
Annales Univ. Sci. Budapest., Sect. Comp. 25 (2005) 67-74

RESTRICTED INSERTION–DELETION SYSTEMS

I. Katsányi (Budapest, Hungary)

Abstract. In the past few years several paper showed that various genera-

tive mechanisms in formal language theory that used context-dependent in-

sertions and deletions are capable of generating any recursively enumerable

language [1-9]. Since such systems are also models of molecular computing,

for practical reasons it is important to examine these systems in a restricted

case, when the number of symbols in the model of the alphabet is limited. In

[4] it is showed that we can define the generated language of an insertion-

deletion system in such a way, that a two-letter alphabet is enough to

generate any recursively enumerable language. In this paper we complete

this result by showing that the same generative capacity can be obtained

even if we define the generated language the traditional way.

1. Introduction

The insertion grammars (or semi-contextual grammars) were introduced in
[10] as the model of construction of natural languages. It is an important model
of formal languages on its own right, but it gained even more importance by
emerging of the field of DNA computing, since using a standard laboratory
technique called PCR site-specific oligonucleotide mutagenesis insertions or
deletions of nucleotide sequences into or from the strands of DNA molecules are
possible. Hence, by inspecting the practical applicability of the formal models
we may gain functioning molecular computers. However, it is important to
keep the constructions as simple as possible.

68 I. Katsányi

2. Preliminaries

When not stated otherwise, we will use the standard notations used in the
theory of formal languages (see for example [11, 12]). As usual, we denote the
free monoid generated by a finite set X by X∗. We call X as alphabet, elements
of X as letters or symbols, and elements of X∗ as words. The length of a word
u is denoted by |u|. The notation of the empty word is λ. We will use the
following lemma (Penttonen normal form, [13]):

Lemma 1. For each G=(N,T,S,P) grammar there exists a grammar G′ =
= (N ′, T ′, S′, P ′) for which L(G) = L(G′), and the contextfree rules of P ′ have
the form X → x, where X ∈ N ′, x ∈ (N ′∪T)∗, |x| ≤ 2, and the non-contextfree
rules of P ′ have the form XY → XZ, where X, Y, Z ∈ N ′.

An insertion-deletion system is a construction

γ = (V, T,A, I,D),

where V is a finite alphabet, T ⊆ V is the terminal alphabet, A ⊆ V ∗

is the finite set of axioms and I, D,⊆ V ∗ × V ∗ × V ∗ are the finite sets of
insertion and deletion rules, respectively.

For two words x, y ∈ V ∗ the relation x =⇒γ y holds exactly when one of
the following two cases occurs:

x = x1uvx2, y = x1uzvx2, x1, x2 ∈ V ∗ and (u, z, v) ∈ I,•
x = x1uzvx2, y = x1uvx2, x1, x2 ∈ V ∗ and (u, z, v) ∈ D.•

Let =⇒∗
γ be the reflexive, transitive closure of =⇒γ . The language

generated by γ is
L(γ) = {w ∈ T ∗|x =⇒∗

γ w, x ∈ A}.
In papers [1,2,4,6,7,9] it is shown that every recursively enumerable language
can be generated by an insertion-deletion system.

In addition to the former construction, in [4] the restricted insertion-
deletion systems are defined

γ = ({a, c}, T, h, A, I,D),

where a and c are two specified symbols, T is the (finite) terminal alphabet,
h : T ∗ → V + is a λ-free morphism, A ⊆ {a, c}∗ is the finite set of axioms and
I, D ⊆ {a, c}∗ × c∗ × {a, c}∗ are the finite sets of insertion and deletion rules,

Restricted insertion-deletion systems 69

respectively. The differences between the regular insertion-deletion systems are
the following:

• the alphabet V consists of two symbols only,
• the terminal alphabet T is independent of the alphabet of the systems, the

inverse of morphism h is used to map the words of the system to words of
the terminal alphabet.

