > 0 and α > 0. If∑
n<x

|f(n)|α ³ x then

∑

r<R

1
q

q−1∑
a=0

(|f(aqr)|α − 1) = O(1)

as R →∞.

The next lemma shows a general method for getting upper estimates.
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Lemma 5. Let f be q-multiplicative and qR−1 ≤ N < qR with R ∈ N.
Then, for every h ∈ N,

∣∣∣∣∣
∑

n<N

f(n)

∣∣∣∣∣ ≤
h∑

r=1

∣∣∣∣∣∣
qR−rΠR−r

r−1∏
t=1

f(εR−t(N)qR−t)
εR−r(N)−1∑

a=0

f(aqR−r)

∣∣∣∣∣∣
+

+

(
R−1∏

r=R−h

|f(εr(N)qr)|
)
·O(qR−h),

where the O-constant depends only on f .

Proof. Let N = cqR−1+b where 1 ≤ c < q and b =
∑

r<R−1

εr(N)qr < qR−1

where 0 ≤ εr(N) ≤ q − 1. Then

∑

n<N

f(n) =
c−1∑
a=0




qR−1−1∑

l=0

f(aqR−1 + l)


 +

b−1∑

l=0

f(cqR−1 + l) =

=
c−1∑
a=0

f(aqR−1)
qR−1−1∑

l=0

f(l) + f(cqR−1)
b−1∑

l=0

f(l) =

= qR−1ΠR−1

c−1∑
a=0

f(aqR−1)+

+ qR−2ΠR−2f(cqR−1)
εR−2(N)−1∑

a=0

f(aqR−2)+

+ qR−3ΠR−3f(cqR−1)f(εR−2(N)qR−2)
εR−3(N)−1∑

a=0

f(aqR−3)+

...

+ qR−hΠR−hf(cqR−1)f(εR−2(N)qR−2) · · ·

· · · f(εR−h+1(N)qR−h+1)
εR−h(N)−1∑

a=0

f(aqR−h)+

+ f(cqR−1)f(εR−2(N)qR−2) · · ·

· · · f(εR−h+1(N)qR−h+1)f(εR−h(N)qR−h)
bh−1∑

l=0

f(l),



Mean behaviour of uniformly summable q-multiplicative functions 183

where bh < qR−h and

∣∣∣∣∣
bh−1∑

l=0

f(l)

∣∣∣∣∣ ≤
qR−h−1∑

l=0

|f(l)| = O(qR−h).

In the following lemmata 6, 7 and 8 we collect some more properties of
q-multiplicative functions f ∈ L∗ with ‖f‖1 > 0.

Lemma 6. Let f ∈ L∗ be q-multiplicative and ‖f‖1 > 0. Then the series

∞∑
r=0

1
q

q−1∑
a=0

|f(aqr)− 1|2

is convergent if and only if

∑

r<Ri

1
q

q−1∑
a=0

(Ref(aqr)− 1) ≥ c3 > −∞

for some constant c3 ∈ R and some sequence {Ri}, Ri ↑ ∞.

Proof. We have

∑

r<R

1
q

q−1∑
a=0

|f(aqr)− 1|2 =
∑

r<R

1
q

q−1∑
a=0

(|f(aqr)| − 1)2+

+ 2
∑

r<R

1
q

q−1∑
a=0

(|f(aqr)| − 1)−

− 2
∑

r<R

1
q

q−1∑
a=0

(Ref(aqr)− 1) =

=
∑
1

+2
∑
2

−2
∑
3

.

By Lemma 1,
∑

1 is convergent and, by Lemma 4,
∑

2 is bounded from above
for some sequence {Ri}, Ri →∞. Thus Lemma 6 holds true.

Lemma 7. Let f ∈ L∗ be q-multiplicative and ‖f‖1 > 0. If

∑

r<Ri

1
q

q−1∑
a=0

(Ref(aqr)− 1) ≥ c3 > −∞

for some constant c3 and for some sequence {Ri}, Ri ↑ ∞, then

ΠR :=
∏

r<R

(1 + ur) = (c(f) + o(1)) exp

(∑

r<R

ur

)
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with some constant c(f) 6= 0.

