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Hp MULTIPLIERS ON THE DYADIC FIELD

J.E. Daly (Colorado Springs, CO, USA)
S. Fridli (Budapest, Hungary)

Dedicated to Professor I. Kátai on the occasion of his 65th birthday

Abstract. In this paper we consider a classical multiplier condition, the

Hörmander-Mihlin condition, originally introduced for the trigonometric

case. It implies that the multiplier operator is bounded on Lp, 1 < p <
< ∞. Here we study the corresponding problem with respect to the Walsh

transform and the noncompact dyadic Hardy spaces Hp[0,∞), 0 < p < 1.
We also show that our result is sharp. We note that a similar program was

carried out for the trigonometric case and the classical Hardy spaces, and

for the Walsh system and the dyadic Hardy spaces on [0, 1] in our previous

papers [1] and [2].

1. Introduction

Set R+ = [0,∞). The binary expansion of x ∈ R+ is x =
∞∑

j=−∞
xj2−j−1,

where xj = 0 or 1. In case of dyadic rationals, i.e. when there are two
expansions of this form, we take the one that terminates in 0’s. Then the
Walsh functions are defined as

(1.1) wx(y) = (−1)

∞∑
k=−∞

xky−k−1

(x, y ∈ R+).
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We note that if x = 2k (k ∈ Z) then wx(y) = w2k(y) = (−1)y−k−1 .
Consequently, w2k is equal to the k-th Rademacher function.

Let the Walsh-Dirichlet kernels be denoted by Dt :

Dt(y) =

t∫

0

wx(y) dx (t, y ∈ R+).

It is known (see [5] or [12]) that

(1.2) D2n(y) =





2n 0 ≤ y < 2−n,

0 2−n ≤ y < ∞ (n ∈ Z).

It is known that the Walsh system can be considered as the dual group
of a locally compact Vilenkin group, the dyadic group. Taibleson ([13]) has
developed a distribution theory for local fields. Following his concept of
distributions we will consider the dyadic Hardy spaces Hp(R+) (0 < p < 1) as
subspaces of the space of dyadic distributions. More precisely, Hp(R+) will be
defined by means of atomic decomposition of distributions. To this order let
the intervals of the form [k2−n, (k + 1)2−n) (k ∈ N, n ∈ Z) be called dyadic
intervals. The Lebesgue measure of a measurable set A will be denoted by |A|.
Then a function a : R+ 7→ R is a p-atom if there exists a dyadic interval I such
that

i) suppa ⊂ I, ii) ‖a‖L∞(R+) ≤ |I|−1/p, iii)
∫

I

a = 0.

We say that a dyadic distribution f belongs to Hp(R+) (0 < p < 1) if there

exist αk real numbers with
∞∑

k=0

|αk|p < ∞ and ak p-atoms such that

(1.3) f =
∞∑

k=0

αkak.

The decomposition is understood in the sense of distributions. The Hp(R+)
norm is defined by

‖f ||Hp(R+) = inf

( ∞∑

k=0

|αk|p
)1/p

with taking the infimum over all decompositions of the form (1.3).
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Let φ : R+ → R, then the Walsh multiplier operator Tφ is said to be
bounded on Hp(R+) (0 < p < 1) if for every f ∈ Hp(R+) there exists a
Tφ ∈ Hp(R+) such that

T̂φf(x) = φkf̂(x) (0 ≤ x < ∞),

where f̂ stands for the Walsh-Fourier transform. Throughout the paper C
will denote an absolute positive constant not necessarily the same in different
occurrences.

2. Results

In our first theorem we consider a Hörmander-Mihlin ([7], [9]) type
condition. We prove that it is sufficient to give boundedness on certain Hp(R+)
spaces.

Theorem 2.1. Let 1 < r ≤ 2 and
r

2r − 1
< p < 1. Suppose that ϕ ∈

∈ L∞(R+) is differentiable and the inclusion ϕ′ ∈ Lr
loc(R+) holds. If

(2.1)




2j+1∫

2j

|ϕ′(t)|r dt




1/r

≤ C2−j(1−1/r) (j ∈ Z)

then Tϕ is bounded on Hp(R+).

In our next theorem we show that Theorem 2.1 is sharp in the sense that
the condition on p can not be relaxed by replacing the right side by any number
smaller than r/(2r − 1).

Theorem 2.2. Let 1 ≤ r ≤ 2. If p < r/(2r − 1) then there exists a
differentiable ϕ ∈ L∞(R+) that satisfies (2.1), but Tφ is not bounded from
Hp(R+) to Lp(R+).

For previous results on multipliers on the dyadic Hardy spaces, and Hardy
spaces over locally compact Vilenkin groups we refer the reader to the papers
[1], [3], [4] and [11].
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3. Proofs

For the proof of Theorem 2.1 we need the following lemma which is a Sidon
type inequality. The trigonometric version of it was proved by Móricz [10].

Lemma 3.1. Let n,N ∈ Z, and 1 < q ≤ 2. Then for any γ ∈ L1
loc(R+)

we have

(3.1)

∞∫

2N

∣∣∣∣∣∣

2n∫

0

γ(t)Dt(x) dt

∣∣∣∣∣∣
dx ≤ Cq2−N(1−1/q)




2n∫

0

|γ(t)|q dt




1/q

.

