DEGENERATE CENTER IN A PREDATOR–PREY SYSTEM WITH MEMORY

M. Farkas (Budapest, Hungary)J. Dias Ferreira (Sao Paolo, Brasil)P.C.C. Tabares (Armenia, Colombia)

Abstract. The purpose of this paper is to establish the occurrence of a denegerate center in a predator-prey system with memory due to Farkas et al [2], and described by a system of two differential equations with continuous delay. This study is done showing that the Liapunov coefficients of the system are null, by using a theorem due to Liapunov (see [1]). Finally, we construct a computer program for the calculation of these coefficients of similar problems.

1. Introduction

In this work we shall establish the occurrence of a degenerate center in a predator-prey system introduced in [2]. The model is described by a twodimensional system

(1)

$$\dot{N}(t) = \epsilon N(t) \left(1 - \frac{N(t)}{K} - \frac{P(t)\alpha}{\epsilon} \right),$$

$$\dot{P}(t) = -\gamma P(t) + \beta P(t) \int_{-\infty}^{t} N(\tau) G(t - \tau) d\tau,$$

where the parameters in (1) are all non-negative and represent

This work was supported by Universidad del Quindío. 1991 Mathematics Subject Classification: 34A47.

- N(t): quantity of prey,
- P(t): quantity of predator,
- ϵ : specific growth rate of prey,
- α : predation rate,
- γ : mortality of predator,
- β : conversion rate of the prey,
- K: carrying capacity of the environment,
- $G(s) = ae^{-as}$: density function.

The introduction of the notation

(2)
$$Q(t) = a \int_{-\infty}^{t} N(\tau) e^{-a(t-\tau)} d\tau$$

transforms (1) into

(3)
$$\dot{N} = \epsilon N \left(1 - \frac{N}{K} - \frac{P\alpha}{\epsilon} \right),$$
$$\dot{P} = -\gamma P + \beta P Q,$$
$$\dot{Q} = a(N - Q),$$

where the last equation was obtained differentiating (2); we shall study (3) with $t \in [0, \infty)$ and $N, P, Q \ge 0$. The change of variables N = Kn, P = Kp, Q = Kq and the introduction of the new time $t = \frac{s}{\epsilon}$, transforms (3) into

(4)
$$\frac{dn}{ds} = n(1-n) - \frac{npK\alpha}{\epsilon},$$
$$\frac{dp}{ds} = -\frac{\gamma p}{\epsilon} + \frac{pqK\beta}{\epsilon},$$
$$\frac{dq}{ds} = \frac{a(n-q)}{\epsilon}.$$

Farkas et al (see [2]) proved the occurrence of an Andronov-Hopf bifurcation in (3), restricting (4) to the two-dimensional center manifold to obtain

$$\dot{x} = \omega y + W \left\{ -\epsilon (1 - \gamma b) x^2 - \epsilon (1 - \gamma b) \left[\left(\frac{\gamma b}{\omega} \right)^2 - \frac{\gamma b (1 - \gamma b)}{\omega^2 \epsilon b} \right] y^2 + \frac{1}{\omega^2 \epsilon b} \right\}$$

$$\begin{aligned} +xy\left(1-2\gamma b-2\epsilon\gamma b^{2}\right)\frac{1-\gamma b}{\omega b}\bigg\}+\\ +Wh(x,y)\left\{\left[-2\epsilon\left(\frac{\gamma b}{\omega}\right)^{2}-\epsilon+2\epsilon\gamma b\left(\frac{\gamma b}{\omega}\right)^{2}+2\epsilon\gamma b\right]x+\right.\\ \left.+y\left[1-2\epsilon b\left(\frac{\gamma b}{\omega}\right)^{2}-\epsilon b+\gamma b\frac{1-\gamma b}{\omega^{2}}\frac{(1-\gamma b)\gamma}{\omega}\right]\right\},\\ \dot{y}&=-\omega x+W\left\{-\omega\epsilon^{2}bx^{2}-\omega\epsilon^{2}b\left[\left(\frac{\gamma b}{\omega}\right)^{2}-\gamma b\frac{1-\gamma b}{\epsilon b\omega^{2}}\right]y^{2}+\right.\end{aligned}$$

