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RELATION BETWEEN BENT FUNCTIONS
AND HIGHLY NONLINEAR FUNCTIONS

I. Licskó (Budapest, Hungary)

Abstract. The highly nonlinear odd-dimensional Boolean-functions have

many applications in the cryptographic practice, that is why the research

of this class of functions and the construction of such functions has a great

importance. This study focuses on some types of functions having special

characteristics in the class of highly nonlinear odd-dimensional Boolean-

functions. Upper bound can be given for the number of non-zero linear

structures of such functions [2]. The relation between bent functions and

highly nonlinear odd-dimensional functions is shown in this article.

1. Introduction

Different types of ciphers use Boolean functions. So, LFSR based stream
ciphers use Boolean functions as a nonlinear combiner or a nonlinear filter,
block ciphers use Boolean functions in substitution boxes and so on. Boolean
functions used in ciphers must satisfy some specific conditions to resist different
attacks. One of the most important properties of the Boolean functions desired
for a LFSR based stream cipher is the nonlinearity. Other important properties
are correlation immunity, high algebraic degree, balancedness and so on. For
Boolean functions used in block ciphers the most important properties are
nonlinearity and differential (or autocorrelation) characteristics (propagation
degree, avalanche criterion, the absolute indicator and so on) based on the
autocorrelation coefficients of Boolean functions.
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2. Preliminaries

The mapping f : {0, 1}n → {0, 1} is called a Boolean-function. Sometimes
the mapping f : {0, 1}n → {−1, 1} is used instead of the Boolean-function.
The relation between f and f can be described as follows

f(x) = (−1)f(x)

or
f(x) = 1− 2f(x).

In the following we use the notation f(x) to denote the whole {−1, 1}
sequence generated by f(x), that means f(x) can be regarded as a vector
having 2n elements.

The elements of the set {0, 1}n can be regarded as vectors. In this case
{0, 1}n is a vector space called Boolean-space. As the coordinates of these
vectors are the numbers 0 and 1, the vector can be regarded as an integer
written in binary form. We can refer to a vector by an integer and in this case
the components of the vector show the binary representation of the integer. It
is also possible to refer to a vector by an indexed name where the index is the
integer corresponding to the vector.

The weight of a function f(x) is the number of 1’s in its truth table

w(f) =
∑

x∈{0,1}n

f(x).

The function f(x) is called balanced if the number of 1’s and the number
of 0’s in its truth table is equal, that is

∑
x∈{0,1}n

f(x) = 0, and the weight of a

balanced function is w(f) = 2n−1.

Ordinary operations are defined by components in GF(2). If a, b ∈
∈ {0, 1}n, a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1), then a ⊕ b =

= (a0⊕ b0, a1⊕ b1, . . . , an−1⊕ bn−1) is the sum and ab =
n−1⊕
i=0

aibi is the scalar

product of the two vectors.
If the Zhegalkin-polynomial of the Boolean-function f(x0, x1, . . . xn−1) is

equal to
a0x0 ⊕ a1x1 ⊕ . . .⊕ an−1xn−1 ⊕ c,
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where c, ai ∈ {0, 1} for 0 ≤ i ≤ n − 1, the function is called affine, and
the function is linear in the special case if c = 0. A linear function can be
regarded as the scalar product of the vector x of the variables and the constant
a ∈ {0, 1}n. The function f satisfies the propagation criterion regarding an
element a ∈ {0, 1}n, a 6= 0, if f(x) ⊕ f(x ⊕ a) is balanced. The distance
between the functions f and g is

d(f, g) = w(f ⊕ g) =
∑

x∈{0,1}n

(f(x)⊕ g(x)),

while their correlation is defined as

c(f, g) =
∑

x∈{0,1}n

f(x)g(x) =
∑

x∈{0,1}n

(−1)f(x)⊕g(x) = 2n − 2d(f, g).

The autocorrelation function rf (a) of f is defined as

rf (a) =
∑

x∈{0,1}n

f(x)f(x + a).

This expression is in principle the scalar product of the 2n-dimensional vectors
ξ(0), ξ(a), where ξ(0) is given by f(x) and ξ(a) is given by f(x + a).

A matrix H = (hi,j), where hij ∈ {−1, 1} for i, j = 0, 1, . . . , m−1, is called
Hadamard matrix if HHT = mI. HT means the transpose of H, and I is the
identity matrix of order m. The 2n-order Hadamard-matrix is denoted by Hn

and it can be generated by the following recursive process:

H0 = 1, Hn =
[

Hn−1 Hn−1

Hn−1 −Hn−1

]
, n = 1, 2, . . . .

The rows of Hn are denoted by li, i = 0, 1, . . . , 2n − 1. li can be regarded as
a {−1, 1} sequence generated by the linear function ix. The {−1, 1} sequences
of all linear functions in {0, 1}n appear in the rows of Hn.

