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DEGENERATE CENTER
IN A PREDATOR–PREY SYSTEM WITH MEMORY

M. Farkas (Budapest, Hungary)
J. Dias Ferreira (Sao Paolo, Brasil)
P.C.C. Tabares (Armenia, Colombia)

Abstract. The purpose of this paper is to establish the occurrence of a

denegerate center in a predator-prey system with memory due to Farkas

et al [2], and described by a system of two differential equations with

continuous delay. This study is done showing that the Liapunov coefficients

of the system are null, by using a theorem due to Liapunov (see [1]). Finally,

we construct a computer program for the calculation of these coefficients of

similar problems.

1. Introduction

In this work we shall establish the occurrence of a degenerate center in
a predator-prey system introduced in [2]. The model is described by a two-
dimensional system

(1)

Ṅ(t) = εN(t)
(

1− N(t)
K

− P (t)α
ε

)
,

Ṗ (t) = −γP (t) + βP (t)

t∫

−∞
N(τ)G(t− τ)dτ,

where the parameters in (1) are all non-negative and represent
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• N(t): quantity of prey,
• P (t): quantity of predator,
• ε: specific growth rate of prey,
• α: predation rate,
• γ: mortality of predator,
• β: conversion rate of the prey,
• K: carrying capacity of the environment,
• G(s) = ae−as: density function.

The introduction of the notation

(2) Q(t) = a

t∫

−∞
N(τ)e−a(t−τ)dτ

transforms (1) into

(3)

Ṅ = εN

(
1− N

K
− Pα

ε

)
,

Ṗ = −γP + βPQ,

Q̇ = a(N −Q),

where the last equation was obtained differentiating (2); we shall study (3) with
t ∈ [0,∞) and N,P, Q ≥ 0. The change of variables N = Kn, P = Kp, Q =

= Kq and the introduction of the new time t =
s

ε
, transforms (3) into

(4)

dn

ds
= n(1− n)− npKα

ε
,

dp

ds
= −γp

ε
+

pqKβ

ε
,

dq

ds
=

a(n− q)
ε

.

Farkas et al (see [2]) proved the occurrence of an Andronov-Hopf bifurca-
tion in (3), restricting (4) to the two-dimensional center manifold to obtain

ẋ = ωy + W

{
−ε(1− γb)x2 − ε(1− γb)

[(
γb

ω

)2

− γb(1− γb)
ω2εb

]
y2+
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+xy
(
1− 2γb− 2εγb2

) 1− γb

ωb

}
+

+ Wh(x, y)

{[
−2ε

(
γb

ω

)2

− ε + 2εγb

(
γb

ω

)2

+ 2εγb

]
x+

+y

[
1− 2εb

(
γb

ω

)2

− εb + γb
1− γb

ω2

(1− γb)γ
ω

]}
,

ẏ = −ωx + W

{
−ωε2bx2 − ωε2b

[(
γb

ω

)2

− γb
1− γb

εbω2

]
y2+

(5)

+




(1− γb)
(

1 +
(

γb
ω

)2

+ εb

)

b
− 2ε2γb2


 xy





+

+ Wh(x, y)

{
−

[
2

(
γb

ω

)2

εb + εb + 1 +
(

γb

ω

)2
]

ωεx−

−ωε2b

[
2

(
γb

ω

)3

+
γb

ω
−

(
γb

ω

)2 1− γb

bωε
+

1− γb

b2ωε2
+

(
γb

ω

)2 1− γb

b2ωε2

]
y

}
,

where b =
1

Kβ
, ω =

(
(1−γb−γεb2)

ε

) 1
2

. With the introduction of the new

parameters

(6) u =
ε

γ
, v =

Kβ

γ
, w =

γ

a

the situation was considered in the three-dimensional parameter space u, v, w
and the following surface F of bifurcation was obtained

(7) w(v2 − v − u)− v = 0.

In [2] it was proved that when this surface is crossed, an Andronov-Hopf
bifurcation occurs. It is supercritical (resp. subcritical) if the crossing is below
or above the curve g, whose equation is

(8) 2v − 1−
(

8u2 + 9u + 2
u + 2

) 1
2

= 0.
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admits a formal first integral of the form

F (x, y) = x2 + y2 +
∞∑

k=3

Fk(x, y),

here Fk(x, y) =
k+1∑
j=1

Akjx
k+1−jyj−1 is a homogeneous polynomial of degree k,

k = 3, 4, 5, . . . , j = 1, 2, . . . , k + 1.
As a consequence of Proposition 1.1, the system (3) admits a local center

around the origin.