(5)

$$+ \left[\frac{\left(1 - \gamma b\right) \left(1 + \left(\frac{\gamma b}{\omega}\right)^2 + \epsilon b\right)}{b} - 2\epsilon^2 \gamma b^2 \right] xy \right\} + \\ + Wh(x, y) \left\{ - \left[2 \left(\frac{\gamma b}{\omega}\right)^2 \epsilon b + \epsilon b + 1 + \left(\frac{\gamma b}{\omega}\right)^2\right] \omega \epsilon x - \\ - \omega \epsilon^2 b \left[2 \left(\frac{\gamma b}{\omega}\right)^3 + \frac{\gamma b}{\omega} - \left(\frac{\gamma b}{\omega}\right)^2 \frac{1 - \gamma b}{b\omega\epsilon} + \frac{1 - \gamma b}{b^2 \omega \epsilon^2} + \left(\frac{\gamma b}{\omega}\right)^2 \frac{1 - \gamma b}{b^2 \omega \epsilon^2}\right] y \right\},$$

where $b = \frac{1}{K\beta}$, $\omega = \left(\frac{(1-\gamma b - \gamma \epsilon b^2)}{\epsilon}\right)^{\frac{1}{2}}$. With the introduction of the new parameters

(6)
$$u = \frac{\epsilon}{\gamma}, \quad v = \frac{K\beta}{\gamma}, \quad w = \frac{\gamma}{a}$$

the situation was considered in the three-dimensional parameter space u, v, wand the following surface F of bifurcation was obtained

(7)
$$w(v^2 - v - u) - v = 0.$$

In [2] it was proved that when this surface is crossed, an Andronov-Hopf bifurcation occurs. It is supercritical (resp. subcritical) if the crossing is below or above the curve g, whose equation is

(8)
$$2v - 1 - \left(\frac{8u^2 + 9u + 2}{u + 2}\right)^{\frac{1}{2}} = 0.$$

In Section 2, we shall present some phase portrait executed with the software PHASER, whereby the occurrence of a degenerate center becomes apparent.

Figure 1. Bifurcation surface

In Section 3, we shall describe an algorithm establishing the Proposition. Finally, we shall give a program to calculate the Liapunov coefficients.

We are to choose now parameter values on the curve g that divides the bifurcation surface into two, a supercritical and a subcritical part. At these values the bifurcation shall be degenerate, neither supercritical, nor subcritical. The aim of the present paper is to show the character of this bifurcation.

Proposition 1.1. System (5) with the parameters

(9) $K = 0.7, \ \epsilon = 0.424264, \ \gamma = 0.3, \ \alpha = 0.5, \ \beta = 0.85714, \\ a = 0.087868, \ b = 1.6666666389$

admits a formal first integral of the form

$$F(x,y) = x^2 + y^2 + \sum_{k=3}^{\infty} F_k(x,y),$$

here $F_k(x,y) = \sum_{j=1}^{k+1} A_{kj} x^{k+1-j} y^{j-1}$ is a homogeneous polynomial of degree k, $k = 3, 4, 5, \dots, j = 1, 2, \dots, k+1.$

As a consequence of Proposition 1.1, the system (3) admits a local center around the origin.

