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DEGENERATE CENTER
IN A PREDATOR-PREY SYSTEM WITH MEMORY

M. Farkas (Budapest, Hungary)
J. Dias Ferreira (Sao Paolo, Brasil)
P.C.C. Tabares (Armenia, Colombia)

Abstract. The purpose of this paper is to establish the occurrence of a
denegerate center in a predator-prey system with memory due to Farkas
et al [2], and described by a system of two differential equations with
continuous delay. This study is done showing that the Liapunov coefficients
of the system are null, by using a theorem due to Liapunov (see [1]). Finally,
we construct a computer program for the calculation of these coefficients of
similar problems.

1. Introduction

In this work we shall establish the occurrence of a degenerate center in
a predator-prey system introduced in [2]. The model is described by a two-
dimensional system

N(t) = eN(t) (1 -t

P(t) = —P(t) + BP(1) / N(r)G(t — 7)dr,

— 00

where the parameters in (1) are all non-negative and represent
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e N(t): quantity of prey,

e P(t): quantity of predator,

e ¢: specific growth rate of prey,

e a: predation rate,

e ~v: mortality of predator,

e (3: conversion rate of the prey,

e K: carrying capacity of the environment,
e G(s) = ae™*: density function.

The introduction of the notation

(2)

Qt)=a / N(r)e *t="dr

transforms (1) into

(3)

K €
P =—yP+3PQ,
Q = CL(N - Q)7

where the last equation was obtained differentiating (2); we shall study (3) with
t € [0,00) and N, P,@ > 0. The change of variables N = Kn, P = Kp, Q =

s
= Kq and the introduction of the new time ¢ = —, transforms (3) into
€

dn npKa
2 (1l —n) —

ds n{l=n) e
dp yp  pgKp

= =14 ,

ds € €

dg _a(n—q)

ds € '

Farkas et al (see [2]) proved the occurrence of an Andronov-Hopf bifurca-
tion in (3), restricting (4) to the two-dimensional center manifold to obtain

& =wy+W{—e(1 —yb)x? — e(1 —~b) l(f) _ (1 —9b)

2
w?Zeb U
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where b = Kiﬁ’ w = (W) . With the introduction of the new

parameters

K
(6) uzi, v:—ﬁ, g

the situation was considered in the three-dimensional parameter space u, v, w
and the following surface F' of bifurcation was obtained

(7) w(v? —v—u) —v=0.
In [2] it was proved that when this surface is crossed, an Andronov-Hopf

bifurcation occurs. It is supercritical (resp. subcritical) if the crossing is below
or above the curve g, whose equation is

2 2 %
(8) 2% — 1 — <8u+9u—|—> —=0.
u+ 2
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In Section 2, we shall present some phase portrait executed with the
software PHASER, whereby the occurrence of a degenerate center becomes
apparent.

Figure 1. Bifurcation surface

In Section 3, we shall describe an algorithm establishing the Proposition.
Finally, we shall give a program to calculate the Liapunov coefficients.

We are to choose now parameter values on the curve g that divides the
bifurcation surface into two, a supercritical and a subcritical part. At these
values the bifurcation shall be degenerate, neither supercritical, nor subcritical.
The aim of the present paper is to show the character of this bifurcation.

Proposition 1.1. System (5) with the parameters

K =0.7, € =0.424264, v = 0.3, a = 0.5, = 0.85714,

9
®) a = 0.087868, b = 1.666666389
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admits a formal first integral of the form

F(z,y) =2 +y* +>_ Fil(x,y),
k=3

k+1 o
here Fi(z,y) = > Agja®t179yi=1 is a homogeneous polynomial of degree k,
j=1

k=3,4,5,..., j=12,..., k+1.
As a consequence of Proposition 1.1, the system (3) admits a local center
around the origin.

2. Simulations

F tion (8) v = =
rom equation (8) v ="

1(1 8u2 + 9u + 2
2

); taking u = 1 we get

1 Vo7
v=3 (1 + 3) Replacing the values of u and v in (7) we obtained w =
1
=5 (3+ +/57). Substituting u, v, w in (6) we get

GZ’V,ﬁ: 7 1+\/j ,CL:L.
3 3457

The parameters given in (9) determine a point on g. Considering these
values in system (4) and the initial conditions

(n1,p1,q1) = (0.7,0.7,0.7);  (na2,p2,q2) = (0.6,0.6,0.6);
(n3,p3,q3) = (0.5,0.5,0.5);  (n4,p4,q4) = (0.4,0.4,0.4);
(n57p57(I5) = (02,02,02)7

we present the following simulations, generated by the software PHASER. This
suggests the existence of degenerate center.