Proof. If
∑

r<Ri

1
q

q−1∑
a=0

(Ref(aqr)− 1) ≥ c3 > −∞ for some constant c3 and

for some sequence {Ri}, Ri ↑ ∞, then by Lemma 6

∞∑
r=0

|ur|2 ≤
∞∑

r=0

1
q

q−1∑
a=0

|f(aqr)− 1|2 < ∞,

and we obtain

ΠR :=
∏

r<R

(1 + ur) =

=exp

(∑

r<R

ur + O

(∑

r<R

|ur|2
))

=

=(c(f) + o(1)) exp

(∑

r<R

ur

)

with some constant c(f) 6= 0.

Lemma 8. Let f ∈ L∗ be q-multiplicative and ‖f‖1 > 0. If

lim
R→∞

∑

r<R

1
q

q−1∑
a=0

(Ref(aqr)− 1) = −∞,

then ΠR → 0 as R →∞.

Proof. Obviously

|ΠR| = exp

(∑

r<R

log |1 + ur|
)

and
log |1 + ur| = 1

2
log((1 + Re ur)2 + (Im ur)2) =

=
1
2

log(1 + 2Re ur + |ur|2) ≤

≤ Re ur +
1
2
|ur|2 .
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Since

|ur|2 ≤ q − 1
q

· 1
q

q−1∑
a=0

|f(aqr)− 1|2 =

=
q − 1

q

{
1
q

q−1∑
a=0

(|f(aqr)| − 1)2 +
2
q

q−1∑
a=0

(|f(aqr)| − 1)− 2Re ur

}
,

we observe

Re ur +
1
2

(
q − 1

q
· (−2Re ur)

)
=

1
q
Re ur,

which implies

|ΠR| ¿ exp

(∑

r<R

1
q
· 1
q

q−1∑
a=0

(Ref(aqr)− 1)

)
,

and the assertion of Lemma 8 follows.

Remark 2. Let f ∈ L∗ be q-multiplicative and ‖f‖1 > 0. Then by
Lemma 7 and Lemma 8 ΠR = o(1) if and only if

∑

r<R

1
q

q−1∑
a=0

(Ref(aqr)− 1) → −∞

as R →∞.

Observing that q-additive functions are sums of “almost independent
random variables”, we prove the following inequality which is interesting in
itself.

Turán-Kubilius inequality for q-additive functions

Let g : N0 → C be q-additive, cqR−1 ≤ N < (c + 1)qR−1 with R ∈ N and
some c ∈ N with 0 < c < q. Put

ER(g) =
R−2∑
r=0

1
q

q−1∑
a=0

g(aqr)

and

ER,c(g) = ER(g) +
1
c

c∑
a=1

g(aqR−1).
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Then

(17)
1
N

∑

n<N

|g(n)−ER,c(g)|2 ≤ 2

(
R−2∑
r=0

1
q

q−1∑
a=0

|g(aqr)|2 +
1
c

c∑
a=1

|g(aqR−1)|2
)

.

The result is well-known (see for example M. Peter and J. Spilker [11]).
We give here a new proof of (17) which is much shorter than the proof present
in [11].

Proof.

1
N

∑

n<N

(g(n)− ER,c(g))2 ≤

≤ 1
N

∑

n<(c+1)qR−1

(g∗(n)− ER,c(g))2 ≤

≤c + 1
c

· 1
(c + 1)qR−1

∑

n<(c+1)qR−1

|g∗(n)− ER,c(g)|2,

where g∗(aqr) = g(aqr) for r < R − 1, 0 ≤ a ≤ q − 1 or r = R − 1, 0 ≤ a ≤ c
and g∗(aqr) = 0 for r > R− 1, 0 ≤ a ≤ q − 1 or r = R− 1, c < a ≤ q − 1.

