
Annales Univ. Sci. Budapest., Sect. Comp. 24 (2004) 295-306

ON SETS CHARACTERIZING
THE IDENTITY FUNCTION

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor Imre Kátai
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Abstract. We prove that if a function f with f(4)f(9) 6= 0 and a positive

integer k satisfy the condition

f
(
n2 + m2 + k

)
= f(n2) + f(m2 + k) for all n,m ∈ IN,

then f(n) = n for all positive integers n, (n, 2k) = 1.

In this paper, we let IN, IN0 and P stand for the set of positive integers,
non-negative integers and prime numbers, respectively. We denote by M the
set of all multiplicative functions f such that f(1) = 1. Furthermore, we deal
with the set B ⊂ IN of non-negative integers which can be represented as a sum
of two squares of integers and with S the set of all squares of positive integers.

Following C. Spiro [7], we say that subsets A and B of IN are additive
uniqueness sets (AU-sets) for M if there is exactly one element f ∈ M which
satisfies

f(a + b) = f(a) + f(b) for all a ∈ A and b ∈ B.

In 1992 C. Spiro [7] showed that A = B = P are AU-sets for M. In the paper
[3] written jointly with J.-M. DeKoninck and I. Kátai we proved that A = S
and B = P are also AU-sets for M. For other results we refer to [1], [2] and
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[6]. For example, in [6] we proved that if a multiplicative function f satisfies
the equation

f(n2 + m2 + 3) = f(n2 + 1) + f(m2 + 2)

for all positive integers n and m, then either f(n) = n or

f(n2 + 1) = f(m2 + 2) = f(n2 + m2 + 3) = 0 for all n, m ∈ IN.

Our purpose of this paper is to prove the following

Theorem. Assume that k ∈ IN and f ∈M satisfy the condition

f
(
n2 + m2 + k

)
= f(n2) + f(m2 + k) for all n, m ∈ IN.

If f(4)f(9) 6= 0, then

f (n) = n for all n ∈ IN, (n, 2k) = 1.

If f(9) = 0, then k ≡ 2 (mod 3), f(n2) = χ3(n) for all n ∈ IN and

(i) f(n2 + m2 + k) = χ3(n) + χ3(m)− 1 for all n ∈ IN, m ∈ IN0.

If f(9) 6= 0,f(4) = 0 then either k ≡ 3 (mod 4) and

(ii) f(n2 + m2 + k) = χ2(n) + χ2(m)− 1 for all n ∈ IN, m ∈ IN0,

or k ≡ 0 (mod 4) and

(iii) f(n2 + m2 + k) = χ2(n) + χ2(m) for all n ∈ IN, m ∈ IN0.

In the last two cases (ii) and (iii) we have f(n2) = χ2(n) for all n ∈ IN .
Here χi denotes the principal character (mod i), that is

χi(n) =
{

1, if (n, i) = 1
0 if i|n.

First we prove the following

Lemma 1. Let a and b be non-negative integers and F be an arithmetical
function, for which the condition

(1) F (n2 + m2 + a + b) = F (n2 + a) + F (m2 + b)
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is satisfied for all n,m ∈ IN . For each j ∈ IN let Sj := F (n2 + a). Then

(2) Sn+12 = Sn+9 + Sn+8 + Sn+7 − Sn+5 − Sn+4 − Sn+3 + Sn

holds for all n ∈ IN and

(3)





S7 = 2S5 − S1,
S8 = 2S5 + S4 − 2S1,
S9 = S6 + 2S5 − S2 − S1,
S10 = S6 + 3S5 − S3 − 2S1,
S11 = S6 + 4S5 − S3 − S2 − 2S1,
S12 = S6 + 4S5 + S4 − S2 − 4S1.

Proof. Let F be an arithmetical function with the condition (1). From
(1) we have

F (n2 + a) + F (m2 + b) = F (m2 + a) + F (n2 + b)

for all n,m ∈ IN , and so

F (n2 + b)− F (n2 + a) = F (1 + b)− F (1 + a) := D for all n ∈ IN.

Thus, we get from (1) that

(4) F (n2 + m2 + a + b) = F (n2 + a) + F (m2 + a) + D

holds for all n,m ∈ IN . In the following for each j ∈ IN let Sj := F (j2 + a).
It follows from (4) that if the positive integers k, l, u and v satisfy the condition

k2 + l2 = u2 + v2,

then
F (k2 + l2 + a + b) = F (k2 + a) + F (l2 + a) + D =

= F (u2 + v2 + a + b) = F (u2 + a) + F (v2 + a) + D,

which shows that

(5) k2 + l2 = u2 + v2 implies Sk + Sl = Su + Sv.