2. Simulations

From equation (8) $v = \frac{1}{2} \left(1 + \sqrt{\frac{8u^2 + 9u + 2}{u + 2}} \right)$; taking u = 1 we get $v = \frac{1}{2} \left(1 + \frac{\sqrt{57}}{3} \right)$. Replacing the values of u and v in (7) we obtained $w = \frac{1}{2} \left(3 + \sqrt{57} \right)$. Substituting u, v, w in (6) we get $\epsilon = \gamma, \ \beta = \frac{\gamma}{2K} \left(1 + \frac{\sqrt{57}}{3} \right), \ a = \frac{2\gamma}{3 + \sqrt{57}}.$

The parameters given in
$$(9)$$
 determine a point on g . Considering the

The parameters given in (9) determine a point on g. Considering these values in system (4) and the initial conditions

$$\begin{array}{ll} (n_1,p_1,q_1) = (0.7,0.7,0.7); & (n_2,p_2,q_2) = (0.6,0.6,0.6); \\ (n_3,p_3,q_3) = (0.5,0.5,0.5); & (n_4,p_4,q_4) = (0.4,0.4,0.4); \\ (n_5,p_5,q_5) = (0.2,0.2,0.2), \end{array}$$

we present the following simulations, generated by the software PHASER. This suggests the existence of degenerate center.

In the simulation we consider t = 0..100 (Figure 1(a)) and t = 0..500 (Figure 1(b)). One can see that the center has a limit.

Figure 2. Local center

3. The algorithm

System (5) with the parameters (9) takes the form

$$\begin{aligned} \dot{x} &= 0.321797436y - 0.2426410358x^2 + 0.2426410357y^2 - \\ &- 0.7540176237xy + 0.5308179897x^3 + 0.4538306270x^2y - \\ &- 0.4397447763xy^2 - 0.1708148734y^3, \\ \dot{y} &= -0.321797436x - 0.1104235269x^2 + 0.1104235267y^2 + \\ &+ 1.071068092xy + 0.53381710952x^3 + 1.002761197x^2y - \\ &- 0.1500939754xy^2 - 0.7184908404y^3. \end{aligned}$$

Liapunov's theorem [1] implies that the formal series

(11)
$$F(x,y) = x^2 + y^2 + \sum_{k=3}^{\infty} F_k(x,y),$$

where $F_k(x,y) = A_{k1}x^k + A_{k2}x^{k-1}y + \ldots + A_{kk}xy^{k-1} + A_{k,k+1}y^k$, can be determined such that $F'_{10}(x,y) = G_{2k}(x^2+y^2)^k + o((x^2+y^2)^k)$, with $k = 1, 2, \ldots$ Here $F'_{10}(x,y)$ means the differentiation of F with respect to the system (10) and G_{2k} are the Liapunov coefficients for the equilibrium (0,0) of (10). It can be proven that, if $G_{2k} = 0$, $k = 1, 2, \ldots$ then (0,0) is a local center and the system admits a first integral of the form (11). To achieve this objective, we shall construct an algorithm to determine these coefficients and $G_{2k} = 0$. Adding the homogeneous polynomials $F_3(x, y)$ and $F_4(x, y)$ to $F_2(x, y) = x^2 + y^2 + \sum_{j=1}^4 A_{3j} x^{4-j} y^{j-1} + \sum_{j=1}^5 A_{4j} x^{5-j} y^{j-1}$, with undetermined coefficients A_{3j} , $j = 1, \ldots, 4$ and A_{4j} , $j = 1, \ldots, 5$. To determine these coefficients, we calculate the derivative of $F_{2,3,4}(x, y)$ with respect to (10) and equal the coefficients from the terms of third and fourth order and the coefficients of the polynomial $G_4(x^2 + y^2)^2 = G_4x^4 + 2G_4x^2y^2 + +G_4y^4$ to obtain the following system of linear equations:

$$(12) \qquad \begin{array}{c} 0.3217974364A_{33} + 0.2208470534 = 0\\ 0.4852820716 - 0.3217974364A_{32} = 0\\ -1.7288823 - 0.6435948728A_{33} + 0.9653923092A_{31} = 0\\ -0.9653923092A_{34} + 2.627418255 + 0.6435948728A_{32} = 0 \end{array}$$

 $\begin{array}{l} 0.3312705801A_{34} + 0.3217974364A_{44} + 0.2426410356A_{33} - \\ \\ -1.436981681 = G_4 \end{array}$

