POLYNOMIAL–LIKE BOOLEAN FUNCTIONS

J. Gonda (Budapest, Hungary)

Abstract. In [3] a linear algebraic aspect is given for the transformation of a Boolean function to its Zhegalkin-representation, and in [4] we determined the eigenvectors of that transform. In the following we introduce the notion of the polynomial-like Boolean functions as the Boolean functions belonging to the eigenvectors of the transform mentioned above.

In this article the elements of the field with two elements are denoted by 0 and 1; N_0 denotes the non-negative integers, and N the positive ones.

In [3] we pointed out that if we consider the coefficients of a Boolean function of n variables and the coefficients of the Zhegalkin polynomial of n variables, respectively, as the components of an element of a 2^n -dimensional linear space over \mathbf{F}_2 , then the relation between the vectors belonging to the two representations of the same Boolean function of n variables could be given by $\underline{k} = \mathbf{A}^{(n)}\underline{\alpha}$. Here \underline{k} is the vector containing the components of the Zhegalkin polynomial, $\underline{\alpha}$ is the vector composed of the coefficients of the Boolean representation of the given function, and $\mathbf{A}^{(n)}$ is the matrix of the transform in the natural basis. In the article mentioned above it is proved that

$$\mathbf{A}^{(n)} = \begin{cases} (1), & \text{if } n = 0, \\ \begin{pmatrix} \mathbf{A}^{(n-1)} & \mathbf{0}^{(n-1)} \\ \mathbf{A}^{(n-1)} & \mathbf{A}^{(n-1)} \end{pmatrix}, & \text{if } n \in \mathbf{N}, \end{cases}$$

and as a consequence that

$$\mathbf{A}^{(n)^2} = \mathbf{I}^{(n)},$$

The research was partially supported by the Hungarian National Foundation for Scientific Research under grant OTKA T043657.

where $\mathbf{I}^{(n)}$ and $\mathbf{0}^{(n)}$ denote the 2ⁿ-dimensional identity and zero matrix, respectively. From this follows that if $\underline{k} = \mathbf{A}^{(n)}\underline{\alpha}$, then $\underline{\alpha} = \mathbf{A}^{(n)}\underline{k}$.

In [4] it is pointed out that the minimal polynomial of $\mathbf{A}^{(n)}$ is $\lambda^2 + 1$, except of the case of n = 0, when the minimal polynomial is equal to $\lambda + 1$. The only eigenvector of the transform is 1, and the nullspace of the unique eigenvector of $\mathbf{A}^{(n)}$ is a 2^{n-1} -dimensional space, if n > 0. $\underline{u} \in \mathbf{F}_2^{2^n}$ is an eigenvector of the transform if and only if

$$\underline{u} = \left(\frac{\underline{u}^{(0)}}{\underline{u}^{(1)}}\right),\,$$

where $\underline{u}^{(1)}$ is an arbitrary vector of the 2^{n-1} -dimensional linear space over \mathbf{F}_2 , and $\underline{u}^{(0)} = (\mathbf{A}^{(n-1)} + \mathbf{I}^{(n-1)}) \underline{u}^{(1)}$.

In the following part of our article we apply the results stated in [4] to the Boolean functions.

Notation. Let $n \in \mathbf{N}_0$, $\mathbf{T}^{(n)}$ the 2^n -dimensional linear space over \mathbf{F}_2 , for $2^n > i \in \mathbf{N}_0$ let $m_i^{(n)}$ the *i*-th minterm of *n* variables, and $S_i^{(n)}$ the *i*th elementary Zhegalkin polynomial of *n* indeterminates. If $\underline{\alpha} \in \mathbf{T}^{(n)}$, $\underline{k} =$ $= \mathbf{A}^{(n)}\underline{\alpha}$, and $f = \sum_{i=0}^{2^n-1} \alpha_i m_i^{(n)}$ a Boolean function of *n* variables, then $\tau_f(f) =$ $= \sum_{i=0}^{2^n-1} k_i m_i^{(n)}$, $\varphi(f) = \bigoplus_{i=0}^{2^n-1} k_i S_i^{(n)}$, and $\tau_p(p) = \bigoplus_{i=0}^{2^n-1} \alpha_i S_i^{(n)}$. For the previous *f* and *p*, $f = f_r^{(n)}$ and $p = p_s^{(n)}$, where $r = \sum_{i=0}^{2^n-1} \alpha_i 2^i$ and $s = \sum_{i=0}^{2^n-1} k_i 2^i$.