Since
(2n + 1)2 + (n− 2)2 = (2n− 1)2 + (n + 2)2

and
(2n + 1)2 + (n− 7)2 = (2n− 5)2 + (n + 5)2
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hold for all n ∈ IN , we get from (5) that

(6) S2n+1 + Sn−2 = S2n−1 + Sn+2

and
S2n+1 + Sn−7 = S2n−5 + Sn+5.

These imply that

Sn+5 − Sn+2 + Sn−2 − Sn−7 = S2n−1 − S2n−5 =

= Sn+1 − Sn−3 + S2n−3 − S2n−5 = Sn+1 − Sn−3 + Sn − Sn−4,

which proves (2).

Now we prove (3). Indeed, by using (6), we have

S7 = S2.3+1 = 2S5 − S1,

S9 = S2.4+1 = S7 + S6 − S2 = S6 + 2S5 − S2 − S1

and
S11 = S2.5+1 = S9 + S7 − S3 = S6 + 4S5 − S3 − S2 − 2S1.

Finally, by using (5) and the facts

82 + 12 = 72 + 42, 102 + 52 = 112 + 22 and 122 + 12 = 92 + 82,

we have
S8 = S7 + S4 − S1 = 2S5 + S4 − 2S1,

S10 = S11 + S2 − S5 = S6 + 3S5 − S3 − 2S1

and
S12 = S9 + S8 − S1 = S6 + 4S5 + S4 − S2 − 4S1,

which completes the proof (3). Lemma 1 is proved.

Remark. It follows easily from (2) and (3) that

F (j2+a) = j2+a for all j ∈ IN if F (j2+a) = j2+a for j = 1, · · · , 6.

Lemma 2. Assume that k ∈ IN and f ∈M satisfy the condition

f
(
n2 + m2 + k

)
= f(n2) + f(m2 + k) for all n, m ∈ IN.
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If f(4)f(9) 6= 0, then

f (µ + k) = µ + k for all µ ∈ B

and
f(ν) = ν for all ν ∈ S,

where B ⊂ IN is the set of non-negative integers which can be represented as a
sum of two squares of integers and S is the set of all squares of positive integers.

If f(9)f(4) = 0, then statements (i)− (iii) in the theorem are true.

Proof. Assume that k ∈ IN and f ∈M satisfy the condition

(7) f
(
n2 + m2 + k

)
= f(n2) + f(m2 + k) for all n, m ∈ IN.

We shall use the notations and the result of Lemma 1 with a = 0 and b = k.
Let Sj := f(j2). It follows from (7) that

(8) f(n2 + m2 + k) = f(n2) + f(m2) + D and f(n2 + k) = f(n2) + D

hold for all n,m ∈ IN , where D = f(k + 1)− f(1) = f(k + 1)− 1.
First we note from (8) that if t2 = u2 + v2, then

f(t2 + k) = f(t2) + D and f(t2 + k) = f(u2) + f(v2) + D.

Thus, we have

(9) f(t2) = f(u2) + f(v2) if t2 = u2 + v2.

For each odd prime p let t = (p2 + 1)/2 and u = (p2 − 1)/2. Then

t2 = u2 + p2 and (p, tu) = 1,

and so from (9) we have

f
(
t2

)
= f

(
u2

)
+ f

(
p2

)
.

On the other hand, for each non-negative integer α

[pαt]2 = [pαu]2 +
[
pα+1

]2
and f

[
p2αt2

]
= f

[
p2αu2

]
+ f

[
p2(α+1)

]
,

which using the multiplicatity of f imply

f
[
p2(α+1)

]
= f(p2)f

(
p2α

)
and f

[
p2α

]
=

(
f(p2)

)α
,
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consequently

(10) Spα = (Sp)
α for all α ∈ IN.

Similarly, by using 52 = 42 + 32 and 172 = 152 + 82, we also have

(11) f
(
22α+4

)
= f(24)f(22α)

and

(12) f
(
22α+6

)
= f(26)f(22α).

Since 52 = 42 + 32 and 6 = 2 · 3, we have

(13)
{

S5 = S4 + S3,
S6 = S2S3.

Therefore, we infer from (3), (10)-(11) and (13) that

(14)

{
S8 = S2S4 = 3S4 + 2S3 − 2,
S9 = (S3)2 = S2S3 + 2S4 + 2S3 − S2 − 1,
S12 = S3S4 = S2S3 + 5S4 + 4S3 − S2 − 4.