The Walsh-transform of the function f at a = (a0, a1, . . . , an−1) ∈ {0, 1}n

is
F (a) =

∑

x∈{0,1}n

f(x)(−1)ax,

while the Walsh-transform of f is defined as

F (a) =
∑

x∈{0,1}n

(−1)f(x)⊕xa.
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The value F (a) is the correlation of function f with the linear functions ax and
it can be written as the scalar product (f(x)la).

A Boolean-function f is called bent function, if for all a ∈ {0, 1}n the
correlation of f with the linear function ax has constant absolute-value

∣∣F (a)
∣∣ =

∣∣∣∣∣∣
∑

x∈{0,1}n

(−1)f(x)⊕xa

∣∣∣∣∣∣
= 2

n
2 .

The Wiener-Khintchine theorem represents the relation between the Hadamard-
matrix Hn, the auto-correlation function of f and its correlation with the linear
functions

(
f(x)f(x⊕ a0), . . . , f(x)f (x⊕ a2n−1)

)
Hn =

((
f(x)l0

)2
, . . . ,

(
f(x)l2n−1

)2
)

,

where li means the rows of Hn (see [8]).

The non-linearity of a function f , denoted by Nf , is the distance between
f and the set of affine functions

Nf = 2n−1 − 1
2

max
i=0,1,...,2n−1

(∣∣f(x)li
∣∣) .

The minimal value of the non-linearity is 0, which is the non-linearity of the
affine functions. The maximum of the non-linearity is obtained if

∣∣f(x)li
∣∣ = 2

n
2

for every i and this maximal value can be realized by the bent functions, whose
non-linearity Nf = 2n−1 − 2

n
2−1. Such functions exist only in a space of even

dimensions. Despite their favourable characteristics with respect to the non-
linearity they are not preferred for cryptographic applications because these
functions are never balanced, correlation-immune, etc.

In the cryptographic practice highly nonlinear functions are preferred
to bent functions. Highly nonlinear functions exist only in odd dimensional
Boolean-space, their correlation with the linear functions takes only the values
0 and ±C and the number of linear functions having nonzero correlation with
the given functions is 2n−1. Among the highly nonlinear functions one can
find pairs of functions characterized as follows. Considering a given linear
function, its correlation with the members of such a pair never takes the
same absolute value and this statement is true for all linear functions. This
characteristic can be formalized as follows. Let n be an odd positive integer and
g1, g2 : {0, 1}n → {0, 1} highly nonlinear functions that means their correlation
with linear functions takes only the values 0 and ±C and the number of linear
functions having non-zero correlation with the two functions is 22m, where
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2m = n− 1. The set of linear functions having non-zero correlation with g1 is
disjoint from the set of linear functions having non-zero correlation with g2 if
and only if (g1(x)li)2 + (g2(x)li)2 = 22n−2m for each i = 0, 1, . . . , 2n−1. The
two sets of linear functions are disjoint when from (g1(x)li)2 = 0 follows that
(g2(x)li)2 6= 0, and conversely.

3. Relation between bent functions and highly nonlinear odd dimen-
sional functions

It is possible to construct bent functions of a one-level higher dimension by
the use of odd dimensional highly non-linear functions. Let us consider a pair
of highly nonlinear functions g1 and g2 whose correlation with a given linear
function never takes the same absolute value. The following algorithm can be
applied. Copying the truth-table of g2 after the truth-table of g1 so that in
the rows of g1 xn = 0 and in the rows of g2 xn = 1 is written respectively, the
resulting truth-table is the truth-table of a bent function in a one-level higher
dimension. This can be formulated by

f = (xn ⊕ l)g1 ⊕ xng2.

In this way we can produce two bent functions from a pair of highly nonlinear
functions. The conditions are given in

Theorem 1. Let n be an odd positive integer, g1, g2 : {0, 1}n → {0, 1}
Boolean-functions whose correlation with the linear-functions takes only the
vales 0 and ±C. The number of the linear functions having non-zero correlation
with the given functions is 22m for both functions and (g1(x)li)2 + (g2(x)li)2 =
= 22n−2m for each i = 0, 1, . . . , 2n−1. The functions f1, f2 : {0, 1}n+1 → {0, 1},
in detail

f1(x0, . . . , xn−1, xn) = (xn ⊕ 1)g1(x0, . . . , xn−1)⊕ xng2(x0, . . . , xn−1)

and

f2(x0, . . . , xn−1, xn) = (xn ⊕ 1)g2(x0, . . . , xn−1)⊕ xng1(x0, . . . , xn−1),

constructed in this manner are n + 1 dimensional Boolean-functions, and they
are bent functions in the n + 1 dimensional Boolean-space.

Proof. The function-values for both functions are

f1(x0, . . . , xn−1, xn) =
{

g1(x0, . . . , xn−1) if xn = 0,
g2(x0, . . . , xn−1) if xn = 1
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and

f2(x0, . . . , xn−1xn) =
{

g2(x0, . . . , xn−1) if xn = 0,
g1(x0, . . . , xn−1) if xn = 1.

