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ON THE AVERAGE OF
d(n)ω(n) AND SIMILAR FUNCTIONS

ON SHORT INTERVALS

J.-M. DeKoninck (Québec, Canada)
I. Kátai (Budapest, Hungary)

1. Introduction

For each integer n ≥ 2, let ω(n), Ω(n) and τ(n) stand for the number
of distinct prime divisors of n, the number of prime divisors of n counting
their multiplicity and the number of positive divisors of n, respectively, with
ω(1) = Ω(1) = 0 and τ(1) = 1. Given an integer n ≥ 2, let β(n) be the sum
of the distinct prime divisors of n. Moreover, given any positive integer k and
any complex number z, let

τk(n) = #{(d1, d2, . . . , dk) : d1d2 . . . dk = n, di ∈ N}.

Finally, let x1 = log x, xj+1 = log xj for each integer j ≥ 1.
It was shown by De Koninck and Ivić [1], using analytic methods, that as

x →∞,

(1)
∑

n≤x

τ(n)ω(n) = 2xx1x2 + Axx1 + O(x),

where

A = 2

(∑
p

(
log

(
1− 1

p

)
+

(
1
p

+
3

2p2
+

4
2p3

+ . . .

)(
1− 1

p

)2
)
− Γ′(2)

)
,
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where Γ stands for the Gamma function.
This result was later improved by Sitaramachandrarao [10] who showed

that ∑

n≤x

τ(n)ω(n) = 2xx1x2 + Axx1 + Bxx2 + Cx + O

(
x

x1

)
,

with explicit constants B 6= 0 and C. Observe that this means that the term
C2xx2 is missing in (1).

Later Ivić [4] investigated asymptotic formulas for sums of the type∑
n≤x

f(n)g(n), where f (resp. g) belong to certain classes of multiplicative

(resp. additive) functions. He did so by considering the generating function

(2)
∞∑

n=1

f(n)zg(n)

ns
,

and then applying the method of A. Selberg in order to compute the asymp-
totic expansion of

∑
n≤x

f(n)zg(n). He could carry over this argument when

∞∑
n=1

f(n)zg(n)

ns
was a product of ζ(s)w and A(s, w), where A(s, w) is a function

which is regular in |s− 1| < ε. In fact, Ivić proved the following two results.

Theorem A. Let k ≥ 2 be fixed and N > k be an arbitrary but fixed
integer. Then there exist computable constants ak,j , bk,j , ck,j (ak,1 6= 0) such
that

∑

n≤x

dk(n)ω(n) = x

k∑

j=1

(ak,jx2 + bk,j)x
k−j
1 + x

N∑

j=k+1

ck,jx
k−j
1 + O

(
xxk−N−1

1

)
.

Theorem B. Let m,N ≥ 1 and k ≥ 2 be fixed integers. Then there
exist polynomials Pk,m,j(t) (j = 1, . . . , N) of degree m in t with computable
coefficients such that

∑

n≤x

dk(n)ωm(n) = x

N∑

j=1

Pk,m,j(x2)x
k−j
1 + O

(
xxk−N−1

1 xm
2

)
.

We shall provide here short interval versions of similar theorems. In
particular, we shall prove the following results.
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Theorem 1. Let x7/12+ε ≤ h(x) ≤ x. Then, for each fixed integer k and
suitable constants B0, B1, E1, E2, . . . , Ek,

1
h(x)

∑

x≤n≤x+h(x)

τ(n)ω(n) =

= B0(x1x2 − x1) + B1(x2 + 1) +
k∑

ν=1

Eνx1−ν
1 + O

(
x−k

1 x2

)
.

In [2] De Koninck and Ivić proved that if f(n) =
∑
p|n

pρL(p) for some ρ > 0,

where L(x) is a slowly oscillating function, and if x7/12 log22 x ≤ h(x) ≤ x, then

∑

x≤n≤x+h(x)

f(n) = (ζ(1 + ρ) + o(1))
h(x)xρL(x)

log x
,

from which it follows, in particular, that

1
h(x)

∑

x≤n≤x+h(x)

β(n)
n

= (ζ(1 + ρ) + o(1))
1

log x
.

Here we show the following stronger result.

Theorem 2. Let x7/12+ε ≤ h(x) ≤ x. Then, for each fixed integer k and
suitable constants D1, D2, . . . , Dk,

1
h(x)

∑

x≤n≤x+h(x)

β(n)
n

=
D1

x1
+

D2

x2
1

+ . . . +
Dk

xk
1

+ O

(
1

xk+1
1

)
.