On the other hand, we get from (8) and by using the multiplicatity of f
that [

f
(
n2

)
+ D

] [
f

(
n2

)
+ 1 + D

]
= f

(
n2 + k

)
f

(
n2 + 1 + k

)
=

= f
[(

n2 + k
)2

+ n2 + k
]

= f
[(

n2 + k
)2

]
+ f

(
n2

)
+ D,

which gives

f
[(

n2 + k
)2

]
=

[
f

(
n2

)
+ D

]2

and so

(15) Sk+n2 = (Sn + D)2.

Case I: S3 = 0.

We assume that S3 = 0. In this case, from (14) we have

S9 = 2S4 − S2 − 1 = 0 and S12 = 5S4 − S2 − 4 = 0,
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consequently S2 = S4 = 1. Hence we infer from (14)-(15) that S3 = S6 =
= S12 = 0 and S1 = S2 = S4 = S5 = S7 = S8 = S10 = S11 = 1, which with (2)
imply that the sequence {Sn}∞n=1 is periodic, namely

(16) Sn = χ3(n) =
{

1, if (n, 3) = 1,
0 if 3|n.

Applying (15)-(16) with n = 1 and n = 3, we have

(17) Sk+32 = Sk = f(k2) = D2 and Sk+1 = f
[
(k + 1)2

]
= (D + 1)2.

Thus, we infer from (16) and (17) that k 6≡ 1 (mod 3), consequently (k +
+5, k + 8) = (k − 1, 3) = 1. On the other hand, we have

f(k+5) = f(1)+f(22)+D = 2+D and f(k+8) = f(22)+f(22)+D = 2+D,

which imply that

(D + 2)2 = f(k + 5)f(k + 8) = f
[
(k + 6)2 + 22 + k

]
=

= f
[
(k + 6)2

]
+ f(22) + D = Sk + D + 1 = D2 + D + 1.

This implies D = −1. Therefore, we have Sk+1 = f{(k + 1)2} = (D + 1)2 = 0,
and (16) gives k ≡ 2 (mod 3). So, the assertion (i) of Lemma 2 is proved.

Case II: S3 6= 0.

In the following we assume that S3 6= 0. Since 142 + 22 = 102 + 102,
182 + 42 = 142 + 122, we get from (2) and (13)-(14) that

S10 = S2S3 + 3S4 + 2S3 − 2

and
S18 = S14 + S12 − S4 = S12 + 2S10 − S4 − S2 =

= S12 + 2S2S3 + 5S4 + 4S3 − S2 − 4 = 2S12 + S2S3.

Thus, by using the facts S18 = S2S
2
3 and S3 6= 0, we infer

S2S3 = 2S4 + S2,

which with (14) implies that

S4 =
(

S3 − 1
2

)2

and S3

(
S3 − 1

2

)2

= 7
(

S3 − 1
2

)2

+ 8
(

S3 − 1
2

)
.
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It is clear from the last relation that if x =
(

S3−1
2

)
, then

(2x + 1)x2 − 7x2 − 8x = 2x(x + 1)(x− 4) = 0.

Case II.1: x = 0, S3 = 1, S4 = 0.

In this case, it follows from (2) and (13)-(14) that the sequence {Sn}∞n=1

is periodic, namely Sn = S(n,4). Therefore

Sk+4 = Sk, Sk+42 = Sk and Sk+32 = Sk+1.

Thus, from (15) we have

(18)
{

Sk = (S2 + D)2 = D2,
Sk+1 = (D + 1)2 .

If k ≡ 1 (mod 4), then (18) gives S2 = 0 and D = −1, in which case we have

(19) f

[(
k + 3

2

)2

+ 22 + k

]
= f

[(
k + 5

2

)2]
,

that is 0 + 0− 1 = 1, a contradiction.
If k ≡ 2 (mod 4), then (18) implies that

S2 = D2, 1 = (D + 1)2 and S2 = (S2 + D)2.

The last relations imply D = S2 = 0 or D = −2, S2 = 4. Since

(
k

2

)2

+ 1 + k =
(

k

2
+ 1

)2

,

which is impossible in the case D = S2 = 0. Assume that D = −2, S2 = 4.
Then

f(k + 5) = f(1) + f(22) + D = 1 + 4− 2 = 3

and
f(k + 8) = f(22) + f(22) + D = 4 + 4− 2 = 6,

which is a contradiction in the case (k − 1, 3) = 1, because

18 = f(k + 5)f(k + 8) = f
[
(k + 6)2 + 22 + k

]
= f

[
(k + 6)2

]
+ f(22) + D =

= Sk+6 + S2 + D = S4 + S2 + D = 0 + 4− 2 = 2.