Let us use the following notations

y ∈ {0, 1}n+1, b ∈ {0, 1}n+1, x ∈ {0, 1}n, a ∈ {0, 1}n,

y = (x0, . . . , xn−1, xn), y = (x, xn), b = (a0, . . . , an−1, bn), b = (a, bn).

The correlation-value of f1 with the linear function by is

(f1(y)lk) =
2n+1−1∑

y=0

(−1)f1(y)⊕by,

where yb = ax + bnxn is the scalar product of y and b. This equation above
can be split in two sums:

(f1(y)lk) =
2n+1−1∑

y=0

(−1)f2(y)⊕by =
2n−1∑
x=0

xn=0

(−1)(xn⊕1)g1(x)⊕xng2(x)⊕ax⊕bnxn+

+
2n−1∑
x=0

xn=1

(−1)(xn⊕1)g1(x)⊕xng2(x)⊕ax⊕bnxn .

Upon having done the operations we get

(f1(y)lk) = ±2
2n−2m

2 = ±2
n+1

2

for any linear function. With f2 we get the same result, so our proposition is
proved.

Theorem 2. If n is an even positive integer and f : {0, 1}n → {0, 1} is a
bent-function, then f can be written in the following form

f(x0, . . . , xn−2, xn−1) = (xn ⊕ 1)g1(x0, . . . , xn−2)⊕ xng2(x0, . . . , xn−2),

so that g1, g2 : {0, 1}n−1 → {0, 1} are highly nonlinear functions in the n − 1
dimensional Boolean-space and they fulfill the condition (g1(x)li)2+(g2(x)li)2 =
= 22n−2m for each i = 0, 1, . . . , 2n−1, where li is the ith row of Hn−1.

Remark. This means that the truth-table of f can be cut into two parts
so that one of them is the truth-table of the function g2 and the other part
is the truth-table of g1 and both of them are highly nonlinear functions in a



Relation between bent functions and highly nonlinear functions 9

one-level lower dimension. In the rows of g1 a 0 and in the rows of g2 a 1 is
written in the column denoted by xn−1, respectively.

Proof. Let us use the following notations:

(x0, . . . , xn−2, xn−1) = x ∈ {0, 1}n, (x0, . . . , xn−2) = y ∈ {0, 1}n−1,

x = (y, xn−1), (i0, . . . , in−2, in−1) = i ∈ {0, 1}n, j ∈ {0, 1}n−1, i = (j, in−1).

Because f is a bent-function, it is true for each i that

2n−1∑
x=0

(−1)f(x)⊕ix = ±2
n
2 .

The sum on the left hand side can be decomposed in two sums and using the
introduced notations we get

2n−1−1∑
x=0

xn=0

(−1)f(x0,...,xn−2,0)⊕(i0,...,in−2,in−1)(x0,...,xn−2,0)+

+
2n−1−1∑

x=0
xn=1

(−1)f(x0,...,xn−2,1)⊕(i0,...,in−2,in−1)(x0,...,xn−2,1) = ±2
n
2 .

Upon having done the operations one can see that both of f(x0, . . . , xn−2, 0)
and f(x0, . . . , xn−2, l) are n− 1-dimensional functions. Substituting f(x0, . . . ,
xn−2, 0) by g1(x0, . . . , xn−2) and f(x0, . . . , xn−2, 1) by g2(x0, . . . , xn−2) we get

2n−1−1∑
y=0

(−1)g1(y)⊕jy +
2n−1−1∑

y=0

(−1)g2(y)⊕jy = ±2
n
2 ,

or
2n−1−1∑

y=0

(−1)g1(y)⊕jy −
2n−1−1∑

y=0

(−1)g2(y)⊕jy = ±2
n
2 ,

depending on the value of in−1. After squaring the two equations and adding
them together we get

(g1(y)lj)
2 + (g2(y)lj)

2 = 2n

for each j. As g1 and g2 are n− 1 dimensional functions and 2m = (n− 1)− 1,

n = 2(n− 1)− 2m,
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that is the two functions fulfill the criterion of (g1(x)li)2 +(g2(x)li)2 = 22n−2m,
so they have the stated properties.

4. Summary

The results indicate that there is a relationship between bent functions
and highly nonlinear functions. A pair of highly nonlinear functions defines two
bent functions in a one-level higher dimension and the bent functions define a
pair of highly nonlinear functions in a one-level lower dimension.
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[2] Licskó I., Construction of highly nonlinear functions, Annales Univ. Sci.
Budapest. Sect. Comp., 23 (2004), 179-192.
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módszerei (Methods of algorithmic data protection), Technical University
of Budapest, non-published manuscript.

[8] Zhang X.M. and Zheng Y., New lower bounds on nonlinearity and
class of highly nonlinear functions, Information Security and Privacy,
Second Australian Conference Sidney, Australia, July 1997, Lecture Notes
in Computer Science 1270, Springer, 1997, 147-158.

(Received March 18, 2002)

I. Licskó
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