2. Simulations

From equation (8) v =
1
2

(
1 +

√
8u2 + 9u + 2

u + 2

)
; taking u = 1 we get

v =
1
2

(
1 +

√
57
3

)
. Replacing the values of u and v in (7) we obtained w =

=
1
2

(
3 +

√
57

)
. Substituting u, v, w in (6) we get

ε = γ, β =
γ

2K

(
1 +

√
57
3

)
, a =

2γ

3 +
√

57
.

The parameters given in (9) determine a point on g. Considering these
values in system (4) and the initial conditions

(n1, p1, q1) = (0.7, 0.7, 0.7); (n2, p2, q2) = (0.6, 0.6, 0.6);

(n3, p3, q3) = (0.5, 0.5, 0.5); (n4, p4, q4) = (0.4, 0.4, 0.4);

(n5, p5, q5) = (0.2, 0.2, 0.2),

we present the following simulations, generated by the software PHASER. This
suggests the existence of degenerate center.

In the simulation we consider t = 0..100 (Figure 1(a)) and t = 0..500
(Figure 1(b)). One can see that the center has a limit.
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Adding the homogeneous polynomials F3(x, y) and F4(x, y) to F2(x, y) =

= x2+y2 we obtain F2,3,4(x, y) = x2+y2+
4∑

j=1

A3jx
4−jyj−1+

5∑
j=1

A4jx
5−jyj−1,

with undetermined coefficients A3j , j = 1, . . . , 4 and A4j , j = 1, . . . , 5. To
determine these coefficients, we calculate the derivative of F2,3,4(x, y) with
respect to (10) and equal the coefficients from the terms of third and fourth
order and the coefficients of the polynomial G4(x2 + y2)2 = G4x

4 + 2G4x
2y2 +

+G4y
4 to obtain the following system of linear equations:

(12)

0.3217974364A33 + 0.2208470534 = 0

0.4852820716− 0.3217974364A32 = 0

−1.7288823− 0.6435948728A33 + 0.9653923092A31 = 0

−0.9653923092A34 + 2.627418255 + 0.6435948728A32 = 0

0.3312705801A34 + 0.3217974364A44 + 0.2426410356A33−
−1.436981681 = G4

−0.3217974364A42 − 0.1104235269A32 − 0.7279231074A31+

+1.061635979 = G4

0.7279231068A31 + 0.9653923092A42 + 1.899495148A33−
−1.397611720A32 − 0.9653923092A44 − 0.3312705807A34+

+1.126032843 = 2G4

1.287189746A41 − 2.262052870A31 + 0.5857860204A32−
−0.6435948728A43 − 0.2208470538A33 + 1.974003446 = 0

−1.287189746A45 − 0.5331705699A33 + 0.4852820712A32+

+3.213204276A34 + 0.6435948728A43 − 0.6418176996 = 0.

Solving the first four equations we find

A31 = 1.333331725, A32 = −1.508035853,

A33 = −0.6862921466, A34 = 1.716249545.

Substituting the values found for A3j , j = 1, . . . , 4 into (12) the fifth, sixth
and seventh equations can be solved independently of A41, A43 and A45 and
we get

A42 = 0.8004917008, A44 = 3.216187222, G4 = −0.5330875000× 10−6.
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We may consider G4 = 0.
To find G6 = 0, we need to determine the constants A41, A43 and A45.

To achieve this, we add F5(x, y) =
6∑

j=1

A5jx
6−jyj−1 to F2,3,4(x, y), we calculate

the derivative with respect to (10) and we equal the coefficients from the terms
of fifth order to zero to obtain a system of six equations with indeterminate
coefficients A4j , j = 1, 3, 5 and A5j j = 1, . . . , 6. Grouping these equations
with the last two in (12), we get

1.287189746A41 − 1.773884131− 0.6435948728A43 = 0

−1.287189746A45 + 4.506930690 + 0.6435948728A43 = 0

1.230835152− 0.9705641432A41 − 0.3217974364A52 = 0

−2.801720830 + 0.3217974365A55 + 0.4416941068A45 = 0

−1.608987182A56 + 0.6435948730A54 + 0.4852820714A43+

+4.284272368A45 − 0.329257256 = 0

1.608987183A51 − 3.016070495A43 − 0.6435948728A53−
−0.2208470538A43 − 1.755002194 = 0

1.287189746A52 + 1.656854112A43 + 0.9705641428A41−
−0.9653923092A54 − 4.684711778 = 0

0.9653923095A53 − 1.287188194A43 − 1.287189746A55−
−0.4416941076A43 + 16.92065858 = 0.

