
Annales Univ. Sci. Budapest., Sect. Comp. 25 (2005) 13-23

POLYNOMIAL–LIKE BOOLEAN FUNCTIONS

J. Gonda (Budapest, Hungary)

Abstract. In [3] a linear algebraic aspect is given for the transformation of

a Boolean function to its Zhegalkin-representation, and in [4] we determined

the eigenvectors of that transform. In the following we introduce the notion

of the polynomial-like Boolean functions as the Boolean functions belonging

to the eigenvectors of the transform mentioned above.

In this article the elements of the field with two elements are denoted by
0 and 1; N0 denotes the non-negative integers, and N the positive ones.

In [3] we pointed out that if we consider the coefficients of a Boolean
function of n variables and the coefficients of the Zhegalkin polynomial of n
variables, respectively, as the components of an element of a 2n-dimensional
linear space over F2, then the relation between the vectors belonging to the
two representations of the same Boolean function of n variables could be
given by k = A(n)α. Here k is the vector containing the components of
the Zhegalkin polynomial, α is the vector composed of the coefficients of the
Boolean representation of the given function, and A(n) is the matrix of the
transform in the natural basis. In the article mentioned above it is proved that

A(n) =





(1), if n = 0,
(

A(n−1) 0(n−1)

A(n−1) A(n−1)

)
, if n ∈ N,

and as a consequence that
A(n)2 = I(n),
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where I(n) and 0(n) denote the 2n-dimensional identity and zero matrix,
respectively. From this follows that if k = A(n)α, then α = A(n)k.

In [4] it is pointed out that the minimal polynomial of A(n) is λ2+1, except
of the case of n = 0, when the minimal polynomial is equal to λ + 1. The only
eigenvector of the transform is 1, and the nullspace of the unique eigenvector
of A(n) is a 2n−1-dimensional space, if n > 0. u ∈ F2n

2 is an eigenvector of the
transform if and only if

u =
(

u(0)

u(1)

)
,

where u(1) is an arbitrary vector of the 2n−1-dimensional linear space over F2,
and u(0) =

(
A(n−1) + I(n−1)

)
u(1).

In the following part of our article we apply the results stated in [4] to the
Boolean functions.

Notation. Let n ∈ N0, T(n) the 2n-dimensional linear space over F2,
for 2n > i ∈ N0 let m

(n)
i the i-th minterm of n variables, and S

(n)
i the i-

th elementary Zhegalkin polynomial of n indeterminates. If α ∈ T(n), k =

= A(n)α, and f =
2n−1∑
i=0

αim
(n)
i a Boolean function of n variables, then τf (f) =

=
2n−1∑
i=0

kim
(n)
i , ϕ(f) =

2n−1⊕
i=0

kiS
(n)
i , and τp(p) =

2n−1⊕
i=0

αiS
(n)
i . For the previous

f and p, f = f
(n)
r and p = p

(n)
s , where r =

2n−1∑
i=0

αi2i and s =
2n−1∑
i=0

ki2i.

Remark. As both ϕ, τf and τp are bijective mappings, there exist the
inverses of all of these mappings. It can also be seen immediately that τf and
τp are involutions.

Proposition 1. For any n ∈ N0 ϕτf = τpϕ.

Proof. Let f =
2n−1∑
i=0

αim
(n)
i . Then

(ϕτf )(f) = ϕ (τf (f)) = ϕ

(
2n−1∑

i=0

kim
(n)
i

)
=

=
2n−1⊕

i=0

αiS
(n)
i =

= τp

(
2n−1⊕

i=0

kiS
(n)
i

)
= τp(ϕ(f)) = (τpϕ) (f).
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As f is an arbitrary Boolean function of n variables for any n ∈ N0, the
statement of the proposition is true.

For all the three mappings mentioned in the proposition are invertible,
from the statement immediately follows that for any n ∈ N0 ϕ−1τp = τfϕ−1

(of course for this equality it is enough that ϕ is invertible).

Proposition 2. Let n ∈ N, the index of the Boolean function f of n
variables is equal to l, and the index of ϕ(f) is equal to l’. Then

a) if l > 0 then

min
{

i | 2n > i ∈ N0 ∧ αi = 1
}

= min
{

i | 2n > N0 ∧ ki = 1
}

;

b) n > i ∈ N0:

k2i−1 ≡ w
((

l mod 22i
))

(mod 2)
∧

α2i−1 ≡ w
((

l′ mod 22i
))

(mod 2);

c) l ≡ l′ (mod 2),
where w(l) is the weight of l, that is the number of 1-s in its binary represen-
tation.