Proof. Without loss of generality we may assume n > N. Let us start
with the following decomposition formula ([6]) for the Dirichlet kernels

Dt(x) = wt(x)
∞∑

j=−∞
tjw2−j−1(x)D2−j−1(x) (t, x ∈ R+).

Before using this in the left side of (3.1) note that the integration with respect
to x is over the interval [2N ,∞). By (1.2) we have that D2−j−1(x) = 0 holds
for any x ≥ 2N if j ≤ N − 1. Hence

∞∫

2N

∣∣∣∣∣∣

2n∫

0

γ(t)Dt(x) dt

∣∣∣∣∣∣
dx =

∞∫

2N

∣∣∣∣∣∣

∞∑

j=N

w2−j−1(x)D2−j−1(x)

2n∫

0

tjγ(t)wt(x) dt

∣∣∣∣∣∣
dx .

After changing the order of integration and summation we obtain

∞∫

2N

∣∣∣∣∣∣

2n∫

0

γ(t)Dt(x) dt

∣∣∣∣∣∣
dx ≤

∞∑

j=N

∞∫

2N

∣∣∣∣∣∣
w2−j−1(x)D2−j−1(x)

2n∫

0

tjγ(t)wt(x) dt

∣∣∣∣∣∣
dx .

We proceed by introducing the notation gj(x) = sgn
2n∫
0

tjγ(t)wt(x) dt, and

rewriting D2−j−1 as 2−(j+1)χ[0,2j+1], where χ[0,2j+1] is the characteristic func-
tion of [0, 2j+1]. Then, after performing a change in the order of integration,
our estimate takes the form

∞∫

2N

∣∣∣∣∣∣

2n∫

0

γ(t)Dt(x)dt

∣∣∣∣∣∣
dx ≤

∞∑

j=N

2−(j+1)

2n∫

0

tjγ(t)

∞∫

2N

χ[0,2j+1](x)gj(x)wt(x)dxdt.
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The inner integral will be considered as the Walsh-Fourier transform, in
notation ̂(gjχ[0,2j+1])(t), of gjχ[0,2j+1] at t. By using Hölder’s inequality for the
outer integral and then the Hausdorff-Young inequality for the Walsh-Fourier
transform we obtain

∞∫

2N

∣∣∣∣∣∣

2n∫

0

γ(t)Dt(x) dt

∣∣∣∣∣∣
dx ≤

∞∑

j=N

2−(j+1)‖χ[0,2n]γ‖Lq(R+)‖ ̂(gjχ[0,2j+1])‖Lp(R+) ≤

≤ Cq




2n∫

0

|γ(t)|q dt




1/q
∞∑

j=−N

2−(j+1)‖χ[0,2j+1]gj‖Lq(R+),

where 1/p + 1/q = 1.

By the definition of gj we have ‖χ[0,2j+1]gj‖Lq(R+) ≤ 2(j+1)/q. Therefore

∞∑

j=−N

2−(j+1)‖χ[0,2j+1]gj‖Lq(R+) ≤
∞∑

j=N

2−(j+1)(1−1/q) ≤

≤ Cq2−N(1−1/q)

which is the desired estimate.

Proof of Theorem 2.1. We will show that (2.1) implies that ϕ satisfies
the following condition:

(3.2)
∞∑

n=−∞
2n(p−1)




2−n∫

2−(n+1)

∣∣∣∣∣∣∣

2j∫

2j−1

ϕ(t)wt(x) dt

∣∣∣∣∣∣∣
dx




p

≤ C2j(p−1) (j ∈ Z).

It was proved by Kitada [8] that (3.2) is sufficient for Tφ be bounded on Hp(R+),
0 < p < 1. Let us split the sum in (3.2) at n = j and consider the case n ≥ j
first

I2 =
∞∑

n=j

2n(p−1)




2−n∫

2−(n+1)

∣∣∣∣∣∣∣

2j∫

2j−1

ϕ(t)wt(x) dt

∣∣∣∣∣∣∣
dx




p

.

If x < 2−n then xk = 0 for every k < n. Similarly, t < 2j means tk = 0 for every
k < −j. Since j ≤ n we have by definition (1.1) that wt(x) = 1. Therefore,

I2 =
∞∑

n=j

2n(p−1)


2−(n+1)

∣∣∣∣∣∣∣

2j∫

2j−1

ϕ(t) dt

∣∣∣∣∣∣∣




p

.
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Making use of the fact that ϕ is bounded, we obtain

I2 ≤
∞∑

n=j

2n(p−1)
(
2−(n+1)2jC

)p

≤ C2j(p−1),

which is corresponds to (3.2).
Let us take the n < j part:

I1 =
j−1∑

n=−∞
2n(p−1)




2−n∫

2−(n+1)

∣∣∣∣∣∣∣

2j∫

2j−1

ϕ(t)wt(x) dt

∣∣∣∣∣∣∣
dx




p

.