Remark. As both φ , τ_f and τ_p are bijective mappings, there exist the inverses of all of these mappings. It can also be seen immediately that τ_f and τ_p are involutions.

Proposition 1. For any $n \in \mathbf{N}_0 \ \varphi \tau_f = \tau_p \varphi$.

Proof. Let $f = \sum_{i=0}^{2^{n}-1} \alpha_{i} m_{i}^{(n)}$. Then

$$(\varphi\tau_f)(f) = \varphi\left(\tau_f(f)\right) = \varphi\left(\sum_{i=0}^{2^n-1} k_i m_i^{(n)}\right) =$$
$$= \bigoplus_{i=0}^{2^n-1} \alpha_i S_i^{(n)} =$$
$$= \tau_p\left(\bigoplus_{i=0}^{2^n-1} k_i S_i^{(n)}\right) = \tau_p(\varphi(f)) = (\tau_p \varphi)(f).$$

As f is an arbitrary Boolean function of n variables for any $n \in \mathbf{N}_0$, the statement of the proposition is true.

For all the three mappings mentioned in the proposition are invertible, from the statement immediately follows that for any $n \in \mathbf{N}_0 \varphi^{-1} \tau_p = \tau_f \varphi^{-1}$ (of course for this equality it is enough that φ is invertible).

Proposition 2. Let $n \in \mathbf{N}$, the index of the Boolean function f of n variables is equal to l, and the index of $\varphi(f)$ is equal to l'. Then

a) if l > 0 then

$$\min\left\{i \mid 2^n > i \in \mathbf{N}_0 \land \alpha_i = 1\right\} = \min\left\{i \mid 2^n > \mathbf{N}_0 \land k_i = 1\right\}$$

b)
$$n > i \in \mathbf{N}_0$$
:

$$k_{2^{i}-1} \equiv w\left(\left(l \mod 2^{2^{i}} \right) \right) \pmod{2} \bigwedge \alpha_{2^{i}-1} \equiv w\left(\left(l' \mod 2^{2^{i}} \right) \right) \pmod{2};$$

c) $l \equiv l' \pmod{2}$,

where w(l) is the weight of l, that is the number of 1-s in its binary representation.

Proof. a) $a_{i,i}^{(n)} = 1$ and for $j > i \ a_{i,j}^{(n)} = 0$, so, if min $\left\{ \begin{array}{l} i \mid 2^n > i \in \mathbb{N} \\ \in \mathbb{N}_0 \land \alpha_i = 1 \end{array} \right\} = t$, then $k_i = \bigoplus_{j=0}^{2^n-1} a_{t,j}^{(n)} \alpha_j = \bigoplus_{j=t}^{2^n-1} a_{t,j}^{(n)} \alpha_j = \alpha_t = 1$, but for all of the $t > i \in \mathbb{N}_0$ indices $k_i = \bigoplus_{j=0}^{2^n-1} a_{i,j}^{(n)} \alpha_j = \bigoplus_{j=t}^{2^n-1} a_{i,j}^{(n)} \alpha_j = 0$. Similarly, it is true in the opposite direction, too.