2. The Hooley-Huxley contour and Ramachandra’s theorem

In 1976 K. Ramachandra [8] obtained short interval mean value theorems
for those arithmetical functions such that the corresponding Dirichlet series
may be written as finite products of powers of L-functions multiplied by the
product of finitely many log L(s, χ) functions and a certain function regular in

<(s) >
1
2
.



134 J.-M. DeKoninck and I. Kátai

For our results, the main idea of the proof is to choose an appropriate
line of integration in the Perron formula, namely the so-called Hooley-Huxley
contour. To do so, first let S1, S2 and S3 be the set of L-series, the set of
their derivatives and the set of their logarithms, respectively. Observe that
log L(s, χ) is defined by analytic continuation from the halfplane σ = <(s) > 1;
for each complex number z, we define

L(x, χ)z = exp{z log L(s, χ)}.

Let P1(s) be any finite power product, with complex exponents, of functions of
S1, and let P2(s) (resp. P3(s)) be any finite power product, with non-negative
integer exponents, of functions of S2 (resp. S3). Moreover, let cn be a sequence
of complex numbers such that |cn| ¿ nε for every ε > 0 and

∞∑
n=1

|cn|
nσ

< +∞ for σ >
1
2
.

Let also F0(s) =
∞∑

n=1

cn

ns
and define the sequence g1, g2, . . . implicitly by

F1(s) := P1(s)P2(s)P3(s)F0(s) =
∞∑

n=1

gn

ns

and set
E(x) =

∑

n≤x

gn.

Given a positive number r ≤ 1
2
, we define the contour Cr by first considering the

circle {s : |s−1| = r}, removing the point 1−r, and proceeding on the remaining
portion of the circle in the anticlockwise direction. Set C0 = C(r). Assume
that r is small enough so that F1(s) has no singularities on the boundary and
in the interior of C0, except possibly at the point s = 1.

Let C1 = C

(
1

log x

)
, and let L−, L+ be defined as the intervals on straight

lines

L− =
[(

1− 1
r

)
e−iπ,

(
1− 1

log x

)
e−iπ

]
,

L+ =
[(

1− 1
log x

)
eiπ,

(
1− 1

r

)
eiπ

]
.
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Let C∗ be the contour going along L− starting from
(

1− 1
r

)
e−iπ, then

on C1, and finally on L+.
Let B be the constant appearing in the well known density result

Nχ(α, T ) : = #{ρ = β + iγ : L(ρ, χ) = 0, with β ≥ α ≥ 0 and |γ| ≤ T} =

= O
(
TB(1−α) log2 T

)
,

which is valid for all characters χ occuring in P1, P2 and P3. Letting ϕ =

= 1 − 1
B
− ε, with an arbitrary ε > 0, Ramachandra [8] proved the following

result.

Theorem (Ramachandra). Let x be a large number and 1 ≤ h(x) ≤ x.
Set

I(x, h(x)) =
1

2πi

h(x)∫

0




∫

C0

F1(s)(v + x)s−1ds


 dv.

Then

E(x + h(x))− E(x) = I(x, h(x)) + Oε

(
h(x) · exp{−(log x)1/6 · xϕ}

)
.

Remark. According to Huxley’s result [3], the number ϕ may be replaced
by any constant greater than 7/12.

Ramachandra used the Hooley-Huxley contour in order to prove his very
general theorem. Later on, Kátai [5] applied Ramachandra’s theorem to obtain
that ∑

x≤n≤x+h(x)
ω(n)=k

1 = (1 + o(1))
h(x) · xk−1

2

(k − 1)!x1

holds uniformly for k ≤ x2 + cx
√

x2, where cx tends to +∞ sufficiently slowly,
and h(x) ≥ xϕ+ε.

3. The proof of Theorem 1

Since
∞∑

m=1

zω(m)

ms
= ζ(s)zG(s, z) and

∞∑
m=1

zΩ(m)

ms
= ζ(s)zF (s, z),
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where the functions G(s, z) and F (s, z) are regular in σ >
1
2
, it follows that the

above Dirichlet series belong to the classes of functions satisfying Ramachan-
dra’s theorem. Kátai and Subbarao [6] used this to obtain asymptotic estimates
of the expressions

(3)
∑

x≤n≤x+h(x)

zω(n),
∑

x≤n≤x+h(x)

zω(n)|µ(n)|,
∑

x≤n≤x+h(x)

1/tk(n),

where h(x) = x7/12+ε. More generally, they proved that, assuming that F (s)
satisfies the conditions of Ramachandra’s theorem, that r > 0 and ε > 0 are
small numbers, that x

7
12+ε ≤ h(x) ≤ x

2
3− 2r

3 , and that E(x) =
∑

n≤x

f(n) where

f(n) = zω(n) or zω(n)|µ(n)| or 1/τk(n), then

E(x + h(x))− E(x)
h(x)

=
1

2πi

∫

C∗

F (s)xs−1ds + O
(
exp

{
−x

1/6
1

})
,

where C∗ = {s : |s− 1| = 1/x1, s 6= 1− 1/x1}.
Remark. Observe that the reason for the upper bound x

2
3− 2r

3 on h(x) is
only due to a technical condition used in the proof; indeed one can show that
the result is in fact valid for x

7
12+ε ≤ h(x) ≤ x.