• The insertion and deletion rules are of the form (u, ci, v), where u, v ∈
∈ {a, c}∗, i ≥ 0.

The relation =⇒γ is defined on the usual way. The language generated by γ is

L(γ) = h−1({w ∈ {a, c}∗|z(aca)n =⇒∗
γ (aca)mw for some n, m ≥ 0, z ∈ A}).

This language definition may look a little bit strange, but it has some biological
motivations. Large part of the human genome consists of short repeated
sequences having no known function. A possible hypothesis can be that this
junk DNA builds a workspace for computation. That is why we do not mind
contexts of (aca)∗ in this model.

In [4] it was shown that this construction is also very powerful: systems
of this kind can generate any recursively enumerable language.

3. Restricted insertion-deletion systems

In this section we define a new kind of insertion-deletion system that
has additional constraints comparing to the regular model described earlier.
Although it differs from the existing restricted insertion-deletion system, since
from now on we deal only with our constructions, it will not cause ambiguity.
After the definitions it is showed, that in spite of the restrictions, this model is
capable of universal computation, too.

A restricted insertion-deletion system is a construction

γ = (V, T, h, A, I, D),

where V is an alphabet consisting of two letters, T is a finite alphabet called
the terminal alphabet, h : T ∗ → V + is a λ-free morphism, A is a finite subset
of V ∗, the set of axioms, I and D are finite subsets of V ∗ × V ∗ × V ∗, the
insertion and deletion rules, respectively.

70 I. Katsányi

The role of V,A, I and D coincides with the regular model. The relation
=⇒γ is also defined on the usual way. When there is no chance of ambiguity,
we use =⇒ instead of =⇒γ . The morphism h is needed to define languages
over an arbitrary finite alphabet. The language generated by γ is

L(γ) = h−1({w ∈ V ∗|z =⇒∗ w, where z ∈ A}).

The main result of this paper is the following

Theorem 1. The family of languages generated by restricted insertion-
deletion systems equals the family of recursively enumerable languages.

Proof. Being a consequence of the Church thesis, we do not prove that
the family of languages generated by restricted insertion-deletion system is
contained in the family of recursively enumerable languages. For the other
inclusion, let T be an arbitrary alphabet and let L ⊆ T ∗ be an arbitrary
recursively enumerable language. Let us suppose that L is generated by the
grammar G = (N, T, S, P). By Lemma 1, we may assume that G is in the
normal form of Penttonen. Moreover, let us substitute all rules of the form
X → α ∈ P (α ∈ N ∪ T) by rules X → αZ, Z → λ, where Z is a symbol
that appeared nowhere earlier. Hence the rules of P have one of the following
forms:

1. X → Y Z, where X ∈ N and Y, Z ∈ N ∪ T ,
2. X → λ, where X ∈ N ,
3. XY → XZ, where X,Y, Z ∈ N .

Let us denote the elements of the set N ∪T by the symbols α1, α2, . . . , αn,
where S = α1. Similarly, let us enumerate the rules of G. Let P =
= {r1, r2, . . . , rs}. The symbols of G will be coded by the morphism g:

g : (N ∪ T)∗ → {a, c}∗, g(αi) = acia (1 ≤ i ≤ n).

Let h(αi) = g(αi) (αi ∈ T). The following restricted insertion-deletion system
will generate L:

γ = ({a, c}, Th, {aca}, I, D),

where the elements of I and D are listed below (i, j, k ∈ [1, n], q ∈ [1, s]):

1. For each rule rq : αi → αjαk

a. (aci, cq+n−iaack, a) ∈ I, and

b. (acj , cq+n−j , a) ∈ D.

2. For each rule rq : αi → λ

a. (λ, acia, λ) ∈ D.

Restricted insertion-deletion systems 71

3. For each rule rq : αiαj → αiαk

a. (aciaacj , cq+n−j , a) ∈ I, and

b. (ack, cq+n−k, a) ∈ D.