 $\begin{array}{l} -0.3217974364A_{42}-0.1104235269A_{32}-0.7279231074A_{31}+\\ \\ +1.061635979=G_4\end{array}$

 $0.7279231068A_{31} + 0.9653923092A_{42} + 1.899495148A_{33} -$

 $\begin{array}{l} -1.397611720 A_{32} - 0.9653923092 A_{44} - 0.3312705807 A_{34} + \\ +1.126032843 = 2 G_4 \end{array}$

 $1.287189746A_{41} - 2.262052870A_{31} + 0.5857860204A_{32} -$

 $-0.6435948728A_{43} - 0.2208470538A_{33} + 1.974003446 = 0$

 $-1.287189746A_{45} - 0.5331705699A_{33} + 0.4852820712A_{32} +$

 $+3.213204276A_{34} + 0.6435948728A_{43} - 0.6418176996 = 0.$

Solving the first four equations we find

 $\begin{array}{ll} A_{31}=1.333331725, \quad A_{32}=-1.508035853, \\ A_{33}=-0.6862921466, \quad A_{34}=1.716249545. \end{array}$

Substituting the values found for A_{3j} , j = 1, ..., 4 into (12) the fifth, sixth and seventh equations can be solved independently of A_{41} , A_{43} and A_{45} and we get

 $A_{42} = 0.8004917008, \quad A_{44} = 3.216187222, \quad G_4 = -0.5330875000 \times 10^{-6}.$

We may consider $G_4 = 0$.

To find $G_6 = 0$, we need to determine the constants A_{41} , A_{43} and A_{45} . To achieve this, we add $F_5(x, y) = \sum_{j=1}^6 A_{5j} x^{6-j} y^{j-1}$ to $F_{2,3,4}(x, y)$, we calculate the derivative with respect to (10) and we equal the coefficients from the terms of fifth order to zero to obtain a system of six equations with indeterminate coefficients A_{4j} , j = 1, 3, 5 and A_{5j} $j = 1, \ldots, 6$. Grouping these equations with the last two in (12), we get

$$\begin{split} 1.287189746A_{41} - 1.773884131 - 0.6435948728A_{43} &= 0 \\ -1.287189746A_{45} + 4.506930690 + 0.6435948728A_{43} &= 0 \\ 1.230835152 - 0.9705641432A_{41} - 0.3217974364A_{52} &= 0 \\ -2.801720830 + 0.3217974365A_{55} + 0.4416941068A_{45} &= 0 \\ -1.608987182A_{56} + 0.6435948730A_{54} + 0.4852820714A_{43} + \\ &+ 4.284272368A_{45} - 0.329257256 &= 0 \\ 1.608987183A_{51} - 3.016070495A_{43} - 0.6435948728A_{53} - \\ &- 0.2208470538A_{43} - 1.755002194 &= 0 \\ 1.287189746A_{52} + 1.656854112A_{43} + 0.9705641428A_{41} - \\ &- 0.9653923092A_{54} - 4.684711778 &= 0 \\ 0.9653923095A_{53} - 1.287188194A_{43} - 1.287189746A_{55} - \\ &- 0.4416941076A_{43} + 16.92065858 &= 0. \end{split}$$

Solving the previous system, in terms of A_{45} , we obtain

$$\begin{split} A_{41} &= -2.123266258 + 0.999999997A_{45}; \\ A_{43} &= 2A_{45} - 7.002744862; \\ A_{51} &= -9.952764969 + 2.666663451A_{45}; \\ A_{52} &= 10.22879885 - 3.016071706A_{45}; \\ A_{53} &= 1.294079159A_{45} - 15.25558638; \\ A_{54} &= -5.367351123 + 0.4164273838A_{45}; \\ A_{55} &= 8.706473428 - 1.372584293A_{45}; \\ A_{56} &= -4.463654858 + 3.432499091A_{45}. \end{split}$$

