Annales Univ. Sci. Budapest., Sect. Comp. 25 (2005) 103-111

ON THE ERGODICITY CONDITION
OF A GI1/D/1 RETRIAL QUEUEING SYSTEM
WITH CONSTANT RETRIAL TIMES
AND A DYNAMIC SERVICE PRIORITY

K.V. Mykhalevich (Kiev/London, Ukraine)

The retrial queueing systems theory is one of the modern branches of
queueing theory. Over the last two decades this theory has been developing
greatly, see for instance [1-3]. In many practical situations retrial models can
describe real-life processes more adequately than classical ones. The areas of
application for retrial queueing systems are computer networks, telecommuni-
cation systems, landing processes in aviation, etc. At the same time, in some
situations the retrial queueing model with some peculiarity would be more
precise. Consider as example an aircraft landing process. In case of the airport
runway (of the server, using the queueing systems terminology), being busy
the arriving aircraft goes to the holding area (to the orbit, using the retrial
queueing systems terminology), from where it can come back after some time.
In principle, repeated returning from the orbit is possible, but the limited
amount of aircraft fuel and some other factors make the airport flying control
officer to control the landing process using the strategy of dynamic priorities,
e.g. the strategy can be such that the incoming aircraft is admitted to land
only if the runway is idle and no delayed aircrafts may return from holding
area within some time interval. Therefore demands in the orbit have a higher
priority comparing with the incoming demand, and for each delayed demand
a time interval for it to be serviced is exactly determined at its arrival epoch.
Let us call retrial queueing system with such a peculiarity a retrial queueing
system with dynamic service priority.

In [5] a sufficient ergodicity condition was found for an M/D/1 queueing
system with constant retrial times and a dynamic service priority. It was proved
that if T > 7 then A7 < 1/2 is a sufficient condition for steady-state regime
existence () is an input flow rate). In the given paper it is proved that this
result cannot be improved for the general case of a GI/D/1 queue. Also in
[6] a more general case was considered, namely for the multi-channel GI/D/m
queueing system was proved that 7/a < m/2 is sufficient ergodicity condition.
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It should be mentioned that the retrial queueing systems with generally
distributed orbit time, in particular constant orbit time, are comparatively
little-investigated. At the same time, because of information and telecommu-
nication technologies development, there is a lot of real-life systems which can
be modeled with the help of retrial queueing systems with a constant orbit time
4, 8].

Consider a single-channel retrial queueing systern with a constant orbit
time, general independent interarrival time distribution, and a constant service
time. Denote the interarrival time distribution function as A(x), the constant
service time as 7, and the orbit time as T'. Suppose that demands in the orbit
have a higher priority in comparison with a demand being arrived, i.e. the
demand from the primary flow cannot change the service commencement times
for the demands in the orbit.

Therefore the system being considered is a GI/D/1 retrial queueing system
with a constant orbit time and a dynamic service priority. Service time interval
will be set for each arriving demand; denoting the arrival epoch of the k-th
demand as t; this time interval is (tx + Tng, tx + T'ng + 7), where ng is a
minimal positive integer for which this time interval does not intersect service
intervals of preceding demands. Denote the system load due to primary input
flow as p; p = 7/(mean interarrival time).

Theorem. For any € > 0 a condition

<s+e
p g T€

is not sufficient ergodicity condition for GI/D/1 retrial queueing system with
dynamic service priority.
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Fig.1. Interarrival time distribution function
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Proof. Let the interarrival time d.f. be

( T, 0< <4,
3, <z <2-4,
Az) =
1-9 36-2
—r+——Z2 2-6<
3 T+ e 2-40<r<2,
\1’ x22’

where 0 < § < 1. Le. the interarrival time between k-th and k + 1-st demands
is either less than § or greater than 2 — § and less than 2.