b) If
$$l = \sum_{i=0}^{2^n-1} \alpha_i 2^i$$
, then $(l \mod 2^r) = \sum_{i=0}^{r-1} \alpha_i 2^i$. As all of the α_i coefficients

are equal to either zero or one, we get that $w\left(\left(l \mod 2^{r}\right)\right) = \sum_{i=0}^{r} \alpha_{i}$, and then $w\left(\left(l \mod 2^{r}\right)\right) \pmod{2} = \sum_{i=0}^{r-1} \alpha_{i} \pmod{2} = \bigoplus_{i=0}^{r-1} \alpha_{i}$. For $2^{i} > j \in \mathbf{N}_{0}$ $a_{2^{i}-1,j}^{(n)} = 1$, so $k_{2^{i}-1} = \bigoplus_{j=0}^{2^{n}-1} a_{i,j}^{(n)} \alpha_{j} = \bigoplus_{j=0}^{2^{t}-1} \alpha_{j}$. The other congruence can be proved in the same way.

c) This is a direct consequence of b) by t = 0.

Now we define the polynomial-like Boolean functions.

Definition. Let $n \in \mathbf{N}_0$. The Boolean function f of n variables is a polynomial-like Boolean function if $\tau_f(f) = f$.

By the definition, the Boolean function f is polynomial-like if and only if the coefficients of its canonical disjunctive normal form and its Zhegalkin polynomial with the same indices are equal to each other, that is if $\underline{\alpha}$ is an eigenvector of $\mathbf{A}^{(n)}$. From this follows that both of the Boolean functions of zero variables are polynomial-like Boolean functions, and if $f = f_i^{(n)}$, then $\varphi(f) = p = p_i^{(n)}$.

Proposition 3. $f = \tau_f(f)$ if and only if $\varphi(f) = \tau_p(\varphi(f))$.

Proof. As φ is invertible, $f = \tau_f(f)$ is fulfilled if and only if $\varphi(f) = \varphi(\tau_f(f))$. But by Proposition 1 $\varphi(\tau_f(f)) = \tau_p(\varphi(f))$, so $\varphi(f) = \varphi(\tau_f(f))$ is true if and only if $\varphi(f) = \tau_p(\varphi(f))$ is true, too.

Proposition 4. Let $n \in \mathbf{N}$. If $f = f_j^{(n-1)}$ is an arbitrary Boolean function of n-1 variables, then $x_{n-1}f \oplus \overline{x}_{n-1}(\tau_f(f) \oplus f)$ is a polynomial-like Boolean function (the variables are indexed from zero).

Proof. For an arbitrary 2^{n-1} -dimensional $\underline{\alpha}$ vector

$$\begin{pmatrix} \underline{\alpha}^{(0)} \\ \underline{\alpha}^{(1)} \end{pmatrix} = \begin{pmatrix} \left(\mathbf{A}^{(n-1)} + \mathbf{I}^{(n-1)} \right) \underline{\alpha} \\ \underline{\alpha} \end{pmatrix}$$

is an eigenvector of the transform of the 2^n -dimensional linear space over the field of two elements. Let $f = \sum_{i=0}^{2^{n-1}-1} \alpha_i m_i^{(n-1)}$, then

$$g = \sum_{i=0}^{2^{n-1}-1} \alpha_i^{(0)} \left(\overline{x}_{n-1} m_i^{(n-1)} \right) + \sum_{i=0}^{2^{n-1}-1} \alpha_i^{(1)} \left(x_{n-1} m_i^{(n-1)} \right) =$$
$$= \overline{x}_{n-1} \sum_{i=0}^{2^{n-1}-1} \alpha_i^{(0)} m_i^{(n-1)} \oplus x_{n-1} \sum_{i=0}^{2^{n-1}-1} \alpha_i^{(1)} m_i^{(n-1)}$$

is a polynomial-like Boolean function of n variables. But

$$\underline{\alpha}^{(0)} = \left(\mathbf{A}^{(n-1)} + \mathbf{I}^{(n-1)}\right)\underline{\alpha} = \mathbf{A}^{(n-1)}\underline{\alpha} + \underline{\alpha} = \underline{k} + \underline{\alpha},$$

 \mathbf{SO}

$$\sum_{i=0}^{2^{n-1}-1} \alpha_i^{(0)} m_i^{(n-1)} = \sum_{i=0}^{2^{n-1}-1} (k_i \oplus \alpha_i) m_i^{(n-1)} =$$
$$= \sum_{i=0}^{2^{n-1}-1} k_i^{(n-1)} m_i^{(n-1)} \oplus \sum_{i=0}^{2^{n-1}-1} \alpha_i m_i^{(n-1)} = \tau_f(f) \oplus f$$

and then $x_{n-1}f \oplus \overline{x}_{n-1}(\tau_f(f) \oplus f)$ is a polynomial-like Boolean function.

