
Annales Univ. Sci. Budapest., Sect. Comp. 25 (2005) 25-35

A NEW BOUND
FOR THE MINIMAL DIAMETER

OF NINE
COPLANAR CONGRUENT DISKS

E. Daróczy-Kiss (Budapest, Hungary)

Abstract. Denote d(n) the minimum diameter of a set of n points in the

plane such that all the mutual distances between the points are at least 1;

hence, d(n)+1 is the minimal diameter of the n circles of radius 0.5 drawn

around the given points. The exact value of d(n) is known up to 8. The best

known estimation on d(9) issued from a proposition of S. Vincze (1950):

d(9) ≤ 2.58... In this paper we sharpen this value by using computer. We

show a convex heptagon containing two further points inside such that all

the mutual distances of the 9 points are at least 1 and d(9) ≤ 2.5693.

1. Introduction

The diameter of a finite point set given in the plane is the maximal value
of all the mutual distances between the points. In this paper we investigate
point sets with the property of all the mutual distances between the points are
at least 1; refer to this property of point sets in the plane as property P. Hence,
drawing a circle of radius 0.5 around all the points we get a set of congruent
closed disks such that any two of them may touch each other at one common
point of their boundaries or they must be disjoint. This view of the point sets
with property P suggested the title of the paper and these two views are used
equivalently in the following.

Considering n points of the kind P denote the minimal diameter of all
these sets by d(n). The exact value of d(9) is not known up to date. Here we
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find a new upper bound for d(9) by using a great amount of various kinds of
computer support. This support is often surprising: in addition to conventional
applications of computer it is also used as a ‘practical experimenting device’.
Another exciting and hard task is the preprocessing of mathematical problem
so as its ‘data space’ could be the input of some computer applications or some
algorithmical method. After this methodological preliminaries we continue with
the short history of the problem.

We do not know exactly who was the first to ask the minimal diameter of
a planar set of n points with property P. However, thinking about the problem
we often refer to a theorem of Bieberbach ([3], 1915) saying that among the
convex planar regions of a given area the circle has the smallest diameter. We
have also a nice theorem of Reinhardt from 1922 ([13]) that solves the minimal
diameter problem for planar p-gons of all side lengths 1, where p is an odd
prime. Vincze also investigated the problem of planar n-gons with side lengths
1 in the general case and constructed a non-regular convex octogon for which
d(8) ≤ 2.58... applied ([15]) and it turned out later that an additional (9-th)
point can be placed inside the octogon such that property P still remained and
hence d(9) ≤ 2.58... was also provided. In 1951 Bateman and Erdős mentioned
the problem explicitely ([1]) and showed that the exact value of d(n) can be
calculated easily up to n = 6 and also deduced in [1] that d(7) = 2. After a
long period without new results A. Bezdek and F. Fodor showed in 1999 ([2])
that d(8) = 1/(2 sin(π/14)).

As mentioned above the exact value of d(9) is not known. Moreover, the
best known estimation proved up to date is the result of Vincze from 1950:
d(9) ≤ 2.58...!

Here we show that d(9) ≤ 2.5693 is also valid and give a configuration that
is an appropriate convex heptagon containing two further points inside, and for
these 9 points the property P and the d(9) ≤ 2.5693 inequality also applies.
Hence, it also appears that one should think about configurations other than
a convex octogon with an additional point inside when looking for a 9-point
configuration with minimal diameter.

In Section 2 we specify the problem formally and summarize the known
results in words and also in formulas.

In Section 3 we mention an experiment performed by using a computer
CAD-system that leads us to an initial configuration of 9 points. Observing
some geometric properties of this configuration the combinatorial cases can
be reduced so as the diameter of the set still decreases and the restricted
configuration can be the input of a simple discrete local minimum searching.
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In Section 4 we present the discrete local minimum searching that leads us
to the new bound. This last section is closed by a conjecture about the optimal
configuration.