Solving the previous system, in terms of A45, we obtain

A41 = −2.123266258 + 0.9999999997A45;

A43 = 2A45 − 7.002744862;

A51 = −9.952764969 + 2.666663451A45;

A52 = 10.22879885− 3.016071706A45;

A53 = 1.294079159A45 − 15.25558638;

A54 = −5.367351123 + 0.4164273838A45;

A55 = 8.706473428− 1.372584293A45;

A56 = −4.463654858 + 3.432499091A45.

We must give A45 a value such that, G6 = 0 and the terms of third
order of F ′2,3,4(x, y)(10) be null. To achieve these results, we add F6(x, y) =
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=
7∑

j=1

A6jx
7−jyj−1 to F2,3,4,5(x, y), we substitute A41, A43, A51, A52, A53, A54,

A55, A56 depending of A45, we calculate the derivative with respect to (10) and
we equal the coefficients of the terms of sixth order in both sides of

G6(x2 + y2)3 = G6x
6 + 3G6x

4y2 + 3G6x
2y4 + G6y

6

to obtain a system of seven equations with the constants indeterminate A45

and A6j , j = 1, . . . , 7:
(13)

6.863773295− 0.778892676A45 − 0.3217974364A62 = G6

−0.901287442− 1.311865361A45 + 0.3217974365A66 = G6

19.82531980A45 − 76.95710798− 0.9653923092A64 + 1.608987183A62 = 3G6

−7.612567551A45 + 48.68689632 + 0.9653923095A64 − 1.608987182A66 = 3G6

−1.930784618A67 + 17.72934095A45 − 35.18266588 + 0.6435948730A65 = 0

32.67569982− 6.694469985A45 − 0.6435948728A63 + 1.930784619A61 = 0

−1.162157565A45 + 29.52817523 + 1.287189746A63 − 1.287189746A65 = 0.

The first four equations in (13) can be solved in terms of A45 independently
of the constants A61, A63, A65 and A67, and G6 = 0 if

A45 = −0.8767770729;

consequently:

A41 = −3.000043331; A43 = −8.756299008; A45 = −0.8767770729;

A51 = −12.29083434; A52 = 12.87322137; A53 = −16.39020532;

A54 = −5.732465106; A55 = 9.909923867; A56 = −7.473191364;

A62 = 23.45167388; A64 = 58.63528289; A66 = −0.773548826.

There are some constants to determine: A61, A63, A65 and A67. Observe
that, to obtain G6 = 0 we solved a system of seven equations in terms of A45,
where the first four equations could be solved independently of the constants
in the last three equations, and after we give an adequate value to A45.

We may generalize the idea, i.e. for k = 1, 2, . . . we can obtain G2k =
= 0 solving a system with 2k + 1 equations attributing an adequate value to
A2k−2,2k−1. This follows.
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Once G2k−2 = 0 has been determined by equating the terms of order
2k − 2 in both sides of F ′2,...,2k−2(x, y) = G2k−2(x2 + y2)

2k−2
2 and giving a

value to A2k−4,2k−3, we also find the values of the constants A2k−4,j , j =
= 1, 3, . . . , 2k− 5, A2k−3,j , j = 1, 2, . . . , 2k− 2 and A2k−2,j , j = 2, 4, . . . , 2k−
−2, we have A2k−2,j , j = 1, 3, . . . , 2k − 1 to determine. To do this, we add

F2k(x, y) =
2k+1∑
j=1

A2k,jx
2k+1−jyj−1 to F2,...,2k−1(x, y) and find

F2,...,2k(x, y) = x2 + y2 +
4∑

j=1

A3jx
4−jyj−1 + . . . +

2k+1∑

j=1

A2k,jx
2k+1−jyj−1.

We substitute the values of A2k−4,j , j = 1, 2, . . . , 2k − 3, A2k−3,j , j =
= 1, 2, . . . , 2k − 2 and A2k−2,j , j = 2, 4, . . . , 2k − 2; then we calculate
F ′2,...,2k−1(x, y) and equate the coefficients of the term of third order
of F ′2,...,2k−1(x, y) to zero to obtain a system of 2k equations with unde-
termined coefficients given previously. In this system we solve A2k−2,j ,
j = 1, 3, . . . , 2k − 3 and A2k−1,j , j = 1, 2, . . . , 2k in terms of A2k−2,2k−1. To
conclude add

F2k(x, y) =
2k+1∑

j=1

A2k,jx
2k+1−jyj−1

to F2,...,2k−1(x, y) and find

F2,...,2k(x, y) = x2 + y2 +
4∑

j=1

A3jx
4−jyj−1 + . . . +

2k+1∑

j=1

A2k,jx
2k+1−jyj−1.