The interarrival time p.d.f. be

(1, 0<z <4,
0, §<zr<2-4,
a(z) = <
1—"—5, 2-§<z<2,
)
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Fig.2. Interarrival time probability density function

The mean interarrival time
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Let the service time be 7 = 1 + § and the constant orbit time T" be equal to 2.
Then
T 1+46

PR D)

1
ie. P35 Denote server idle periods between the servicing of k-th and
—
k + 1-st demands as .
Lemma.
1-20<& <1

Proof. Denote the arrival epoch of the k-th demand as tj; its service
commencement epoch as sx. Then

(1) sk = tr + Tny,

since the queueing system is the system with constant retrial times. Here ny
is the number of retrials for the k-th demand.

Next we apply the method of mathematical induction. Firstly, we check
the correctness of the statement for ¥ = 1. Suppose that t; = s; = 0 without
loss of generality. Denote the interarrival intervals tx4+1 — tx, k > 1 as v,. We
have two cases:

a)0<y <4
From the Fig. 3 it follows that

61‘—‘32—1—(5:‘,‘14'1—(5.

Hence 1 -6 < & < 1.

t=1+6

5O N Sa busy periods

»-—-f-ﬁ
\

H=0 n arrival epochs

Fig. 3. First and second demands: arrival epochs and busy periods, case 1
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b) 2-0<m <2
From Fig. 4 it follows that

Li=s0—-1-0=m—-1-4.

Hence 1 -2 <& <1-6.

52 busy periods

S =0

L =0 t arrival epochs

Fig. 4. First and second demands: arrival epochs and busy periods, case 2

Therefore,
1-26<4 < 1.

Suppose that the statement of lemma is true for &, &,, ..., &x—1. Therefore
demands have been serviced in turn. We prove the statement for &.

a)0< 1 <8
- — J:\% ps JHﬂ——/Es,,E ?sm busy periods
byoT vy T b T P !
RO L L Ra '

N AL J .
T lir M Yo Y NG arrival epochs
Ir=2 T T T

Fig.5. k-th and k + 1-th demands: arrival epochs and busy periods, case 1
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=2+ —-1-6=v+1-4,
see Fig. 5. Hence 1 —§ < & < 1.
b)2-0 <y <2

& =7 —1-4,
see Fig. 6.
: b i D ;
1 1 ] ' 1 1 1 )
: . P b -t
' ] [ '
' o [ ! a
1 1 ' ' 1 1l
) [ L 1
:\ ~— :J:\ N : J:\ ~ f}:sk ES,M busy periods
N Yk D HEH LS :
. ,k} N — \7{ — }( 4 arrival epochs

Fig.6. k-th and k + 1-th demands: arrival epochs and busy periods, case 2

Hence 1 -2§ < & <1 -4.

Therefore
1-26 <& <1,

Corollary. Demands in the system being considered are scheduled for
service in the order of arrival.

From the corollary and equation (1) we have
ng+1, 0<% <4,
Nk+1 = {
Nk, 2-0< v <2
Denote the indicator of the event {vyx < 4} as I,
1, Y < (5,
Iy =
0, otherwise.

Therefore
sk=tr+2(L + ...+ Ir_1).
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k=1

Here 3 I; has a binomial distribution with parameters k — 1 and é. From the
i=1

strong law of large numbers it follows that

L+...+1, _
P{TJJ““} =1

Hence s; — t; k—-) 00. Therefore the demands will be accumulated in the
—00

system. At the same time

1446 1
p=— —§+o(l), 6—0.

1
Therefore for p = 3 + €, € > 0 the queueing system will not be stable.

Simulation results

Remaining, - 'Remaining, |Ave. remain. / N,
. -realization 3 average % .
Ry —

Remaining, Remaining,
realization'1 realization 2. -

e

205.00

1000 201
3000 609 636 629.00
5000 1062 1015 1022.67 20.45

Table 1. Simulation results

The system being considered has been modeled with the help of direct
Monte-Carlo simulation method. Denote the number of demands having
arrived in the system as N. We are interested in the number of demands which
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remain in the system at the arriving epoch of N-th demand. The simulation
results are listed in the table above.

From the Table 1 it follows that the number of remaining demands in the
system increases approximately linearly with time.
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