We must give A_{45} a value such that, $G_6 = 0$ and the terms of third order of $F'_{2,3,4}(x,y)_{(10)}$ be null. To achieve these results, we add $F_6(x,y) =$

$$=\sum_{j=1}^{7} A_{6j} x^{7-j} y^{j-1} \text{ to } F_{2,3,4,5}(x,y), \text{ we substitute } A_{41}, A_{43}, A_{51}, A_{52}, A_{53}, A_{54}, A_{$$

 A_{55}, A_{56} depending of A_{45} , we calculate the derivative with respect to (10) and we equal the coefficients of the terms of sixth order in both sides of

$$G_6(x^2 + y_2)^3 = G_6x^6 + 3G_6x^4y^2 + 3G_6x^2y^4 + G_6y^6$$

to obtain a system of seven equations with the constants indeterminate A_{45} and A_{6j} , $j = 1, \ldots, 7$: (13)

$$\begin{split} 6.863773295 - 0.778892676A_{45} - 0.3217974364A_{62} &= G_6 \\ -0.901287442 - 1.311865361A_{45} + 0.3217974365A_{66} &= G_6 \\ 19.82531980A_{45} - 76.95710798 - 0.9653923092A_{64} + 1.608987183A_{62} &= 3G_6 \\ -7.612567551A_{45} + 48.68689632 + 0.9653923095A_{64} - 1.608987182A_{66} &= 3G_6 \\ -1.930784618A_{67} + 17.72934095A_{45} - 35.18266588 + 0.6435948730A_{65} &= 0 \\ 32.67569982 - 6.694469985A_{45} - 0.6435948728A_{63} + 1.930784619A_{61} &= 0 \\ -1.162157565A_{45} + 29.52817523 + 1.287189746A_{63} - 1.287189746A_{65} &= 0. \end{split}$$

The first four equations in (13) can be solved in terms of A_{45} independently of the constants A_{61} , A_{63} , A_{65} and A_{67} , and $G_6 = 0$ if

$$A_{45} = -0.8767770729;$$

consequently:

$$\begin{split} A_{41} &= -3.000043331; \ A_{43} &= -8.756299008; \ A_{45} &= -0.8767770729; \\ A_{51} &= -12.29083434; \ A_{52} &= 12.87322137; \quad A_{53} &= -16.39020532; \\ A_{54} &= -5.732465106; \ A_{55} &= 9.909923867; \quad A_{56} &= -7.473191364; \\ A_{62} &= 23.45167388; \quad A_{64} &= 58.63528289; \quad A_{66} &= -0.773548826. \end{split}$$

There are some constants to determine: A_{61} , A_{63} , A_{65} and A_{67} . Observe that, to obtain $G_6 = 0$ we solved a system of seven equations in terms of A_{45} , where the first four equations could be solved independently of the constants in the last three equations, and after we give an adequate value to A_{45} .

We may generalize the idea, i.e. for k = 1, 2, ... we can obtain $G_{2k} = 0$ solving a system with 2k + 1 equations attributing an adequate value to $A_{2k-2,2k-1}$. This follows.

Once $G_{2k-2} = 0$ has been determined by equating the terms of order 2k - 2 in both sides of $F'_{2,...,2k-2}(x,y) = G_{2k-2}(x^2 + y^2)^{\frac{2k-2}{2}}$ and giving a value to $A_{2k-4,2k-3}$, we also find the values of the constants $A_{2k-4,j}$, j = 1, 3, ..., 2k - 5, $A_{2k-3,j}$, j = 1, 2, ..., 2k - 2 and $A_{2k-2,j}$, j = 2, 4, ..., 2k - 2, we have $A_{2k-2,j}$, j = 1, 3, ..., 2k - 1 to determine. To do this, we add $F_{2k}(x,y) = \sum_{j=1}^{2k+1} A_{2k,j} x^{2k+1-j} y^{j-1}$ to $F_{2,...,2k-1}(x,y)$ and find

$$F_{2,\dots,2k}(x,y) = x^2 + y^2 + \sum_{j=1}^{4} A_{3j} x^{4-j} y^{j-1} + \dots + \sum_{j=1}^{2k+1} A_{2k,j} x^{2k+1-j} y^{j-1}$$