Remark. In the proof above we used and later in this article we shall use the fact that $\sum_{i=0}^{2^n-1} \alpha_i m_i^{(n)} = \bigoplus_{i=0}^{2^n-1} \alpha_i m_i^{(n)}$, as for any $2^n > j > i \in \mathbf{N}_0$ $m_i^{(n)} m_j^{(n)} = 0.$

Proposition 5. Let n > 0, and let f be a polynomial-like Boolean function of n variables. If $f = f_j^{(n)}$ and

$$j = \sum_{i=0}^{2^{n}-1} \alpha_i 2^i = \sum_{i=0}^{2^{n-1}-1} \alpha_i 2^i + 2^{2^{n-1}} \sum_{i=0}^{2^{n-1}-1} \alpha_{i+2^{n-1}} 2^i = j^{(0)} + j^{(1)} 2^{2^{n-1}},$$

then

$$\varphi(f) = p = p_j^{(n)} = x_{n-1} p_{j^{(1)}}^{(n-1)} \oplus \left(\tau_p \left(p_{j^{(1)}}^{(n-1)} \right) \oplus p_{j^{(1)}}^{(n-1)} \right)$$

(the variables are indexed from zero).

Proof. The vector of the coefficients of $x_{n-1}f_{j^{(1)}}^{(n-1)}$ is equal to $\left(\frac{\underline{0}}{\underline{\alpha}^{(1)}}\right)$, and the transformed vector is equal to

$$\mathbf{A}^{(n)}\underline{\alpha} = \begin{pmatrix} \mathbf{A}^{(n-1)} & \mathbf{0}^{(n-1)} \\ \mathbf{A}^{(n-1)} & \mathbf{A}^{(n-1)} \end{pmatrix} \begin{pmatrix} \underline{0} \\ \underline{\alpha}^{(1)} \end{pmatrix} = \begin{pmatrix} \underline{0} \\ \mathbf{A}^{(n-1)}\underline{\alpha}^{(1)} \end{pmatrix}.$$

This implies that $\varphi\left(x_{n-1}f_{j^{(1)}}^{(n-1)}\right) = x_{n-1}\varphi\left(f_{j^{(1)}}^{(n-1)}\right) = x_{n-1}p_{j^{(1)}}^{(n-1)}$. As the mapping $\underline{\alpha} \to \mathbf{A}^{(n)}\underline{\alpha}$ is linear, so

$$\varphi\left(f_{j}^{(n)}\right) = \varphi\left(x_{n-1}f_{j^{(1)}}^{(n-1)} \oplus \left(\tau_{f}\left(f_{j^{(1)}}^{(n-1)}\right) \oplus f_{j^{(1)}}^{(n-1)}\right)\right) = x_{n-1}p_{j^{(1)}}^{(n-1)} \oplus \left(\varphi\left(\tau_{f}\left(f_{j^{(1)}}^{(n-1)}\right)\right) \oplus p_{j^{(1)}}^{(n-1)}\right).$$

By Proposition 1 $\varphi\left(\tau_f\left(f_{j^{(1)}}^{(n-1)}\right)\right) = \tau_p\left(\varphi\left(f_{j^{(1)}}^{(n-1)}\right)\right) = \tau_p\left(p_{j^{(1)}}^{(n-1)}\right)$, and so we proved that $\varphi(f) = x_{n-1}p_{j^{(1)}}^{(n-1)} \oplus \left(\tau_p\left(p_{j^{(1)}}^{(n-1)}\right) \oplus p_{j^{(1)}}^{(n-1)}\right)$.