In the simulation we consider ¢ = 0..100 (Figure 1(a)) and ¢t = 0..500
(Figure 1(b)). One can see that the center has a limit.
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Figure 2. Local center

3. The algorithm

System (5) with the parameters (9) takes the form

& = 0.321797436y — 0.24264103582> + 0.2426410357y —
—0.7540176237zy + 0.5308179897z° + 0.4538306270x%y —
—0.4397447763zy? — 0.1708148734y°,

y = —0.3217974362 — 0.110423526922 + 0.1104235267y%+
+ 1.071068092xy + 0.53381710952z> + 1.002761197x2y—
— 0.1500939754zy? — 0.7184908404y°.

(10)

Liapunov’s theorem [1] implies that the formal series

(11) F(z,y) =<’ +y* + ) _ Fu(z,y),
k=3

where Fi(z,y) = Apnz* + Akoz*~ly + ... + Agrazy* ™! + A ka1y*, can be
determined such that F{,(z,y) = Gar(z?+y?)*+o((z? +y?)¥), with k = 1,2, ...
Here Fj,(z,y) means the differentiation of F with respect to the system (10)
and Gy are the Liapunov coefficients for the equilibrium (0,0) of (10). It can
be proven that, if Go = 0, £ = 1,2,... then (0,0) is a local center and the
system admits a first integral of the form (11). To achieve this objective, we
shall construct an algorithm to determine these coefficients and G, = 0.
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Adding the homogeneous polynomials F3(z,y) and Fy(z,y) to Fa(z,y) =
4 . . 5 = . .
= 22 +y? we obtain Fy 3 4(z,y) = 2?+y>+ > AgjatIyi T 4 3 Ay ad iyl
j=1 j=1

with undetermined coefficients As;, j = 1,...,4 and A4y, j = 1,...,5. To
determine these coefficients, we calculate the derivative of Fb 3 4(z,y) with
respect to (10) and equal the coefficients from the terms of third and fourth
order and the coefficients of the polynomial Gy (22 +4?)? = Gy + 2G42%y* +
+G4y* to obtain the following system of linear equations:

0.3217974364 A33 + 0.2208470534 = 0

0.4852820716 — 0.3217974364 A3 =0

—1.7288823 — 0.6435948728 A3z + 0.9653923092A43; = 0
—0.9653923092A34 + 2.627418255 + 0.6435948728 A32 = 0

(12)

0.3312705801 A4 + 0.3217974364 A44 + 0.2426410356 Ag3—
—1.436981681 = G4
—0.3217974364 A42 — 0.1104235269 A3 — 0.7279231074 A3, +
+1.061635979 = G4
0.7279231068A3;1 + 0.9653923092A42 + 1.899495148 A35—
—1.397611720A32 — 0.9653923092A444 — 0.3312705807 A4+
+1.126032843 = 2G4
1.287189746 A1 — 2.262052870 A3, + 0.5857860204 A0 —
—0.6435948728 A43 — 0.2208470538 A33 + 1.974003446 = 0
—1.287189746A45 — 0.5331705699 A35 + 0.4852820712 A3+
+3.213204276 A34 + 0.6435948728 445 — 0.6418176996 = 0.

Solving the first four equations we find

Az = 1.333331725, Ass = —1.508035853,
Ass = —0.6862921466, Az, = 1.716249545.

Substituting the values found for As;, j = 1,...,4 into (12) the fifth, sixth
and seventh equations can be solved independently of A1, A43 and Ays and
we get

Ao = 0.8004917008, Ayy = 3.216187222, G4 = —0.5330875000 x 107°.
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We may consider G4 = 0.
To find Gg = 0, we need to determine the constants A1, A4z and Ays.

To achieve this, we add Fj(z,y) = 26: As;x579yi =1 to F 3 4(, y), we calculate
the derivative with respect to (10) ;;lii we equal the coefficients from the terms
of fifth order to zero to obtain a system of six equations with indeterminate
coefficients A45, j = 1,3,5 and As; j = 1,...,6. Grouping these equations
with the last two in (12), we get
1.287189746 A4 — 1.773884131 — 0.6435948728 A43 = 0
—1.287189746 A45 + 4.506930690 + 0.6435948728 A43 = 0
1.230835152 — 0.9705641432A417 — 0.3217974364 A5, = 0
—2.801720830 + 0.3217974365A55 + 0.4416941068 A45 = 0
—1.608987182A56 + 0.6435948730A54 + 0.4852820714 A43+
+4.284272368 A45 — 0.329257256 = 0
1.608987183A51 — 3.016070495A4 43 — 0.6435948728 A53—
—0.2208470538 A43 — 1.755002194 = 0
1.287189746 A5 + 1.656854112A43 4+ 0.9705641428 A41 —
—0.9653923092A54 — 4.684711778 =0
0.9653923095A53 — 1.287188194A43 — 1.287189746 A55—

—0.4416941076 A43 + 16.92065858 = 0.