We substitute the values of $A_{2k-4,j}$, j = 1, 2, ..., 2k - 3, $A_{2k-3,j}$, j = 1, 2, ..., 2k - 2 and $A_{2k-2,j}$, j = 2, 4, ..., 2k - 2; then we calculate $F'_{2,...,2k-1}(x,y)$ and equate the coefficients of the **term of third order** of $F'_{2,...,2k-1}(x,y)$ to zero to obtain a system of 2k equations with undetermined coefficients **given previously**. In this system we solve $A_{2k-2,j}$, j = 1, 3, ..., 2k - 3 and $A_{2k-1,j}$, j = 1, 2, ..., 2k in terms of $A_{2k-2,2k-1}$. To conclude add

$$F_{2k}(x,y) = \sum_{j=1}^{2k+1} A_{2k,j} x^{2k+1-j} y^{j-1}$$

to $F_{2,\ldots,2k-1}(x,y)$ and find

$$F_{2,\dots,2k}(x,y) = x^2 + y^2 + \sum_{j=1}^{4} A_{3j} x^{4-j} y^{j-1} + \dots + \sum_{j=1}^{2k+1} A_{2k,j} x^{2k+1-j} y^{j-1}.$$

We substitute the constants depending of $A_{2k-2,2k-1}$ into $F_{2,...,2k}(x,y)$ and calculate $F'_{2,...,2k}(x,y)$; equating the coefficients of the terms of order 2k in both sides of the equation $F'_{2,...,2k}(x,y) = G_{2k}(x^2 + y^2)^{\frac{2k}{2}}$ we determine a system of 2k + 1 equations depending on the constants $A_{2k-2,2k-1}$ and $A_{2k,j}$, j =1,...,2k + 1. The first k + 1 equations depend on $A_{2k-2,2k-1}$, G_{2k} and $A_{2k,j}$, j = 2, 4, ..., 2k and can be solved independently of $A_{2k,j}$, j =1, 3, ..., 2k + 1. Solving these equations in terms of $A_{2k-2,2k-1}$ we obtain G_{2k} depending on $A_{2k-2,2k-1}$. Attributing a value to $A_{2k-2,2k-1}$ such that $G_{2k} = 0$, we find also the constants that we were to determine in the two previous steps, $A_{2k-2,j}$, j = 1, 3, ..., 2k - 3, $A_{2k-1,j}$, j = 1, 2, ..., 2k and $A_{2k,j}$, j = 2, 4, ..., 2k. We are to determine $A_{2k,j}$, j = 1, 3, ..., 2k + 1, so that $G_{2k+2} = 0$. In this way we determine $G_{2k} = 0, \ k = 1, 2, \ldots$. Then system (10) admits a formal first integral and, consequently, a local center around origin.