Returning to the proof of Theorem 1, we let

F (s) =
∞∑

n=1

τ(n)ω(n)
ns

.

One easily verifies that

F (s) =
∑

p

∞∑
α=1

τ(pα)
pαs

∞∑
m=1

(m,p)=1

τ(m)
ms

= ζ2(s)
∑

p

(
1− 1

ps

)2 ∞∑
α=1

α + 1
pαs

=

= ζ2(s)
∑

p

(
1− 1

ps

)2 {
1

(1− 1/ps)2
− 1

}
= ζ2(s)

∑
p

{
2
ps
− 1

p2s

}
.

Since
∑

p

1
ps

= log ζ(s)−
∞∑

r=2

1
r

∑
p

1
prs

, it follows that

2
∑

p

1
ps
−

∑
p

1
p2s

= 2 log ζ(s)− 2
∑

p

1
p2s

−
∞∑

r=3

2
r

∑
p

1
prs

= 2 log ζ(s)− U(s),
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say, where U(s) is regular for <(s) >
1
2
, so that we may write

F (s) = F1(s)− F2(s), with F1(s) = ζ2(s) · 2 log ζ(s) and F2(s) = ζ2(s)U(s).

Now define α1(n) and α2(n) implicitly by the representations

F1(s) =
∞∑

n=1

α1(n)
ns

and F2(s) =
∞∑

n=1

α2(n)
ns

.

Clearly both F1(s) and F2(s) belong to Ramachandra’s class of functions. It
follows that

1
h(x)

∑

x≤n≤x+h(x)

α1(n) =
1

2πi

∫

C∗

F1(s)xs−1ds + O
(
exp

{
−x

1/6
1

})
.

Now we can write

F1(s) = (s− 1)2ζ2(s) · 1
(s− 1)2

· 2
{

log((s− 1)ζ(s− 1)) + log
1

s− 1

}
=

=
2 log 1

s−1

(s− 1)2
(
(s− 1)2ζ(s− 1)

)
+

2
(s− 1)2

(
(s− 1)2ζ(s)

)
log((s− 1)ζ(s)).

But since (s−1)ζ(s) → 1 as s → 1, it follows that (s−1)ζ(s) and log((s−1)ζ(s))
are regular in the neighbourhood of 1.

Now define the constants B0, B1, . . . , Bk, C0, C1, . . . , Ck and the functions
Uk(s) and Vk(s) implicitly by the relations

2(ζ(s)(s− 1))2 = B0 + B1(s− 1) + . . . + Bk(s− 1)k + Uk(s)(s− 1)k+1,

2(ζ(s)(s− 1))2 log(ζ(s)(s− 1)) =

= C0 + C1(s− 1) + . . . + Ck(s− 1)k + Vk(s)(s− 1)k+1,

so that Uk(s) and Vk(s) are regular and bounded for |s− 1| ≤ 1/x1. Thus

1
2πi

∫

C∗

F1(s)xs−1ds =
k∑

ν=0

Bν · Iν + L1 +
k∑

ν=0

CνJν + L2,
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where

Iν =
1

2πi

∫

C∗

xs−1

(s− 1)2−ν
log

1
s− 1

ds (0 ≤ ν ≤ k),

Jν =
1

2πi

∫

C∗

xs−1

(s− 1)2−ν
ds (0 ≤ ν ≤ k),

L1 =
1

2πi

∫

C∗

xs−1

(s− 1)2−(k+1)
Uk(s) log(s− 1)ds,

L2 =
1

2πi

∫

C∗

xs−1

(s− 1)2−(k+1)
Vk(s) log(s− 1)ds.

Since s = 1 +
eiθ

x1
, ds =

1
x1

ieiθ, log(s − 1) = log(1/x1) + iθ and log
1

s− 1
=

= x2 − iθ, it follows that, taking into account that xeiθ·x−1
1 = eeiθ

, we have

Iν =
x2−ν

1

2πx1

π∫

−π

eeiθ

e(ν−2)iθ(x2 − iθ)eiθdθ =

=
x1−ν

1 · x2

2π

π∫

−π

eeiθ · ei(ν−1)θdθ − ix1−ν
1

2π

π∫

−π

eeiθ · ei(ν−1)θθdθ.