Let us consider some examples.

Examples. a) Let n = 3 and $f = f_{149}^{(3)}$. $149 = 1 + 4 + 16 + 128 = 2^0 + 2^2 + 2^4 + 2^7$, and so $f = m_0^{(3)} + m_2^{(3)} + m_4^{(3)} + m_7^{(3)} = \overline{x}_2 \overline{x}_1 \overline{x}_0 + \overline{x}_2 x_1 \overline{x}_0 + x_2 \overline{x}_1 \overline{x}_1 \overline{x}_0 + x_2 \overline{x}_1 \overline{x}_1 \overline{x}_1 \overline{x}_1 + x_2 \overline{x}_1 \overline{x}_1 \overline{x}_1 \overline{x}_1 + x_2 \overline{x$

 $+x_2x_1x_0$. The spectrum of this function is $\underline{\alpha}^T = (1, 0, 1, 0, 1, 0, 0, 1)$. From $\underline{\alpha}$ we get \underline{k} :

$$\underline{k} = \mathbf{A}^{(3)} \underline{\alpha} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

Now

$$\begin{split} f &= m_0^{(3)} + m_2^{(3)} + m_4^{(3)} + m_7^{(3)} = \\ &= \overline{x}_2 \overline{x}_1 \overline{x}_0 + \overline{x}_2 x_1 \overline{x}_0 + x_2 \overline{x}_1 \overline{x}_0 + x_2 x_1 x_0, \\ \tau_f(f) &= m_0^{(3)} + m_1^{(3)} + m_6^{(3)} = \overline{x}_2 \overline{x}_1 \overline{x}_0 + \overline{x}_2 \overline{x}_1 x_0 + x_2 x_1 \overline{x}_0, \\ \varphi(f) &= S_0^{(3)} \oplus S_1^{(3)} \oplus S_6^{(3)} = 1 \oplus x_0 \oplus x_2 x_1, \\ \tau_p(\varphi(f)) &= S_0^{(3)} \oplus S_2^{(3)} \oplus S_4^{(3)} \oplus S_7^{(3)} = 1 \oplus x_1 \oplus x_2 \oplus x_2 x_1 x_0 \end{split}$$

and $\tau_f(f) = f_{67}^{(3)}$, $p = \varphi(f) = p_{67}^{(3)}$ and $\tau_p(\varphi(f)) = \tau_p(p) = p_{149}^{(3)}$. b) Let n = 4 and $\underline{\alpha}^T = (0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1)$, then

$$\underline{k} = \mathbf{A}^{(4)} \underline{\alpha} =$$

	/1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 \	$\langle 0 \rangle$		(0)	
=	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		1	
	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1		1	
	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1		1	
	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0		0	
	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	1		1	
	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	_	1	
	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	=	1	
	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0		0	
	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1		1	
	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0		0	
	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1		1	
	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	0		0	
	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0		0	
	$\backslash 1$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1/	$\backslash_1/$		1/	

As $\underline{\alpha} = \underline{k}$, f belonging to $\underline{\alpha}$ is a polynomial-like Boolean function of 4 variables. This is not surprising. The last part of $\underline{\alpha}$ is $\underline{\alpha}^{(1)^T} = (1, 0, 1, 0, 1, 0, 0, 1)$, which is equal to $\underline{\alpha}$ in the previous example in a). Then

$$\left(\mathbf{A}^{(3)} + \mathbf{I}^{(3)}\right)\underline{\alpha}^{(1)} = \begin{pmatrix} 1\\1\\0\\0\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\1\\0\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1\\1\\0\\1\\0\\1\\1 \end{pmatrix}$$

which is exactly the first part of $\underline{\alpha}$. Particularly,

$$f = f_{38358}^{(4)} = m_1^{(4)} + m_2^{(4)} + m_4^{(4)} + m_6^{(4)} + m_7^{(4)} + m_8^{(4)} + m_{10}^{(4)} + m_{12}^{(4)} + m_{15}^{(4)} =$$