Since in the Laplace space {0, 1, . . . , (c + 1)qR−1} a q-additive function is
a sum of independent random variables, we obtain

1
N

∑

n<N

|g(n)− ER,c(g)|2 ≤ 2

(
R−2∑
r=0

1
q

q−1∑
a=0

|g(aqr)|2 +
1
c

c∑
a=1

|g(aqR−1)|2
)

.

Using the Turán-Kubilius inequality we prove

Lemma 9. Let f ∈ L∗ be q-multiplicative, ‖f‖1 > 0 and qR−1 ≤ N < qR

where R ∈ N. Further, let

∞∑
r=0

1
q

q−1∑
a=0

|f(aqr)− 1|2 < ∞.

Then, for any h ∈ N,
∣∣∣∣∣
1
N

∑

n<N

f(n)−ΠR

∣∣∣∣∣ ≤ c̃q−h + o(1)

as N →∞, with some constant c̃ ∈ R depending only on f .
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Proof. Put

fR(n) =
R∏

r=0

f(er(n)qr).

Then, for any h ∈ N,

∣∣∣∣∣
1
N

∑

n<N

f(n)−ΠR

∣∣∣∣∣ ≤
1
N

∑

n<N

|f(n)− fR−h(n)|+

+
1
N

∣∣∣∣∣
∑

n<N

fR−h(n)−NΠR−h+1

∣∣∣∣∣ + |ΠR−h+1 −ΠR| =:

=:
∑

1
+

∑
2

+4.

Ad
∑

1:

We choose r0 ∈ N so that |f(aqr) − 1| ≤ 1
10 , for all r > r0, 0 ≤ a < q

r, a ∈ N and define the function gR

gR(n) :=





∑

r>R

log f(er(n)qr) for R ≥ r0,

0 for R < r0.

Then the functions gR are q-additive. Now,

1
N

∑

n<N

|f(n)− fR−h(n)| =

=
1
N

∑

n<N

|fR−h(n)|| exp(gR−h(n))− 1| ≤

≤ 1
N

∑

n<N

|gR−h(n)|(|f(n)|+ |fR−h(n)|) ≤
(

1
N

∑

n<N

|gR−h(n)|2
)1/2

×

×



(
2
N

∑

n<N

|f(n)|2
)1/2

+

(
2
N

∑

n<N

|fR−h(n)|2
)1/2


 .

Applying the Turán-Kubilius inequality for q-additive functions, we obtain

1
N

∑

n<N

|gR−h(n)|2 ≤
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≤ 2
N

∑

n<N

∣∣∣∣∣gR−h(n)−
∑

R−h<r<R

1
q

q−1∑
a=0

gR−h(aqr)

∣∣∣∣∣

2

+

+
2
N

∑

n<N

∣∣∣∣∣
∑

R−h<r<R

1
q

q−1∑
a=0

gR−h(aqr)

∣∣∣∣∣

2

≤

≤4

( ∑

R−h<r<R−1

1
q

q−1∑
a=0

| log f(aqr)|2 +
1
c

c∑
a=1

| log f(aqR−1)|2
)

+

+ 2

∣∣∣∣∣
∑

R−h<r<R

1
q

q−1∑
a=0

log f(aqr)

∣∣∣∣∣

2

,

where cqR−1 ≤ N < (c + 1)qR−1, with some integer c, 0 < c < q.
Now, h is fixed and log f(aqr) → 0 for r →∞, so that

lim
R→∞

lim
N→∞

1
N

∑

n<N

|gR−h(n)|2 = 0.

Using Lemmata 1, 3 and 4 for α = 2 shows f , fR−h ∈ L2, and thus

1
N

∑

n<N

|f(n)− fR−h(n)| = o(1).