Define η0 = 0 and observe that, for h 6= 0, we have

ηh : =
1
2π

π∫

−π

eihθθdθ =
1
2π

π∫

−π

(
eihθ

ih

)′
θdθ =

=
1
2π

[
eihθ

ih
θ

]π

−π

− 1
2πih

π∫

−π

eihθdθ =

=
1

2πih

[
πeihθ + πe−ihθ

]
=

=
(−1)h

ih
.

Therefore, using the representation eeiθ

=
∞∑

t=0

1
t!

eitθ, it follows from this that

(4)
1
2π

π∫

−π

eeiθ

ei(ν−1)θdθ =

{ 0 if ν ≥ 2,

1 if ν = 0, 1,
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and that

1
2π

π∫

−π

eeiθ

ei(ν−1)θθdθ =
∞∑

t=0

1
t!

1
2π

π∫

−π

ei(t+ν−1)θθdθ =
1
i

∞∑
t=0

t 6=1−ν

1
t!

(−1)t+ν−1

t + ν − 1
.

Gathering these estimates, we obtain that

I0 = x1x2 − x1, I1 = x2 + 1, Iν = −x1−ν
1 Dν for ν ≥ 2,

where each Dν is a computable constant.
On the other hand, it follows from (4) that

Iν =
x1−ν

1

2π

π∫

−π

eeiθ

ei(ν−1)dθ =

{
x1 if ν = 0,
1 if ν = 1,
0 if ν ≥ 2.

Moreover, we have

|L1| ≤ x−k
1

π∫

−π

∣∣∣∣Uk

(
1 +

1
x1

eiθ

)∣∣∣∣ · (x2 + |θ|)dθ ¿ x2 · x−k
1

and one can also easily establish that

|L2| ¿ x−k
1 .

Combining these estimates, the proof of Theorem 1 is thus complete.

Remark 1. From the Ramachandra’s theorem, it follows that under the
assumption

N(σ, T ) ¿ T (2+ε)(1−σ),

which is somewhat weaker than the Riemann hypothesis, Theorem 1 holds for
the shorter interval x

1
2+ε ≤ h(x) ≤ x.

Remark 2. It is clear from the proof of Theorem 1 that similar estimates
can be obtained for the following sums:

∑

x≤n≤x+h(x)

τk(n)ω(n),
∑

x≤n≤x+h(x)

τk(n)Ω(n),
∑

x≤n≤x+h(x)

r(n)ω(n),

where r(n) = #{(u, v) : n = u2 + v2}.
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4. The proof of Theorem 2

We begin by writing

F (s) : =
∞∑

n=1

β(n)
n

=

[∑
p

{ ∞∑
α=1

p

pαs

}(
1− 1

ps

)]
ζ(s) =

= ζ(s)

{∑
p

1
ps−1

}
= {log ζ(s− 1) + u(s)}ζ(s),

say, with u(s) bounded and regular for <(s) > 2. Thus

F (s) =
(

log
1

s− 2

)
ζ(s) + ζ(s)[log((s− 1)ζ(s− 1)) + u(s)] =

=
(

log
1

s− 2

)
ζ(s) + ζ(s)v(s),

say, with v(s) regular for <(s) > 2. It follows that

F (s + 1) =
∞∑

n=1

β(n)/n

ns
= ζ(s + 1) log

1
s− 1

+ ζ(s + 1)v(s + 1).

Now observe that
1

h(x)

∑

x≤n≤x+h(x)

β(n)
n

=

=
1
x
· 1
h(x)

∑

x≤n≤x+h(x)

β(n)− 1
h(x)

∑

x≤n≤x+h(x)

β(n)
(

1
n
− 1

x

)
=

=
1
x
· 1
h(x)

∑

x≤n≤x+h(x)

β(n) + O


 1

x

∑

x≤n≤x+h(n)

β(n)
n


 .

Hence, proceeding as in the proof of Theorem 1, we get that

1
h(x)

∑

x≤n≤x+h(x)

β(n)
n

=
1

2πi

∫

C∗

F (s + 1)xs−1ds + O
(
exp

{
−x

1/6
1

)
=

=
1

2πi

∫

C∗

xs−1ζ(s + 1) log
1

s− 1
ds =

=
∞∑

ν=0

aνTν ,
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where the aν ’s are defined implicitly by

ζ(s + 1) = ζ(2) + ζ ′(2)(s− 1) + . . . = a0 + a1(s− 1) + . . .

and where the Tν ’s can be written as

Tν =
1

2πi

∫

C∗

(s− 1)νxs−1 log
1

s− 1
ds =

=
1
2π

1
xν+1

1

π∫

−π

ei(ν+1)θeeiθ

(x2 − iθ)dθ.

Collecting the above estimates completes the proof of Theorem 2.
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