2. Problem, known results

Problem. Be given 9 points P1, P2, . . . , P9 in the plane such that all the
mutual distances between them are at least 1: |PiPj | ≥ 1, i, j = 1, . . . , 9, i 6= j
(that is property P holds).

Find: Estimation on the smallest diameter of all the point sets of this
kind that is smaller than 2.58... (the best known up to date).

More generally, denote d(n) the smallest diameter of the n-th element
point sets of property P. Then the actually known results are the following:
• In case of n = 2, 3, 4, 5 the optimal configuration is the regular n-gon of

side length 1.
• If n = 6 the optimal configuration is a regular pentagon constructed along

a circle of radius 1 and centered at the fixed 6-th point.
• In case of n = 7, according to Bateman and Erdős ([1], 1951), the optimal

result is the regular hexagon of diameter 2 with an additional 7-th point
at the center of the 6-gon.

• For n = 8 A. Bezdek and F. Fodor showed in 1999 ([2]) that the optimal
configuration is a regular heptagon of side length 1 with an additional 8-
th point inside that is at least 1 unit distance from all the vertices of the
7-gon; hence, the solution is not unique.

• In case of n = 9 we have estimations for d(9) only: the best known result
up to date followed from the construction of Vincze that is a special non-
regular octogon with an additional 9-th point inside, which is at least 1
unit distance from all the vertices of the 8-gon ([15], 1950).

Expressing the above by numerical values

d(2) = d(3) = 1;

d(4) =
√

2 (= 1.4142...);

d(5) = (1 +
√

5)/2 (= 1.618...);

d(6) = 2 sin(72) (= 1.9...);

d(7) = 2;

d(8) = 1/(2 sin(π/14)) (= 2.246...);
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d(9) ≤ 2.58...

In the following we show that

d(9) < 2.5693

ia also valid.

3. Computer experiments

In the course of history of science mathematicians also made trials every
time. Gauss’ experiments on investigating the properties of ‘big triangles’ are
well known. He formed appropriate ‘triangles’ by directing sunrays by mirrors
set in the top of hills. A less known - but closer to our topic - experiment
is due to the English clergyman S. Hales about three hundred years ago.
On investigating plant growth he also drew conclusions on space-filling by
congruent bodies. He put dried peas into a pot and added water to it to
fill the empty space. By putting the contents under pressure afterwards, the
peas absorved water and expanded into the empty spaces. Observing samples
of peas he found (thought) that they became regular dodecahedra. However,
S. Hales did not know that regular dodecahedra do not fill space without gaps
[5].

Here we can also start with an obvious trial: following intuitions one can
configure nine coins of the same kind on the table so as to reach as narrow
center point set as possible (denote its diameter d′(9)). Then the disk set (and
the convex hull of the disk set) is also the narrowest possible: its diameter is
d′(9) + 1.

One should not undervalue this non-mathematical trial: also forming (from
the same kinds of coins) the Vincze configuration and continuously comparing
to the current state of the experimental configurations, after a short trial period
one can guess that a special kind of heptagons may be compared with the
octogon of Vincze. However, one should also realize that the diameters of the
two polygons are nearly the same when comparing them by compasses, for
example; so this way of experimenting does not work further on. Hence, trials
should be continued by using other methods that provide more (much more)
accuracy, we should turn to a suitable computer program.

At this point of the ‘experimental process’ one can consider the following
important moments.
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• In our further investigations we should focus on a special kind of heptagons
with two other points inside such that all nine point accomplish the
property P.

• Equivalently, nine non-intersecting disks of diameter 1 unit and centres at
the previous nine points can be investigated.

• We should use an analytical computer program (for numerical accuracy)
with an appropriate graphical interface (for visualisation).

In the remainder of this section first we specify the previous requirements
on the computer system in details that lead us to computer CAD-systems
as ‘experimenting tools’; then model the nine-disk configuration suggested
by the initial experimental steps above in such a CAD-system; and finally,
deduce geometric properties of an initial disk configuration that we investigate
analytically in the following section.