4. The program

In this section, we give a program realized with MAPLE-VIII which computes the Liapunov coefficients for the system (10) and for similar systems.

```
restart; n = 12:
w := 0.3217974364 : a_1 := -0.2426410358 : b_1 := -0.7540176233 :
c_1 := 0.2426410356 : d_1 := 0.5308179897 : e_1 := 0.4538306273 :
f_1 := -0.4397447761 : g_1 := -0.1708148739 : a_2 := -0.1104235269 :
b_2 := 1.071068092 : c_2 := 0.1104235267 : d_2 := 0.5331710957 :
e_2 := 1.002761197 : f_2 := -0.1500939759 : q_2 := -0.7184908406 :
x_1 := w * y(t) + a_1 * x(t)^2 + b_1 * x(t) * y(t) + c_1 * y(t)^2 + d_1 * x(t)^3 + d_1 * d_1 *
           e_i * x(t)^2 * y(t) + f_1 * x(t) * y(t)^2 + q_2 * y(t)^3:
y_1 := -w * x(t) + a_2 * y(t) + a_2 * x(t)^2 + b_2 * x(t) * y(t) + c_2 * y(t)^2 + d_2 * x(t)^3 + d_2 * x(t)^2 + d_2 * x(t)^2
           e_2 * x(t)^2 + y(t) + f_2 * x(t) * y(t)^2 + q_2 * y(t)^3:
for i from 3 by 1 to n do
            F[i](t) := (sum(A[i,j]*x(t)^{(i+1-j)}y(t)^{(i-1)}, i=1..i+1)):
            if irem(i,2)=0 then
                                    GK[i](t):=G[i]^*(x(t)^2+v(t)^2)^{(i/2)};
                        else
            end if:
end do:
for i from 3 by 1 to n do
            Eqs[i] := :
            if irem(i,2)=0 then
                        a[i]:=seq(A[i,j], j=0..i):A[i,0]:=G[i]:
                        else a[i]:=seq(A[i,j], j=1..i+1):
            end if:
end do:
F(t):=x(t)^{2}+y(t)^{2}:
for 1 from 3 by 1 to n do
            F(t):=F(t)+F[l](t):
```

```
FP(t):=(subs(diff(x(t),t)=x1,diff(y(t),t)=y1,diff(F(t),t))):
  for i from 0 by 1 to 1 do
     for j from 0 by 1 to 1 do
       if i+1>=3 then
         EqFP[i,j]:=coeff(coeff(FP(t),y(t),j),x(t),i)=
            coeff(coeff(GK[i+j](t),y(t),j),x(t),i):
         else
       end if:
    end do:
  end do:
  for k from 3 by 1 to 1 do
    for i from 0 by 1 to 1 do
       for j from 0 by 1 to 1 do
         if k=i+j then
            Eqs[k] := Eqs[k] union EqFP[i,j]:
            else
         end if:
       end do:
    end do:
  end do:
  for i from 3 by 1 to 1 l do
    if irem(i,2)=0 and i<>4 then
         assign(solvefor[a[i]](Eqs[i])):
         assign(solvefor[A[i-2,i-1]](G[i]=0)):
       else
         assign(solvefor[a[i]](Eqs[i])):
    end if:
  end do:
end do:
unassign('i,'j,'k,'l'):
GG:=seq(G[2*i],i=2..n/2):
for i from 3 by 1 to n-1 do
  FL[i]:=(sum(A[i,j]*x^{(i+1-j)}*y^{(j-1)}, j=1..i+1)):
end do:
FLT:=x^{2}+y^{+}(sum(FL[k],k=3..n-1)):
print("The Liapunov coefficients", 'G[4]', 'G[6]', "...", 'G[n]" are:",):
```

print(GG):
print("The first integral is:"):
print(FLT):

Acknowledgement. This research work was supported by a Proyecto de la Unviersidad del Quindío and partially supported by the Hungarian National Foundation for Scientific Research, grant number T031716 and a Proyecto de la Unviersidad de Antioquia, Medellin, Colombia.

References

- [1] Farkas M., Periodic motions, Springer Verlag, New York, 1994.
- [2] Farkas M., Farkas A. and Szabó G., Multiparameter bifurcation diagrams in predator-prey models with time lag, J. Math. Biology, 26 (1988), 93-103.
- [3] Farkas M., Stable oscillations in a predator-prey model with time lag, JMAA, 102 (1984),175-188.

(Received February 11, 2004)

M. Farkas

Institute of Mathematics Budapest University of Technology Műegyetem rkp. 9. Bld. H. H-1111 Budapest, Hungary fm@math.bme.hu

P.C.C. Tabares Program of Biomathematics Universidad del Quindío paulocct@uniquindio.edu.co Colombia

J. Dias Ferreira

Departamento de Matematica Aplicada Instituto de Matematica e Estatística Universidade de Sao Paolo Rua do Matao, 1010 Cidade Universitária 05508-090 Sao Paolo, Brasil jocirei@hotmail.com