The idea of the construction is that we may simulate every derivation step
of G by either a single deletion rule or by an insertion rule followed by a deletion
rule. In that latter case we get somewhere the subword acn+qa, where q ∈ [1, s]
uniquely determines the used rule. Since there is no word over T that h maps
to a hence obtained word, this subword must be eliminated somehow in order
to reach a word that has effect of the generated language. The insertion and
deletion rules are constructed in a way that this subword can only be changed
by the deletion rule connected to the qth rule. After the usage of this deletion
rule the simulation of the derivation step of G is completed. It is possible that
the deletion rule does not follow immediately its pair, but since no other rule
has effect of the above-mentioned subword, each derivation in γ that ends in a
word in the domain of h, must use the rule on this subword, and the result of
the derivation does not change if we perform the application of this rule earlier,
immediately after usage of its insertion pair.

To prove that L(G) = L(γ), let us consider the following lemmas.

Lemma 2. For each u ∈ (N ∪ T)∗, S =⇒∗
G u implies aca =⇒∗

γ g(u).

This lemma has the consequence that L(G) ⊆ L(γ), because L(G) consists
of words u ∈ T ∗, for which S =⇒∗

G u, and for such u the morphisms h and
g are equal. The lemma itself may be proved by induction on the number
of derivation steps of u. Since g(S) = g(α1) = aca, the assertion is true for
derivations of length zero. Now let us suppose that it is true for derivations
not longer than m ≥ 0. Let us consider a derivation of length m + 1:

S =⇒m
G u1u2u3 =⇒G u1u

′
2u3,

where the last used rule is u2 → u′2. By our induction hypothesis

aca =⇒∗
γ g(u1u2u3) = g(u1)g(u2)g(u3).

We have three cases:
1. If the last used rule was of the form αi → αjαk, then u2 = αi, u

′
2 = αjαk,

g(u2) = acia. Using (aci, cq+n−iaack, a) ∈ I and (acj , cq+n−j , a) ∈ D we
get

g(u1)aciag(u3) =⇒γ g(u1)acq+naackag(u3) =⇒γ

=⇒γ g(u1)acjaackag(u3) = g(u1u
′
2u3).

72 I. Katsányi

2. If the last used rule was of the form αi → λ, then u2 = αi, u′2 = λ, g(u2) =
= acia. Using the rule (λ, acia, λ) ∈ D we get

g(u1)aciag(u3) =⇒γ g(u1)g(u3) = g(u1u
′
2u3).

3. If the last used rule was of the form αiαj → αiαk, then u2 = αiαj , u′2 =
= αiαk, g(u2) = aciaacja. Using rules (aciaacj , cq+n−j , a) ∈ I and
(ack, cq+n−k, a) ∈ D we get

g(u1)aciaacjag(u3) =⇒γ g(u1)aciaacq+nag(u3) =⇒γ

=⇒γ g(u1)aciaackag(u3) = g(u1u
′
2u3).

By that aca =⇒∗
γ g(u1u

′
2u3), and the proof of the Lemma 2 is finished.

The following lemma is a formalization of the idea given after the definition
of γ.

Lemma 3. For each derivation sequence in γ that ends in a word in the
domain of the morphism g, there exists also a derivation in γ that ends in the
same word, such that the usage of an insertion rule belonging to a rule of G is
immediately followed by a deletion rule belonging to the same rule.

Let us consider an arbitrary derivation sequence aca =⇒γ . . . =⇒γ v such
that there exists u = g−1(v). Suppose that by the usage of an insertion rule
belonging to a rule rq ∈ P (q ∈ [1, s]) the subword acn+qa appears in the derived
word. It cannot be a subword of v, because there is no word that g maps to
a word that has a subword like this. Hence, this subword must be altered
somehow. By checking the rules of γ it is clear, that no rules depend on a
context containing this subword, and no deletion rule may alter this subword
with the exception of the deletion rule belonging to rq. Hence we must use this
rule on this subword, and the result of the derivation will not change, if we do
this immediately after the usage of the rule that introduced this subword.