Below we list the most important characteristics according to a formal
(informatical) terminology that a computer program should provide to be able
to form valid nine-disk configurations in an efficient way.
• The system should be ‘analytical’ in the sense that it should provide

arbitrary levels of numerical accuracy in representing defined and also
calculated geometric entities.

• It should be the kind that can be manipulated by a multifunctional (com-
puter) graphics interface that supports the definition of geometric objects,
an arbitrary scaling of subviews and superviews of a view, regenerating
views, ...

• It should also provide multifunctional constructing assistance like ‘object
snap’ to defined points and also to points issued from certain relations of
objects (such as intersections or touching points of circles,...), ‘orthogonal
moving’,...

• Obviously, the system should provide the typical geometric transforma-
tions (moving, rotating, scaling, mirroring,...) of geometric objects - that
can be performed also by graphical support.

The demanded above conditions are provided typically by general-purpose
CAD-systems and hence writing in the following ‘computer system’, ‘system’,
‘computer program’,..., we mean a computer program of this kind.

In the following we define the promissing configuration of disks (found in
the initial steps) in a computer CAD-system and observe some algorithmic
properties of it to be able to define such configurations efficiently by the
computer.

(1) We investigate only heptagons with two additional points inside such that
for this set of points the property P holds.
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the diameter of the set and its value can be decreased by leaving circle k4 to
touch circles k1 and k2 (perhaps at the cost of increasing the less significant
distance of O1O8).

This last observation may be true or false, one could prove or deny it
geometrically. However, we do not worry about the truth-value of this assertion:
we consider it initially and depending on the results of the calculations we can
change or drop it afterwards.

(7) Let circle k4 (and hence k5, too) touch circles k1 and k2.

From now on any configuration satisfying properties (1)-(7) can be defined
by two parameters.

• Denote 2t the distance of the two nearest quadrant points of circles k1 and
k2.

• Denote h the distance of the center point of k6 (and hence, the center point
of k7, too) from the axis of symmetry.

(The radius of any circle of the configuration is obviously 0.5.)

Then, after giving ‘valid’ values to t and h, a valid configuration can be
constructed by the following ‘algorithm’ (construction steps).

(1) Draw the line s and choose a point O1 on it as the center point of k1.
(2) On the right side of k1 set k2 in 2t distance far from k1 with center point

O2 on s.
(3) On the right side of k2 set k3 touching k2 with center point O3 on s.
(4) Construct k4 with center point O4 that touches k1 and k2.
(5) Construct a circle k′4 with center point O4 and radius 1, and a line e in the

halfplane bounded by s and containing O4 that is parallel to s and runs h
long far from s. Be O6 = the right point of k′4 ∩ e, the center point of k6.

(6) Construct k8 touching k3 and k6, with center point O8.
(7) Construct similarly k5, k7 and k9 on the other side of s.

4. Calculations

First of all perform the algorithm for some typical values of t and h!

For t = 0.0 and h = 2.58/2.0 (the ‘natural’ initial values of t and h) we
get d(9) = 2.58 ≤ 2.58..., hence the known upper bound for d(9) is probably
improved.
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Be t = 0.05 (hence, the distance of k1 and k2 is 0.1) and h = 2.57/2.0. For
these values we get d(9) = 2.5729..., which is already a definite improvement
on the known results and hence it may be the subject of a new theorem.

However, we do not stop here. These results encourage us and the
combinatorial complexity of the reduced problem enables us to perform a
discrete local minimum searching on the diameters by using computer. For
this purpose we should ‘translate’ the steps of the constructing algorithm to
the ‘language’ of coordinate geometry.

First we define a Descartes coordinate system on the plane in which
calculations can be performed conveniently. Be O1 the origin and the half
of s that contains O2 the positive x-axis of this coordinate system. If Oi(xi, yi)
refers to point Oi one can get the following formulas by simple coordinate
geometry calculations.