Proof. a) a
(n)
i,i = 1 and for j > i a

(n)
i,j = 0, so, if min

{
i | 2n > i ∈

∈ N0 ∧ αi = 1
}

= t, then ki =
2n−1⊕
j=0

a
(n)
t,j αj =

2n−1⊕
j=t

a
(n)
t,j αj = αt = 1, but for all

of the t > i ∈ N0 indices ki =
2n−1⊕
j=0

a
(n)
i,j αj =

2n−1⊕
j=t

a
(n)
i,j αj = 0. Similarly, it is

true in the opposite direction, too.

b) If l =
2n−1∑
i=0

αi2i, then
(

l mod 2r
)
=

r−1∑
i=0

αi2i. As all of the αi coefficients

are equal to either zero or one, we get that w
((

l mod 2r
) )

=
r−1∑
i=0

αi, and

then w
((

l mod 2r
))

(mod 2) =
r−1∑
i=0

αi (mod 2) =
r−1⊕
i=0

αi. For 2i > j ∈ N0

a
(n)
2i−1,j = 1, so k2i−1 =

2n−1⊕
j=0

a
(n)
i,j αj =

2t−1⊕
j=0

αj . The other congruence can be

proved in the same way.

c) This is a direct consequence of b) by t = 0.

Now we define the polynomial-like Boolean functions.
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Definition. Let n ∈ N0. The Boolean function f of n variables is a
polynomial-like Boolean function if τf (f) = f .

By the definition, the Boolean function f is polynomial-like if and only
if the coefficients of its canonical disjunctive normal form and its Zhegalkin
polynomial with the same indices are equal to each other, that is if α is an
eigenvector of A(n). From this follows that both of the Boolean functions of
zero variables are polynomial-like Boolean functions, and if f = f

(n)
i , then

ϕ(f) = p = p
(n)
i .

Proposition 3. f = τf (f) if and only if ϕ(f) = τp(ϕ(f)).

Proof. As ϕ is invertible, f = τf (f) is fulfilled if and only if ϕ(f) =
= ϕ(τf (f)). But by Proposition 1 ϕ(τf (f)) = τp(ϕ(f)), so ϕ(f) = ϕ(τf (f)) is
true if and only if ϕ(f) = τp(ϕ(f)) is true, too.

Proposition 4. Let n ∈ N. If f = f
(n−1)
j is an arbitrary Boolean function

of n− 1 variables, then xn−1f ⊕ xn−1(τf (f)⊕ f) is a polynomial-like Boolean
function (the variables are indexed from zero).

Proof. For an arbitrary 2n−1-dimensional α vector
(

α(0)

α(1)

)
=

( (
A(n−1) + I(n−1)

)
α

α

)

is an eigenvector of the transform of the 2n-dimensional linear space over the

field of two elements. Let f =
2n−1−1∑

i=0

αim
(n−1)
i , then

g =
2n−1−1∑

i=0

α
(0)
i

(
xn−1m

(n−1)
i

)
+

2n−1−1∑

i=0

α
(1)
i

(
xn−1m

(n−1)
i

)
=

= xn−1

2n−1−1∑

i=0

α
(0)
i m

(n−1)
i ⊕ xn−1

2n−1−1∑

i=0

α
(1)
i m

(n−1)
i

is a polynomial-like Boolean function of n variables. But

α(0) =
(
A(n−1) + I(n−1)

)
α = A(n−1)α + α = k + α,

so
2n−1−1∑

i=0

α
(0)
i m

(n−1)
i =

2n−1−1∑

i=0

(ki ⊕ αi)m
(n−1)
i =

=
2n−1−1∑

i=0

k
(n−1)
i m

(n−1)
i ⊕

2n−1−1∑

i=0

αim
(n−1)
i = τf (f)⊕ f
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and then xn−1f ⊕ xn−1(τf (f)⊕ f) is a polynomial-like Boolean function.

Remark. In the proof above we used and later in this article we shall

use the fact that
2n−1∑
i=0

αim
(n)
i =

2n−1⊕
i=0

αim
(n)
i , as for any 2n > j > i ∈ N0

m
(n)
i m

(n)
j = 0.

Proposition 5. Let n > 0, and let f be a polynomial-like Boolean function
of n variables. If f = f

(n)
j and

j =
2n−1∑

i=0

αi2i =
2n−1−1∑

i=0

αi2i + 22n−1
2n−1−1∑

i=0

αi+2n−12i = j(0) + j(1)22n−1
,

then
ϕ(f) = p = p

(n)
j = xn−1p

(n−1)

j(1) ⊕
(
τp

(
p
(n−1)

j(1)

)
⊕ p

(n−1)

j(1)

)

(the variables are indexed from zero).

Proof. The vector of the coefficients of xn−1f
(n−1)

j(1) is equal to
(

0
α(1)

)
,

and the transformed vector is equal to

A(n)α =
(

A(n−1) 0(n−1)

A(n−1) A(n−1)

)(
0

α(1)

)
=

(
0

A(n−1)α(1)

)
.