Ad
∑

2:

For all 0 ≤ a < q, 0 ≤ n < qR−h+1

fR−h(aqR−h+1 + n) = f(n)

and for all l ∈ N

lqR−h+1−1∑
n=0

fR−h(n) = l

qR−h+1−1∑
n=0

f(n) = lqR−h+1ΠR−h+1.

Further, for N = lqR−h+1 we obtain

1
N

∑

n<N

fR−h(n)−ΠR−h+1 = 0
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and for lqR−h+1 < N < (l + 1)qR−h+1, l ≥ 1 we conclude
∣∣∣∣∣
∑

n<N

fR−h(n)−NΠR−h+1

∣∣∣∣∣ =

=

∣∣∣∣∣∣
−(N − lqR−h+1)ΠR−h+1 +

N−1∑

n=lqR−h+1

fR−h(n)

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣
−(N − lqR−h+1)ΠR−h+1 + fR−h(lqR−h+1)

N−lqR−h+1−1∑
n=0

f(n)

∣∣∣∣∣∣
≤

≤c(N − lqR−h+1) <

<cqR−h+1

with some constant c depending only on f .

Ad 4: Obviously (cf. proof of Lemma 8)

|ΠR −ΠR−h+1| = |ΠR−h+1|
∣∣∣∣∣

(
R−1∏

r=R−h+1

1
q

q−1∑
a=0

f(aqr)

)
− 1

∣∣∣∣∣ ≤

≤ c

R−1∑

r=R−h+1

∣∣∣∣∣
1
q

q−1∑
a=0

(f(aqr)− 1)

∣∣∣∣∣ .

Since h is fixed and f(aqr) tends to 1 as r runs to infinity, we have |ΠR −
−ΠR−h| = o(1) as R →∞.

4. Proof of the main results

Proof of Theorem 1. The implication (i) ⇒ (ii) is proved as follows.
If f ∈ L∗ and ‖f‖1 > 0 we conclude, by Lemma 1, that the series (8) is

convergent. Lemma 4 shows the inequalities (9) and (10) for all α > 0.

Proof of (ii) ⇒ (iii).

By Lemma 2 and the convergence of (8) we show as in the proof of Lemma
3

1
qR

qR−1∑
n=0

|f(n)|α = Π̃R,α = (c(α, |f |) + o(1)) exp

(∑

r<R

ũr,α

)
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for all α > 0 and some constant c(α, |f |) ∈ R. Observing, if qR−1 ≤ N < qR

1
N

∑

n<N

|f(n)|α ¿ 1
qR

∑

n<qR

|f(n)|α = Π̃R,α

and the inequality (9) gives f ∈ Lα and (10) implies ‖f‖α > 0.

The implication (iii) ⇒ (i) is obvious.

Proof of Corollary 1. (i) Let f ∈ L∗ be q-multiplicative. If the mean-
value M(f) of f exists and is nonzero then obviously ‖f‖1 > 0. We know that
(see the proof of Lemma 8)

|ΠR| ¿ exp

(∑

r<R

1
q2

q−1∑
a=0

(Ref(aqr)− 1)

)
.

Further,
∞∑

r=0

1
q

q−1∑
a=0

(Ref(aqr)− 1) > c3 > −∞ for some constant c3 ∈ R, since

the mean-value M(f) of f exists and is different from zero.
By Lemma 6 the series (12) converges, and Lemma 7 yields

ΠR :=
∏

r<R

1
q

q−1∑
a=0

f(aqr) =

=(c(f) + o(1)) exp

(∑

r<R

1
q

q−1∑
a=0

(f(aqr)− 1)

)
,

with some constant c(f) 6= 0.

Since the mean-value M(f) of f exists and is nonzero, the series (11)

converge and
q−1∑
a=0

f(aqr) 6= 0 for each r ∈ N0.