We substitute the constants depending of A2k−2,2k−1 into F2,...,2k(x, y) and
calculate F ′2,...,2k(x, y); equating the coefficients of the terms of order 2k in both

sides of the equation F ′2,...,2k(x, y) = G2k(x2 + y2)
2k
2 we determine a system

of 2k + 1 equations depending on the constants A2k−2,2k−1 and A2k,j , j =
= 1, . . . , 2k + 1. The first k + 1 equations depend on A2k−2,2k−1, G2k

and A2k,j , j = 2, 4, . . . , 2k and can be solved independently of A2k,j , j =
= 1, 3, . . . , 2k + 1. Solving these equations in terms of A2k−2,2k−1 we obtain
G2k depending on A2k−2,2k−1. Attributing a value to A2k−2,2k−1 such that
G2k = 0, we find also the constants that we were to determine in the two
previous steps, A2k−2,j , j = 1, 3, . . . , 2k − 3, A2k−1,j , j = 1, 2, . . . , 2k and
A2k,j , j = 2, 4, . . . , 2k. We are to determine A2k,j , j = 1, 3, . . . 2k + 1, so that
G2k+2 = 0.
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In this way we determine G2k = 0, k = 1, 2, . . . . Then system (10) admits
a formal first integral and, consequently, a local center around origin.

4. The program

In this section, we give a program realized with MAPLE-VIII which
computes the Liapunov coefficients for the system (10) and for similar systems.

restart; n = 12:
w := 0.3217974364 : a1 := −0.2426410358 : b1 := −0.7540176233 :
c1 := 0.2426410356 : d1 := 0.5308179897 : e1 := 0.4538306273 :
f1 := −0.4397447761 : g1 := −0.1708148739 : a2 := −0.1104235269 :
b2 := 1.071068092 : c2 := 0.1104235267 : d2 := 0.5331710957 :
e2 := 1.002761197 : f2 := −0.1500939759 : g2 := −0.7184908406 :
x1 := w ∗ y(t) + a1 ∗ x(t)2 + b1 ∗ x(t) ∗ y(t) + c1 ∗ y(t)2 + d1 ∗ x(t)3+

ei ∗ x(t)∧2 ∗ y(t) + f1 ∗ x(t) ∗ y(t)∧2 + g2 ∗ y(t)∧3 :
y1 := −w∗x(t)+a2∗y(t)+a2∗x(t)∧2+b2∗x(t)∗y(t)+c2∗y(t)∧2+d2∗x(t)∧3+

e2 ∗ x(t)∧2 ∗ y(t) + f2 ∗ x(t) ∗ y(t)∧2 + g2 ∗ y(t)∧3 :

for i from 3 by 1 to n do
F[i](t):=(sum(A[i,j]*x(t)∧(i+1-j)*y(t)∧(j-1), j=1..i+1));
if irem(i,2)=0 then

GK[i](t):=G[i]*(x(t)∧2+y(t)∧2)∧(i/2);
else

end if:
end do:
for i from 3 by 1 to n do

Eqs[i]:= :
if irem(i,2)=0 then

a[i]:=seq(A[i,j], j=0..i):A[i,0]:=G[i]:
else a[i]:=seq(A[i,j], j=1..i+1):

end if:
end do:
F(t):=x(t)∧2+y(t)∧2:
for 1 from 3 by 1 to n do

F(t):=F(t)+F[l](t):
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FP(t):=(subs(diff(x(t),t)=x1,diff(y(t),t)=y1,diff(F(t),t))):
for i from 0 by 1 to 1 do

for j from 0 by 1 to l do
if i+1>=3 then

EqFP[i,j]:=coeff(coeff(FP(t),y(t),j),x(t),i)=
coeff(coeff(GK[i+j](t),y(t),j),x(t),i):

else
end if:

end do:
end do:
for k from 3 by 1 to l do

for i from 0 by 1 to l do
for j from 0 by 1 to l do

if k=i+j then
Eqs[k]:=Eqs[k] union EqFP[i,j]:
else

end if:
end do:

end do:
end do:
for i from 3 by 1 to 1 l do

if irem(i,2)=0 and i<>4 then
assign(solvefor[a[i]](Eqs[i])):
assign(solvefor[A[i-2,i-1]](G[i]=0)):

else
assign(solvefor[a[i]](Eqs[i])):

end if:
end do:

end do:
unassign(’i,’j,’k,’l’):
GG:=seq(G[2*i],i=2..n/2):
for i from 3 by 1 to n-1 do

FL[i]:=(sum(A[i,j]*x∧(i+1-j)*y∧(j-1), j=1..i+1)):
end do:
FLT:=x∧2+y∧+(sum(FL[k],k=3..n-1)):
print(”The Liapunov coefficients”, ’G[4]’,’G[6]’,”...”,’G[n]’”are:” ,):
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print(GG):
# print(”The first integral is:”):
# print(FLT):
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