This implies that ϕ
(
xn−1f

(n−1)

j(1)

)
= xn−1ϕ

(
f

(n−1)

j(1)

)
= xn−1p

(n−1)

j(1) . As the

mapping α → A(n)α is linear, so

ϕ
(
f

(n)
j

)
= ϕ

(
xn−1f

(n−1)

j(1) ⊕
(
τf

(
f

(n−1)

j(1)

)
⊕ f

(n−1)

j(1)

))
=

=xn−1p
(n−1)

j(1) ⊕
(
ϕ

(
τf

(
f

(n−1)

j(1)

))
⊕ p

(n−1)

j(1)

)
.

By Proposition 1 ϕ
(
τf

(
f

(n−1)

j(1)

))
= τp

(
ϕ

(
f

(n−1)

j(1)

))
= τp

(
p
(n−1)

j(1)

)
, and so

we proved that ϕ(f) = xn−1p
(n−1)

j(1) ⊕
(
τp

(
p
(n−1)

j(1)

)
⊕ p

(n−1)

j(1)

)
.

Let us consider some examples.

Examples. a) Let n = 3 and f = f
(3)
149. 149 = 1+4+16+128 = 20 +22 +

+24 +27, and so f = m
(3)
0 +m

(3)
2 +m

(3)
4 +m

(3)
7 = x2x1x0 +x2x1x0 +x2x1x0 +
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+x2x1x0. The spectrum of this function is αT = (1, 0, 1, 0, 1, 0, 0, 1). From α
we get k:

k = A(3)α =




1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1







1
0
1
0
1
0
0
1




=




1
1
0
0
0
0
1
0




.

Now

f = m
(3)
0 + m

(3)
2 + m

(3)
4 + m

(3)
7 =

= x2x1x0 + x2x1x0 + x2x1x0 + x2x1x0,

τf (f) = m
(3)
0 + m

(3)
1 + m

(3)
6 = x2x1x0 + x2x1x0 + x2x1x0,

ϕ(f) = S
(3)
0 ⊕ S

(3)
1 ⊕ S

(3)
6 = 1⊕ x0 ⊕ x2x1,

τp(ϕ(f)) = S
(3)
0 ⊕ S

(3)
2 ⊕ S

(3)
4 ⊕ S

(3)
7 = 1⊕ x1 ⊕ x2 ⊕ x2x1x0

and τf (f) = f
(3)
67 , p = ϕ(f) = p

(3)
67 and τp(ϕ(f)) = τp(p) = p

(3)
149.

b) Let n = 4 and αT = (0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1), then

k = A(4)α =

=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1







0
1
1
0
1
0
1
1
1
0
1
0
1
0
0
1




=




0
1
1
0
1
0
1
1
1
0
1
0
1
0
0
1




.
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As α = k, f belonging to α is a polynomial-like Boolean function of 4 variables.
This is not surprising. The last part of α is α(1)T

= (1, 0, 1, 0, 1, 0, 0, 1), which
is equal to α in the previous example in a). Then

(
A(3) + I(3)

)
α(1) =




1
1
0
0
0
0
1
0




+




1
0
1
0
1
0
0
1




=




0
1
1
0
1
0
1
1




which is exactly the first part of α. Particularly,

f = f
(4)
38358 =m

(4)
1 + m

(4)
2 + m

(4)
4 + m

(4)
6 + m

(4)
7 + m

(4)
8 + m

(4)
10 + m

(4)
12 + m

(4)
15 =

=x3x2x1x0 + x3x2x1x0 + x3x2x1x0 + x3x2x1x0 + x3x2x1x0+

+ x3x2x1x0 + x3x2x1x0 + x3x2x1x0 + x3x2x1x0,

p = p
(4)
38358 = S

(4)
1 ⊕ S

(4)
2 ⊕ S

(4)
4 ⊕ S

(4)
6 ⊕ S

(4)
7 ⊕ S

(4)
8 ⊕ S

(4)
10 ⊕ S

(4)
12 ⊕ S

(4)
15 =

= x0 ⊕ x1 ⊕ x2 ⊕ x2x1 ⊕ x2x1x0 ⊕ x3 ⊕ x3x1 ⊕ x3x2 ⊕ x3x2x1x0.

c) Let f = f
(4)
38358. Now j(1) =

⌊
38358
224−1

⌋
= 149 = 20 + 22 + 24 + 27, so the

right side part of α is α(1)T

= (1, 0, 1, 0, 1, 0, 0, 1), and k belonging to α(1) is
equal to kT = (1, 1, 0, 0, 0, 0, 1, 0). Then

x3p
(3)
149 ⊕

(
τp

(
p
(3)
149

)
⊕ p

(3)
149

)
=

= x3

(
1⊕x1⊕x2⊕x2x1x0

)
⊕

((
1⊕x0⊕x2x1

)
⊕

(
1⊕x1⊕x2⊕x2x1x0

))
=

= x0 ⊕ x1 ⊕ x2 ⊕ x2x1 ⊕ x2x1x0 ⊕ x3 ⊕ x3x1 ⊕ x3x2 ⊕ x3x2x1x0 =

= S
(4)
1 ⊕ S

(4)
2 ⊕ S

(4)
4 ⊕ S

(4)
6 ⊕ S

(4)
7 ⊕ S

(4)
8 ⊕ S

(4)
10 ⊕ S

(4)
12 ⊕ S

(4)
15 =

= p
(4)
38358 = ϕ(f).