Solving the previous system, in terms of As5, we obtain

Agp = —2.123266258 + 0.9999999997 A 5;
Ags = 2445 — 7.002744862;

As = —9.952764969 + 2.666663451 A5
Asy = 10.22879885 — 3.016071706 Ays;
Ass = 1.294079159A45 — 15.25558638;
Asy = —5.367351123 + 0.4164273838 Ays;
Ass = 8.706473428 — 1.372584293 Ays;
Asg = —4.463654858 + 3.432499091 A 5.

We must give Ay a value such that, G¢ = 0 and the terms of third
order of Fj 3 4(2,9)(10) be null. To achieve these results, we add Fg(z,y) =
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7 . .
= > Agjz" Iyt to Faza5(x,y), we substitute Ay1, Az, As1, Aso, Ass, Asa,
j=1
Ass, Ase depending of Ays, we calculate the derivative with respect to (10) and
we equal the coefficients of the terms of sixth order in both sides of

G@(CEQ + y2)3 = G61'6 + 3061'41/2 + 3G6x2y4 + G6y6

to obtain a system of seven equations with the constants indeterminate Ays
and A6j7 _] = 1,...772
(13)

6.863773295 — 0.778892676 A45 — 0.3217974364 Ago = G

—0.901287442 — 1.311865361 A45 + 0.3217974365 A6 = G
19.82531980A45 — 76.95710798 — 0.9653923092A64 + 1.608987183 As2 = 3G
—7.612567551 A5 + 48.68689632 + 0.9653923095A64 — 1.608987182 A6 = 3G
—1.930784618 Ag7 + 17.72934095A45 — 35.18266588 + 0.6435948730A¢5 = 0
32.67569982 — 6.694469985 A45 — 0.6435948728 Ag3 + 1.930784619A6; =0
—1.162157565A,45 + 29.52817523 + 1.287189746 A3 — 1.287189746 A5 = 0.

The first four equations in (13) can be solved in terms of Ay5 independently
of the constants A61, Aﬁg7 A65 and A67, and G6 =0if

Ays = —0.8767770729;
consequently:

Ag1 = —3.000043331; Ays = —8.756299008; Ags = —0.8767770729;
Asi = —12.29083434; Aso = 12.87322137;  Ags = —16.39020532;
Asy = —5.732465106; Ass = 9.909923867; Asg = —7.473191364;
Ags = 23.45167388;  Ags = 58.63528289; Ags = —0.773548826.

There are some constants to determine: Ag1, Ags, Ags and Agy. Observe
that, to obtain Gg = 0 we solved a system of seven equations in terms of Ays,
where the first four equations could be solved independently of the constants
in the last three equations, and after we give an adequate value to Ays.

We may generalize the idea, i.e. for £ = 1,2,... we can obtain Gg =
= 0 solving a system with 2k 4 1 equations attributing an adequate value to
Asj—2.2k—1. This follows.
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Once Goi_o2 = 0 has been determined by equating the terms of order

2k — 2 in both sides of Fj o _o(x,y) = Gop—2(x® + y2)¥ and giving a
value to Asp_42r—3, we also find the values of the constants Asy—4j, j =
= 173,...72k—5, Agk,&ﬁ ]: 1727...72]6—2 and Agk,Q’j, j: 2,4,...,2k—

—2, we have Agp_2;, j = 1,3,...,2k — 1 to determine. To do this, we add

2k+1 o
Fop(z,y) = Y Agpj@a?* 1 70yi= to Fy . op—1(,y) and find
j=1
2k+1
FZ,.. (Iy)—l‘ +y —|—ZA3I4JJ 1 ZAQk x2k+1]

Jj=1

We substitute the values of Aog_aj, 5 = 1,2,...,2k — 3, Agg—3;, j =
= 1,2,...,2k — 2 and Agp—oj, j = 2,4,...,2k — 2; then we calculate
By g 1(m y) and equate the coefficients of the term of third order
of F 2k 1(z,y) to zero to obtain a system of 2k equations with unde-
termmed coefficients given previously. In this system we solve Aar_s ;,
j = 1,37. . ,2]{1 — 3 and A2k—1,j, ] = 1,27. . ,2]{1 in terms of Agk_272k_1. To

conclude add
2k+1

2k+1—
For(z,y) Z Agy sty

to Fa,. . or—1(x,y) and find

4 2k+1
FQ _____ Qk(x, y) = 1'2 + y2 + ZAij4ijjfl + ...+ Z Agk’jl'ngrlijyjil
7j=1 7j=1