= $\overline{x}_3 \overline{x}_2 \overline{x}_1 x_0 + \overline{x}_3 \overline{x}_2 x_1 \overline{x}_0 + \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0 + \overline{x}_3 x_2 x_1 \overline{x}_0 + \overline{x}_3 x_2 x_1 x_0 +$
+ $x_3 \overline{x}_2 \overline{x}_1 \overline{x}_0 + x_3 \overline{x}_2 x_1 \overline{x}_0 + x_3 x_2 \overline{x}_1 \overline{x}_0 + x_3 x_2 x_1 x_0,$

$$p = p_{38358}^{(4)} = S_1^{(4)} \oplus S_2^{(4)} \oplus S_4^{(4)} \oplus S_6^{(4)} \oplus S_7^{(4)} \oplus S_8^{(4)} \oplus S_{10}^{(4)} \oplus S_{12}^{(4)} \oplus S_{15}^{(4)} =$$
$$= x_0 \oplus x_1 \oplus x_2 \oplus x_2 x_1 \oplus x_2 x_1 x_0 \oplus x_3 \oplus x_3 x_1 \oplus x_3 x_2 \oplus x_3 x_2 x_1 x_0$$

c) Let $f = f_{38358}^{(4)}$. Now $j^{(1)} = \left\lfloor \frac{38358}{2^{2^{4-1}}} \right\rfloor = 149 = 2^0 + 2^2 + 2^4 + 2^7$, so the right side part of $\underline{\alpha}$ is $\underline{\alpha}^{(1)^T} = (1, 0, 1, 0, 1, 0, 0, 1)$, and \underline{k} belonging to $\underline{\alpha}^{(1)}$ is equal to $\underline{k}^T = (1, 1, 0, 0, 0, 0, 1, 0)$. Then

$$\begin{aligned} x_3 p_{149}^{(3)} \oplus \left(\tau_p \left(p_{149}^{(3)}\right) \oplus p_{149}^{(3)}\right) &= \\ &= x_3 \left(1 \oplus x_1 \oplus x_2 \oplus x_2 x_1 x_0\right) \oplus \left(\left(1 \oplus x_0 \oplus x_2 x_1\right) \oplus \left(1 \oplus x_1 \oplus x_2 \oplus x_2 x_1 x_0\right)\right)\right) \\ &= x_0 \oplus x_1 \oplus x_2 \oplus x_2 x_1 \oplus x_2 x_1 x_0 \oplus x_3 \oplus x_3 x_1 \oplus x_3 x_2 \oplus x_3 x_2 x_1 x_0 = \\ &= S_1^{(4)} \oplus S_2^{(4)} \oplus S_4^{(4)} \oplus S_6^{(4)} \oplus S_7^{(4)} \oplus S_8^{(4)} \oplus S_{10}^{(4)} \oplus S_{12}^{(4)} \oplus S_{15}^{(4)} = \\ &= p_{38358}^{(4)} = \varphi(f). \end{aligned}$$

Let us consider the figure on the next page.

In the picture it can be seen a general layout realizing a switching circuit belonging to a Boolean function. At the S-boxes exactly one input is 0. The

boxes denoted by & realize the AND operation, and the boxes with $a \ge 1$ are the OR-gates. The little circles mean the negations. The box on the right side realizes either OR or the modulo 2 sum operation. In the first case C = 0, and the circuit realizes the canonical disjunctive normal form of the function, while in the second case C = 1, and the output is the Zhegalkin polynomial of the function. When the selected function is a polynomial-like Boolean function, then the result is independent of the type of the last gate.

Proposition 6. The number of the polynomial-like Boolean functions of n variables for a positive integer n is equal to $2^{2^{n-1}}$.

Proof. There is a natural bijective mapping between the polynomial-like Boolean functions of n variables and the 2^{n-1} -dimensional nullspace of the unique eigenvalue of $\mathbf{A}^{(n)}$.