On sets characterizing the identity function 303

On the other hand, if k ≡ 1 (mod 3), then

(k + 37, k + 40) = 1 and (k + 37)(k + 40) = (k + 38)2 + 62 + k,

which also is a contradiction, because

f(k+37) = f(62+12+k) = 4+1−2 = 3, f(k+40) = f(62+22+k) = 4+4−2 = 6

and
f

[
(k + 38)2 + 62 + k

]
= 0 + 4− 2 = 2.

Finally, it remains to consider the cases k ≡ 0 (mod 4) and k ≡ 3
(mod 4). First, let k ≡ 0 (mod 4). In this case (18) implies that D = S2 = 0.
Thus, we have proved that if k ≡ 0 (mod 4), then S2 = 0 and

f(n2+m2+k) = f(n2)+f(m2) and f(n2) = χ2(n) for all n ∈ IN, m ∈ IN0.

Now let k ≡ 3 (mod 4). In this case (18) implies (D,S2) = (−1, 0) or
(D,S2) = (−1, 2). Assume that (D, S2) = (−1, 2), then it follows from (19)
that

1 + 2− 1 = f

[(
k + 3

2

)2]
+ f(22) + D = f

[(
k + 5

2

)2]
= 0,

which is impossible. So

f(n2 + m2 + k) = f(n2) + f(m2)− 1 and f(n2) = χ2(n)

hold for all n ∈ IN, m ∈ IN0. Thus, (ii) and (iii) are proved.

Case II.2: x = −1, S3 = −1, S4 = 1 and S5 = 0.

In this case, it follows from S2S3 = 2S4 + S2 that S2 = −1. So, it follows
from (2) that the sequence {Sn}∞n=1 is also periodic, namely

Sn = Sm if n ≡ m (mod 5) and Sj ∈ {1,−1,−1, 1, 0}

for all j ∈ IN . We infer from (15) that

Sk = D2 since Sk+52 = Sk and Sk+52 = (S5 + D)2 = D2,

consequently Sk = D2 ∈ {0, 1}.
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Assume first that Sk = D = 0. In this case, we have k ≡ 0 (mod 5) and
so (k + 8, k + 13) = (k − 2, 5) = 1. Since

f(k + 8) = f
(
22 + 22 + k

)
= S2 + S2 + D = −1− 1 + 0 = −2

and

f(k + 13) = f(22 + 32 + k) = S2 + S3 + D = −1− 1 + 0 = −2,

we have

4 = f(k+8)f(k+13) = f
(
(k + 10)2 + 22 + k

)
= Sk+10+S2+D = Sk−1 = −1,

which is impossible.
Assume now that Sk = D2 = 1. We get from (15) that

Sk+1 = (S1 + D)2 = (D + 1)2 ∈ {0, 1},

and
Sk+4 = (S4 + D)2 = (D − 1)2 ∈ {0, 1},

consequently D 6= ±1. This is a contradiction, because D2 = 1.

Case II.3: x = 4, S3 = 9, S4 = 16, S5 = 25 and S6 = 36.

It is clear from (2)-(3) that in this case Sj = f(j2) = j2 for all j ∈ IN . It
is remains to prove that D = k. Indeed, if k is odd, then

(
k − 1

2

)2

+ k =
(

k + 1
2

)2

with (8) implies

(
k + 1

2

)2

= f

[(
k + 1

2

)2
]

=
(

k − 1
2

)2

+ D,

that is D = k. If k is even, then by

(
k

2

)2

+ 1 + k =
(

k

2
+ 1

)2

,

we have (
k

2
+ 1

)2

= f

[(
k

2

)2

+ 1 + k

]
=

(
k

2

)2

+ 1 + D,
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which implies that D = k. Finally, from f(k + 1) = f(1) + D = k + 1 and

(k + 1)f(k) = f(k + 1)f(k) = f [k(k + 1)] = f
[
k2 + k

]
= f(k2) + D = k2 + k,

we have f(k) = k. This completes the proof of Lemma 2.

Now we prove our theorem. We will complete the proof of our theorem by
showing the following

Lemma 3. Let B ⊂ IN be the set of non-negative integers which can be
represented as a sum of two squares of integers. If k ∈ IN and f ∈ M satisfy
the condition

(19) f (µ + k) = µ + k for all µ ∈ B,

then f (n) = n for all n ∈ IN, (n, 2k) = 1.

Proof. Assume that n ∈ IN with the condition (n, 2k) = 1. It follows
from Theorem 1 of [5] that there are positive integers µ and ν such that

n(µ + k) = ν + k and (n, µ + k) = 1.

Thus, from (19) we infer that

n(µ + k) = ν + k = f (ν + k) = f [n(µ + k)] =

= f(n)f (µ + k) = f(n) (µ + k) ,

which proves that

f(n) = n for all n ∈ IN, (n, 2k) = 1.

The proof of our Theorem is completed.
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