O1(0, 0),

O2(1 + 2t, 0),

O3(2 + 2t, 0),

O4(0.5 + t,
√

1− (0.5 + t)2),

O5(x4,−y4),

O6(0.5 + t +
√

1− (h− y4)2, h),

O7(x6,−y6).

For the coordinates of O8 and O9 we use new variables. Be u = (x3 + x6)/2.0
and v = (y3 + y6)/2.0, hence F (u, v) refers to the midpoint of the segment
O3O6. Then the vector of direction of segment FO8 is r = (v, 2 + 2t− u) and
its length is

√
1− (2 + 2t− u)2 − v2. Hence, the vectors of position of O8 and

O9 are
O8 : (u, v) + qr/|r|,
O9 : (x8,−y8).

Having these formulas one can organize a double-cycle on some discrete
values of (t, h) using sufficiently small stepping distances (10−3, 10−4 in
unit length) to get a characteristic discrete local minimum value of function
d(.), which reduces to a two-variable function in this special kind of disk
configurations on a reasonable domain (specified below). We can easily find
a domain of ordered real pairs for the variables t and h:

• 0 ≤ t ≤ 0.58/2.0, otherwise the distance of the circles k1 and k3 may
exceed the known bound;
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• 0.866 ≤ h ≤ 2.58/2.0, because O6 and O7 cannot get nearer to the axis s
than in the case when k6 and k7 touches k2 and k3, and again, we do not
want to investigate cases when a known distance (|O6O7|) may exceed the
2.58... value.

Execute the algorithm when the variables t and h run across the specified
intervals by the equidistant step 10−4. In this procedure we get the following
results.

• The discrete local minimum value that we were searching for is
2.5692553644.

• This minimum value appears at the value of variable-pair (2t, 2h) =
= (0.0912, 2.5693).
Putting together the outputs of the experiments and the program execu-

tion we can form the following two theorems.

Theorem. Between the configurations of nine coplanar unit-diameter
disks corresponding to properties (1)-(7) there exist infinitely many ones for
which the maximal value of all the mutual distances of the center points of the
nine circles < 2.58.

Proof. The coordinate functions connecting to the problem are all
continuous uniformly on the domain of interest and hence the distance functions
issued from them by additions, subtractions, multiplications, extractions of
roots and maxima calculations are also of the same kind. Hence, the maximal
value calculated for the investigated disk configurations can get all the real
values between 2.5693 and 2.58.

Theorem. For any configuration of nine coplanar points corresponding
to property P, d(9) < 2.5693.

Proof. This is an obvious consequence of the output configuration of the
discrete local minimum searched above.

One can easily reconstruct (and test) the described configuration in a
CAD-system by using also the center points given below with coordinates
rounded to four decimal digits.

O1(0, 0),

O2(1.0912, 0),

O3(2.0912, 0),

O4(0.5456, 0.8381),

O5(0.5456,−0.8381),

O6(1.4404, 1.2846),

O7(1.4404,−1.2846),
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O8(2.3848, 0.9559),

O9(2.3848,−0.9559).

After due investigation we guess that the following observation is also valid.

Conjecture. The optimal positioning of nine disks in the domain of
configurations defined in the first theorem is the one for which |O1O8| =
= |O5O8| = |O6O7| ≈ 2.569255...

One can find exciting topics on the disk-packings also in [4], [7] and [14].
There are useful results concerning the diameter of convex sets also in [6],
[9] and [10]. One can efficiently combine computer programming and using a
computer algebra system. In this case visualisation may also be supported by
such a system (see [11], for example). In any case - and this is perhaps the
main ‘message’ of this paper - a suitable CAD-system with a good computer
graphics interface should be an aid (like a pocket-calculator used to be) or even
an experimenting tool in many kinds of mathematical investigations. Making
use of these kinds of computer support one can find useful ideas about similar
topics in [8] and [12].
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