Proposition 7. Let π be a permutation of the set of nonnegative integers less than n, f a Boolean function of n variables, and $(\Pi f)(x_0, \ldots, x_{n-1}) =$ $= f(x_{\pi(0)}, \ldots, x_{\pi(n-1)})$. Then $\varphi(\Pi f) = \Pi(\varphi f)$, and f is a polynomial-like Boolean function if and only if Πf is also polynomial-like. **Proof.** For any element of $\{0,1\}^n$

(1)

$$f(u_0,\ldots,u_{n-1}) = (\varphi f)(u_{\pi(0)},\ldots,u_{\pi(n-1)}),$$

so if

$$p^{(1)}(x_0, \dots, x_{n-1}) = \varphi \left(f \left(x_{\pi(0)}, \dots, x_{\pi(n-1)} \right) \right),$$

$$p^{(2)}(x_0, \dots, x_{n-1}) = (\varphi f) \left(x_{\pi(0)}, \dots, x_{\pi(n-1)} \right),$$

then

$$p^{(1)}(u_0, \dots, u_{n-1}) = f\left(u_{\pi(0)}, \dots, u_{\pi(n-1)}\right) =$$
$$= (\varphi f)\left(u_{\pi(0)}, \dots, u_{\pi(n-1)}\right) = p^{(2)}\left(u_0, \dots, u_{n-1}\right)$$

is also true, that is the mappings belonging to $p^{(1)}$ and $p^{(2)}$ are equal. In that case even the polynomials are equal, which proves the first statement.

Now suppose f is a polynomial-like Boolean function. Then $\underline{\alpha} = \underline{k}$, which implies $\underline{\alpha}' = \underline{k}'$, where $\underline{\alpha}'$ and \underline{k}' denote the vectors of the coefficients of the permuted variables. From the first part of the proposition follows that $\underline{\alpha}'$ and k' belong to the same function, so if f is polynomial-like then the function of the permuted variables is also polynomial-like.

Proposition 8. Every variable of a nonzero polynomial-like Boolean function is essential.

Proof. In the case of n = 0 this is obvious. Now let $n \in \mathbf{N}$, and let $f \neq 0$ a Boolean function of n variables. On the base of Proposition 7 it is enough to prove that x_{n-1} is an essential variable of f, if the function is a polynomiallike Boolean function. f can be written as $f = \overline{x}_{n-1}g^{(0)} + x_{n-1}g^{(1)}$, and f is independent of x_{n-1} if and only if $q^{(0)} = q^{(1)}$. In that case

$$\begin{pmatrix} \underline{k}_{(1)}^{(0)} \end{pmatrix} = \underline{k} = \mathbf{A}^{(n)} \underline{\alpha} = \begin{pmatrix} \mathbf{A}^{(n-1)} & \mathbf{0}^{(n-1)} \\ \mathbf{A}^{(n-1)} & \mathbf{A}^{(n-1)} \end{pmatrix} \begin{pmatrix} \underline{\alpha}^{(0)} \\ \underline{\alpha}^{(1)} \end{pmatrix} =$$
$$= \begin{pmatrix} \mathbf{A}^{(n-1)} & \mathbf{0}^{(n-1)} \\ \mathbf{A}^{(n-1)} & \mathbf{A}^{(n-1)} \end{pmatrix} \begin{pmatrix} \underline{\alpha}^{(0)} \\ \underline{\alpha}^{(0)} \end{pmatrix} = \begin{pmatrix} \mathbf{A}^{(n-1)} \underline{\alpha}^{(0)} \\ \underline{0} \end{pmatrix},$$

that is $k^{(1)} = 0$. But $\alpha^{(1)} = 0$ if and only if $q^{(1)} = 0$, and then f = 0, what was excluded. That means if f does not depend on x_{n-1} , then $\underline{\alpha}^{(1)} \neq \underline{k}^{(1)}$, and then $\underline{\alpha} \neq \underline{k}$, too, so f is not a polynomial-like Boolean function.