The following lemma has the immediate consequence that L(G) ⊇ L(γ).

Lemma 4. If aca =⇒∗
γ v such that there exists u = g−1(v), then S =⇒∗

G

=⇒∗
G u.

Since by Lemma 3 there is a derivation sequence aca =⇒γ . . . =⇒g v,
where the usage of an insertion rule belonging to a rule of G is immediately
followed by a deletion rule belonging to the same rule, we can prove this lemma
by mathematical induction very similar to the one used in Lemma 2. The details
are omitted here.

Restricted insertion-deletion systems 73

4. Conclusions

In this paper we showed that the insertion-deletion systems remain pow-
erful enough to generate any recursively enumerable language even if we allow
an alphabet of two letters only, provided that we use an inverse morphism to
map the words of this alphabet to the alphabet of the given language. We do
not use extra workspace as an earlier approach did. Since it is assumed, that
context-dependent insertions and deletions can be performed on DNA strands,
we get a new proof that DNA computation is universal.

References

[1] Martin-Vide C., Păun G. and Salomaa A., Characterizations of
recursively enumerable languages by means of insertion grammars, Theo-
retical Computer Science, 205 (1998), 195-205.

[2] Kari L. and Thierrin G., Contextual insertions/deletions and com-
putability, Information and Computation, 131 (1) (1996), 47-61.

[3] Daley M., Kari L., Gloor G. and Siromoney R., Circular contex-
tual insertions/deletions with applications to biomolecular computation,
SPIRE/CRIWG, 1999, 47-54.

[4] Kari L., Păun G., Thierrin G. and Sheng Yu. At the crossroads of
DNA computing and formal languages: Characterizing recursively enumer-
able languages using insertion-deletion systems, Proc. of the 3rd DIMACS
Workshop on DNA Based Computers, University of Pennsylvania, June
23-25, 1997, 318-333.

[5] Kari L. On insertion and deletion in formal languages, PhD thesis,
University of Turku, 1991.

[6] Păun G., Rozenberg G. and Salomaa A., DNA computing. New
computing paradigms, Springer, 1998.

[7] A. Takahara and T. Yokomori, On the computational power of
insertion-deletion systems, Proc. of the 8th Int. Workshop on DNA-based
Computers, Sapporo, Japan, June 10-13, 2002, and LNCS 2568, 2003,
269-280.

[8] Margenstern M., Păun G., Rogozhin Y., On the power of (molecular)
crowd: Set-conditional string processing, Proc. of AFL’02, Budapest,
Hungary, August 13-18, 2002.

74 I. Katsányi

[9] Margenstern M., Păun G., Rogozhin Y. and Verlan S., Context-
free insertion-deletion systems, Proc. of DCFS 2003, The 5th Workshop
on Descriptional Complexity of Formal Systems, Budapest, Hungary, July
12-14, 2003, and Theoretical Computer Science, 330 (2) (2005), 339-348.

[10] Gal�kxov B.S., Polukontekstnye grammatiki, Mat. logika i
mat. lingvistika (Kalinin), 1981, 38-50. (Galiukshov B.S., Semi-
contextual grammars, Mat. logika i mat. ling., 1981, 38-50. (in Russian))

[11] Rozenberg G. and Salomaa A., Handbook of formal languages,
Springer, 1997.

[12] Salomaa A., Formal languages, Academic Press, New York, 1973.
[13] Penttonen M., One-sided and two-sided context in formal grammar,

Information and Control, 25 (4) (1974), 371-392.

(Received March 1, 2004)

I. Katsányi
Department of Algorithms and Applications
Eötvös Loránd University
Pázmány Péter s. 1/C
H-1117 Budapest, Hungary
kacsa@ludens.elte.hu