Let us consider the figure on the next page.

In the picture it can be seen a general layout realizing a switching circuit
belonging to a Boolean function. At the S-boxes exactly one input is 0. The





Polynomial-like Boolean functions 21

Proof. For any element of {0, 1}n

f(u0, . . . , un−1) = (ϕf)(uπ(0), . . . , uπ(n−1)),

so if
p(1)(x0, . . . , xn−1) = ϕ

(
f

(
xπ(0), . . . , xπ(n−1)

))
,

p(2) (x0, . . . , xn−1) = (ϕf)
(
xπ(0), . . . , xπ(n−1)

)
,

then
p(1) (u0, . . . , un−1) = f

(
uπ(0), . . . , uπ(n−1)

)
=

=(ϕf)
(
uπ(0), . . . , uπ(n−1)

)
= p(2) (u0, . . . , un−1)

is also true, that is the mappings belonging to p(1) and p(2) are equal. In that
case even the polynomials are equal, which proves the first statement.

Now suppose f is a polynomial-like Boolean function. Then α = k, which
implies α′ = k′, where α′ and k′ denote the vectors of the coefficients of the
permuted variables. From the first part of the proposition follows that α′ and
k′ belong to the same function, so if f is polynomial-like then the function of
the permuted variables is also polynomial-like.

Proposition 8. Every variable of a nonzero polynomial-like Boolean
function is essential.

Proof. In the case of n = 0 this is obvious. Now let n ∈ N, and let f 6= 0
a Boolean function of n variables. On the base of Proposition 7 it is enough to
prove that xn−1 is an essential variable of f , if the function is a polynomial-
like Boolean function. f can be written as f = xn−1g

(0) + xn−1g
(1), and f is

independent of xn−1 if and only if g(0) = g(1). In that case

(
k(0)

k(1)

)
= k = A(n)α =

(
A(n−1) 0(n−1)

A(n−1) A(n−1)

)(
α(0)

α(1)

)
=

=
(

A(n−1) 0(n−1)

A(n−1) A(n−1)

)(
α(0)

α(0)

)
=

(
A(n−1)α(0)

0

)
,

that is k(1) = 0. But α(1) = 0 if and only if g(1) = 0, and then f = 0, what
was excluded. That means if f does not depend on xn−1, then α(1) 6= k(1), and
then α 6= k, too, so f is not a polynomial-like Boolean function.

Briefly can be mentioned that Proposition 8 is true for the zero function
of zero variables, but false for the zero function with at least one variable.
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Proposition 9. Let n ∈ N, f = f
(n)
k and f

(n)
k = xn−1f

(n−1)

(k mod 22n−1) +

+xn−1f
(n−1)⌊

k

22n−1

⌋, where neither f
(n−1)

(k mod 22n−1), nor f
(n−1)⌊

k

22n−1

⌋ depends on xn−1.

If f is polynomial-like, then k = 0 or k ≥ 22n−1
, and

(
k mod 22n−1

)
= 0 if and

only if f
(n−1)⌊

k

22n−1

⌋ is a polynomial-like Boolean function of n− 1 variables.

Proof. The zero function is polynomial-like, and in that case k = 0. If

f 6= 0, then every variable of f is essential, so f
(n−1)⌊

k

22n−1

⌋ 6= 0. Then
⌊

k

22n−1

⌋
≥ 1

and k ≥ 22n−1
.

Now suppose f polynomial-like and
(
k mod 22n−1

)
= 0. From this follows

that f
(n−1)

(k mod 22n−1) = 0 and α(0) = 0. Then

(
α(0)

α(1)

)
=

(
k(0)

k(1)

)
= k = A(n)α =

(
A(n−1) 0(n−1)

A(n−1) A(n−1)

)(
α(0)

α(1)

)
=

=
(

A(n−1) 0(n−1)

A(n−1) A(n−1)

) (
0

α(1)

)
=

(
0

A(n−1)α(1)

)

and α(1) = k(1) = A(n−1)α(1), so f
(n−1)⌊

k

22n−1

⌋ is a polynomial-like Boolean

function of n− 1 variables.
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