We substitute the constants depending of Agy_2 2k—1 into Fa ok (z, y) and
calculate Fy 5 (2, y); equating the coefficients of the terms of order 2k in both

sides of the equatlon Fy  on(@,y) = Gap(2® +y?)% we determine a system
of 2k 4+ 1 equations depending on the constants Asy—22r—1 and Agyj, j =
= 1,...,2k + 1. The first k£ + 1 equations depend on As;_22k-1, Gai
and Aok, j = 2,4,...,2k and can be solved independently of A j, j =
=1,3,...,2k + 1. Solving these equations in terms of Asj_2 or—1 we obtain
Gy depending on Asg_sop—1. Attributing a value to Asg—_22r—1 such that
Gor = 0, we find also the constants that we were to determine in the two
previous steps, Asx—2j, 7 = 1,3,...,2k =3, Asp_1, j = 1,2,...,2k and
Aogj, j=2,4,...,2k. We are to determine Ay j, j =1,3,...2k + 1, so that
Gakt2 = 0.
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In this way we determine Go, =0, kK =1,2,.... Then system (10) admits
a formal first integral and, consequently, a local center around origin.

4. The program

In this section, we give a program realized with MAPLE-VIIT which
computes the Liapunov coefficients for the system (10) and for similar systems.

restart; n = 12:
w = 0.3217974364 : a; := —0.2426410358 : b; := —0.7540176233 :
c1 := 0.2426410356 : dy := 0.5308179897 : e; := 0.4538306273 :
f1:=—0.4397447761 : g1 := —0.1708148739 : ay := —0.1104235269 :
by :=1.071068092 : co := 0.1104235267 : dy := 0.5331710957 :
eg :=1.002761197 : fo := —0.1500939759 : g9 := —0.7184908406 :
21 = wky(t) +ay x2(t)2 + by x2(t) xy(t) + c1 xy(t)? + dy * 2(t)>+
eix () 2% y(t) + frxxt) *y(t) 2+ goxy(t)"3:
y1 = —w*x(t)+agxy(t)+ag*xx(t) 2+boxx (t)*y(t)+coaxy(t) 2+daxx () 3+
e x (1) 2% y(t) + foxx(t) xy(t) 2+ go x y(t)"3 :
for i from 3 by 1 to n do
P (6):=(sum(ALLJx(6) (1) Fy(6) (1), j=1.4+1));
if irem(i,2)=0 then
G (6):=GIiJ* (x(t) 24y (6)2)" (/2);
else
end if:
end do:
for i from 3 by 1 to n do
Eqgs[i]:=:
if irem(i,2)=0 then
a[i]:=seq(Ali,j], j=0..1):A[1,0]:=G]i]:
else ali]:=seq(A[i,j], j=1..i+1):
end if:
end do:
F(t):=x(t)"24y(t)"2:
for 1 from 3 by 1 to n do
F(t):=F(t)+F[1](t):
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FP(t):=(subs(diff(x(t),t)=x1,diff(y (t),t)=y1,diff(F(t),t))):
for i from 0 by 1 to 1 do
for j from 0 by 1 to 1 do
if i+1>=3 then
EqFP[i,j]:=coeff(coeff(FP(t),y(t),j),x(t),i)=
coeff(coeff(GK[i+]](t),y(t),j),x(t),1):
else
end if:
end do:
end do:
for k from 3 by 1 to 1do
for i from 0 by 1 to 1 do
for j from 0 by 1 to 1 do
if k=i+j then
Eqgs[k]:=Eqs[k] union EqFP[i,j]:
else
end if:
end do:
end do:
end do:
for i from 3 by 1 to 11do
if irem(i,2)=0 and i<>4 then
assign (solvefor[al[i]] (Eqgs]i])):
assign(solvefor[A[i-2,i-1]](G[i]=0)):
else
assign (solvefor[al[i]] (Eqgsli])):
end if:
end do:
end do:
unassign(’i,’j,’k,’):
GG:=seq(G[2*i],i=2..n/2):
for i from 3 by 1 to n-1 do
FL[i]:=(sum(A[Lj]*x" (i4+1-))*y" (-1), j=1..i+1)):
end do:
FLT:=x"2+y"+(sum(FL[k],k=3..n-1)):
print(”The Liapunov coeflicients”, "G[4]’,G[6]",”...”,G[n] " are:” ,):
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print(GG):

# print(” The first integral is:”):

# print(FLT):
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