(ii) If the series (11) and (12) converge then the infinite product lim
R→∞

ΠR

exists and is zero if and only if a factor equals zero. Thus 0 < Π̃R,1 for all R
and

∑

r<R

1
q

q−1∑
a=0

(|f(aqr)| − 1) > c4 > −∞
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for some constant c4 ∈ R. Now

∑

r<R

1
q

q−1∑
a=0

|f(aqr)− 1|2 =
∑

r<R

1
q

q−1∑
a=0

(|f(aqr)| − 1)2+

+ 2
∑

r<R

1
q

q−1∑
a=0

(|f(aqr)| − 1)−

− 2
∑

r<R

1
q

q−1∑
a=0

(Ref(aqr)− 1)

holds, and the convergence of the series (11) and (12) shows that the series

∑

r<R

1
q

q−1∑
a=0

(|f(aqr)| − 1)2

and
∑

r<R

1
q

q−1∑
a=0

(|f(aqr)| − 1)

converge. Then, by Theorem 1 we have f ∈ Lα and ‖f‖α > 0.
Furthermore by Lemma 6 and Lemma 9 we know that the mean-value

M(f) of f exists and M(f) =
∞∏

r=0

(
1
q

q−1∑
a=0

f(aqr)

)
.

A small modification of the proof for the estimate of
∑

1 in Lemma 9 yields,
because of the convergence of the series (11) and (12), that ‖f − fR‖1 → 0 as
R →∞.

(iii) Using Theorem 1 and the same arguments as above we conclude that
the series

∞∑
r=0

q−1∑
a=0

(|f(aqr)|α − 1)

and
∞∑

r=0

q−1∑
a=0

(|f(aqr)|α − 1)2

converge, and thus the mean-value M(|f |α) of |f |α exists for each α > 0 (and
is different from zero).

Proof of Theorem 2.
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First, we assume that ΠR = o(1). Then, by Lemma 5
1
N

∑

n<N

f(n) = o(1).

Now, let ΠR 6= o(1). Then by Lemma 6 and Lemma 9 we have
1
N

∑

n<N

f(n) = ΠR + o(1).

Furthermore Π̃R,α 6= o(1), because of 0 < ‖f‖1 ≤ ‖f‖α for all α > 0.
Then, by Lemma 1 and Lemma 9 the second assertion of Theorem 2 follows.

The proof of Corollary 2 is obvious.

Proof of Theorem 3.

Ad (i) The assertion is an immediate consequence of the proof of Lemma
1.

Ad (ii) We choose the number γ sufficiently large, and such that ±γ are
continuity points of the limiting distribution of g(n)− α(x). Then

S :=
1
x

]{n ≤ x : g(n)− α(x) ≤ γ} >
1
2
.

Moreover, let m and n be any two elements of S, then

|g(m)− g(n)| ≤ |g(m)− α(x)|+ |α(x)− g(n)| ≤ 2γ,

from which it is clear that g(n) is finitely distributed.
Ad (iii) Let

ϕx(t) :=
1
x

∑
n<x

eitg(n).

Then we shall prove that, for all t ∈ R,

ϕx(t)e−itα(x) → ϕ(t) (x →∞),

where ϕ(t) is continuous at t = 0.
By Theorem 2 we have

1
x

∑
n<x

eitg(n) =
∏

r<Nx

(
1 +

1
q

q−1∑
a=1

(
eitg(aqr) − 1

))
+ o(1).

Let ur(t) =
1
q

q−1∑
a=1

(
eitg(aqr) − 1

)
and vr(t) =

it

q

q−1∑
a=1

g(aqr). For |t| ≤ T we

obtain

|ur(t)| ≤ T

q

q−1∑
a=1

|g(aqr)|,
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|ur(t)|2 ≤ T 2(q − 1)
q2

q−1∑
a=1

(g(aqr))2

and

|ur(t)− vr(t)| ≤ T 2

2q

q−1∑
a=1

(g(aqr))2.

Hence the infinite product
∞∏

r=0

(1 + ur(t))e−vr(t) is uniformly convergent for

t ∈ [−T, T ] and defines the characteristic function of a distribution function G.
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