We start with using integration by parts for the integral with respect to t

2j∫

2j−1

ϕ(t)wt(x) dt = ϕ(t)Dt(x)
]2j

2j−1
−

2j∫

2j−1

ϕ′(t)Dt(x) dt .

Hence
∣∣∣∣∣∣∣

2j∫

2j−1

ϕ(t)wt(x) dt

∣∣∣∣∣∣∣
≤ |ϕ(2j)|D2j (x) + |ϕ(2j−1)|D2j−1(x) +

∣∣∣∣∣∣∣

2j∫

2j−1

ϕ′(t)Dt(x) dt

∣∣∣∣∣∣∣
.

Then we have

I1 ≤
j−1∑

n=−∞
2n(p−1)




2−n∫

2−(n+1)

|ϕ(2j−1)|D2j−1(x) + |ϕ(2j)|D2j (x) dx




p

+

+
j−1∑

n=−∞
2n(p−1)




2−n∫

2−(n+1)

∣∣∣∣∣∣∣

2j∫

2j−1

ϕ′(t)Dt(x) dt

∣∣∣∣∣∣∣
dx




p

= I11 + I12.

If n < j − 1 then [2−(n+1), 2−n] ⊂ [2−j+1, 1]. Recall that D2j = 2jχ[0,2−j), and
D2j−1 = 2j−1χ[0,2−j+1). This means that the sum in I11 reduces to a single
term

I11 = 2(j−1)(p−1)
(
2−j |ϕ(2j−1)|2j−1

)p
.

Again, it follows from the boundedness of ϕ that I11 ≤ C2j(p−1).
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Applying Lemma 3.1 to the integral in I12 we obtain

2−n∫

2−(n+1)

∣∣∣∣∣∣∣

2j∫

2j−1

ϕ′(t)Dt(x) dt

∣∣∣∣∣∣∣
dx ≤ C2(n+1)(1−1/r)




2j∫

2j−1

|ϕ′(t)|r dt




1/r

.

Hence we have by (2.1)

I22 ≤ C

j−1∑
n=−∞

2n(p−1)
(
2(n+1)(1−1/r)2j(1/r−1)

)p

=

= C2jp(1/r−1)

j−1∑
n=−∞

2n(2p−1−p/r) .

It follows from the assumption p >
r

2r − 1
that 2p− 1− p

r
> 0. Consequently,

I12 ≤ C2jp(1/r−1)2j(2p−1−p/r) = C2j(p−1).

Combining the estimates for I1, and I2 we obtain the claimed estimate.

Proof of Theorem 2.2. Set

σ(t) =





1
2
(1− cos 2πt) if 0 ≤ t ≤ 1,

0 otherwise.

Define ϕ ∈ L∞(R+) as follows

ϕ(t) =
∞∑

k=0

2−k(1−1/r)τ2kσ(t) (t ∈ R+),

where τxσ(t) = σ(t − x), x ∈ R. Then ϕ ∈ L∞(R+), suppϕ =
∞⋃

k=0

[2k, 2k + 1],

and ϕ is differentiable. Moreover




2k+1∫

2k

|ϕ′(t)|r dt




1/r

=




2k+1∫

2k

2−k(1−1/r)|2π sin 2πt|r dt




1/r

< 2π2−k(1−1/r).

Consequently, ϕ satisfies condition (2.1).
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We will define the function f ∈ Hp(R+) by means of the p-atoms

ak = 2k(1/p−1)(D2k+1 −D2k) (k ∈ N).

Let us choose the coefficients λk as

λk = 2−k(1/p+1/r−2) (k ∈ N).

Then it follows from the condition p < r/(2r− 1) that 1/p +1/r− 2 > 0. Thus
∞∑

k=0

|λk|p < ∞, i.e. f =
∞∑

k=0

λkak ∈ Hp(R+).

The action of the multiplier ϕ on f can be calculated as follows

Tϕf(x) =
∞∑

k=0

λk2k(1/p−1)2−k(1−1/r)

2k+1∫

2k

τ2kσ(t)wt(x) dt (x ∈ R+).

We will show that χ[0,1)Tϕ 6∈ Lp[0, 1). To this order let us calculate

2k+1∫

2k

τ2kσ(t)wt(x) dt, 0 ≤ x < 1.

Since wt(x) = w[t](x) (x ∈ [0, 1), t ∈ R+) (see e.g. [12]) we have

2k+1∫

2k

τ2kσ(t)wt(x) dt = w2k(x)

1∫

0

1
2
(1− cos 2πt) dt = w2k(x) (x ∈ [0, 1)) .

Consequently, χ[0,1)Tϕ takes the form of a Rademacher series. i.e.

Tϕ(x) =
∞∑

k=0

rk(x) (x ∈ [0, 1)) .

By the Khintchin inequality,
∥∥∥∥
∞∑

k=0

ckrk

∥∥∥∥
Lp([0,1)

≈
( ∞∑

k=0

c2
k

)1/2

. In particular,

1∫
0

|Tϕ(x)|p dx = ∞, i.e. Tϕ 6∈ Lp(R+).
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