Briefly can be mentioned that Proposition 8 is true for the zero function of zero variables, but false for the zero function with at least one variable.

Proposition 9. Let $n \in \mathbf{N}$, $f = f_k^{(n)}$ and $f_k^{(n)} = \overline{x}_{n-1} f_{(k \mod 2^{2^{n-1}})}^{(n-1)} + x_{n-1} f_{\lfloor \frac{k}{2^{2^{n-1}}} \rfloor}^{(n-1)}$, where neither $f_{(k \mod 2^{2^{n-1}})}^{(n-1)}$, nor $f_{\lfloor \frac{k}{2^{2^{n-1}}} \rfloor}^{(n-1)}$ depends on x_{n-1} . If f is polynomial-like, then k = 0 or $k \ge 2^{2^{n-1}}$, and $(k \mod 2^{2^{n-1}}) = 0$ if and only if $f_{\lfloor \frac{k}{2^{2^{n-1}}} \rfloor}^{(n-1)}$ is a polynomial-like Boolean function of n-1 variables.

Proof. The zero function is polynomial-like, and in that case k = 0. If $f \neq 0$, then every variable of f is essential, so $f_{\lfloor \frac{k}{2^{2^{n-1}}} \rfloor}^{(n-1)} \neq 0$. Then $\lfloor \frac{k}{2^{2^{n-1}}} \rfloor \geq 1$ and $k \geq 2^{2^{n-1}}$.

Now suppose f polynomial-like and $\left(k \mod 2^{2^{n-1}}\right) = 0$. From this follows that $f_{\left(k \mod 2^{2^{n-1}}\right)}^{(n-1)} = 0$ and $\underline{\alpha}^{(0)} = \underline{0}$. Then

$$\begin{pmatrix} \underline{\alpha}^{(0)} \\ \underline{\alpha}^{(1)} \end{pmatrix} = \begin{pmatrix} \underline{k}^{(0)} \\ \underline{k}^{(1)} \end{pmatrix} = \underline{k} = \mathbf{A}^{(n)} \underline{\alpha} = \begin{pmatrix} \mathbf{A}^{(n-1)} & \mathbf{0}^{(n-1)} \\ \mathbf{A}^{(n-1)} & \mathbf{A}^{(n-1)} \end{pmatrix} \begin{pmatrix} \underline{\alpha}^{(0)} \\ \underline{\alpha}^{(1)} \end{pmatrix} = \\ = \begin{pmatrix} \mathbf{A}^{(n-1)} & \mathbf{0}^{(n-1)} \\ \mathbf{A}^{(n-1)} & \mathbf{A}^{(n-1)} \end{pmatrix} \begin{pmatrix} \underline{0} \\ \underline{\alpha}^{(1)} \end{pmatrix} = \begin{pmatrix} \underline{0} \\ \mathbf{A}^{(n-1)} \underline{\alpha}^{(1)} \end{pmatrix}$$

and $\underline{\alpha}^{(1)} = \underline{k}^{(1)} = \mathbf{A}^{(n-1)} \underline{\alpha}^{(1)}$, so $f_{\lfloor \frac{k}{2^{2^{n-1}}} \rfloor}^{(n-1)}$ is a polynomial-like Boolean

function of n-1 variables.

References

- Abbott J.C., Sets, lattices and Boolean algebras, Allyn and Bacon, Boston, MA, 1964.
- [2] Flegg H.G., Boolean algebra and its application, J. Wiley and Sons, New York, 1964.
- [3] Gonda J., Transformation of the canonical disjunctive normal form of a Boolean function to its Zhegalkin polynomial and back, Annales Univ. Sci. Budapest. Sect. Comp., 20 (2001), 147-156.
- [4] Gonda J., The structure of the Boolean-Zhegalkin transform, Annales Univ. Sci. Budapest. Sect. Comp., 23 (2004), 25-40.

(Received February 11, 2003)

J. Gonda

Department of Computer Algebra Eötvös Loránd University Pázmány Péter sét. 1/C H-1117 Budapest, Hungary