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WEIGHTED (0,2)–INTERPOLATION
WITH INTERPOLATORY BOUNDARY CONDITIONS

M. Lénárd (Kuwait)

Dedicated to Professor Imre Kátai,
on the occasion of his 65th birthday

Abstract. The weighted (0,2)-interpolation is studied in a unified way

with two additional interpolatory conditions. The question is how to

choose the nodal points and the weight function w so that the problem

is regular. We formulate sufficient conditions on the nodal points and on

the weight function. In the regular cases we find simple explicit forms of

the interpolational polynomial. Special cases are presented when the nodes

are the zeros of the classical orthogonal polynomials.

1. Introduction

P. Turán initiated the study of (0,2)-interpolation in order to get an
approximate solution to the differential equation

y′′ + f · y = 0.

The first results were published by J. Surányi and P. Turán [12] in 1955. In
1961 J. Balázs [2] introduced a generalization of this problem, the weighted
(0,2)-interpolation problem: Let the system of nodes

(1) −∞ ≤ a < xn,n < xn−1,n < . . . < x1,n < b ≤ ∞
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be given in the finite (or infinite) open (or closed) interval (a, b) and let
w ∈ C2(a, b) be a weight function. Find a polynomial Rn of minimal degree
satisfying the conditions

(2) Rn(xk,n) = yk,n; (wRn)′′(xk,n) = y′′k,n (k = 1, . . . , n;n ∈ N),

where yk,n, y′′k,n are arbitrary given real numbers.
The questions are how to choose the nodal points and the weight function

w, so that the problem is regular (it has a unique solution) and in the regular
case to find simple explicit form of Rn in order to prove convergence.

J. Balázs [2] investigated the above problem on the interval [−1, 1], when
the nodes are the roots of the ultraspherical polynomial P

(α)
n (α > −1), and

the weight function is w(x) = (1 − x2)(α+1)/2. He showed, that in this case
there does not exist a polynomial of degree ≤ 2n−1 satisfying the requirements
(2). He proved, that if n is even, then under the condition

(3) Rn(0) =
n∑

k=1

yk,nl2k,n(0)

there exists a unique polynomial of degree ≤ 2n which satisfies (2) (if n is odd,
then the uniqueness fails). (Here lk,n(x) represent the Lagrange-fundamental
polynomials corresponding to the nodal points xk,n.) He gave the explicit form
of this polynomial and proved convergence theorem.

Several authors investigated the weighted (0,2)-interpolation with the
additional Balázs-type condition (3) on the roots of the classical orthogonal
polynomials (I. Joó [5], I. Joó and L. Szili [6], J. Prasad [7], [8], [9], [10],
L. Szili [14]). Then L. Szili [15] treated the weighted (0,2)-interpolational
problem with Balázs-type condition in a unified way on the roots of all
classical orthogonal polynomials with respect to the existence, uniqueness and
representation (explicit formulae).

In special cases J. Bajpai [1], S. Eneduanya [4], and J. Balázs [3] substi-
tuted the additional condition (3) with interpolatory type conditions. For more
results on (0,2) interpolation we refer to the survey paper of L. Szili [16].

In this paper we study the weighted (0,2)-interpolation problem in a
unified way with different interpolatory conditions. In these cases we determine
sufficient conditions on the nodes and the weight function, for the problem to
be regular. In the corollaries we give examples, when the nodes are the zeros
of the classical orthogonal polynomials.

The problem: On the finite or infinite interval [a, b] let xi,n, i = 0, . . . , n

be distinct points (the nodal points of interpolation), and let w ∈ C2(a, b) be a
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weight function on (a, b). Find a polynomial Qn of minimal degree satisfying
the weighted (0,2)-interpolational conditions

Qn(xi,n) = yi,n, (wQn)′′(xi,n) = y′′i,n (i = 1, . . . , n− 1),

with the additional interpolatory conditions

Qn(x0,n) = y0,n, Qn(xn,n) = yn,n, (boundary − type)

or
Qn(x0,n) = y0,n, Q′n(x0,n) = y′0,n, (initial− type)

or
Q′n(x0,n) = y′0,n, Q′

n(xn,n) = y′n,n,

where yi,n, y′0,n, y′n,n and y′′i,n are arbitrary real numbers.
In what follows, let n be a fixed positive integer and for the sake of

simplicity we will use xi instead of the double indexed xi,n. Let [a, b] be a
finite or infinite interval, and let

(4) x0, x1, . . . , xn−1, xn ∈ [a, b]

be distinct nodes. Let pn−1 be a polynomial of degree n-1, for which

(5) pn−1(xi) = 0 (i = 1, . . . , n− 1),

and let

(6) lj(x) =
pn−1(x)

p′n−1(xj)(x− xj)
(j = 1, . . . , n− 1)

be the fundamental polynomials of Lagrange interpolation corresponding to
the nodal points x1, . . . , xn−1. Hence

(7) lj(xi) = δi,j (i, j = 1, . . . , n− 1),

and

(8) l′j(xj) =
p′′n−1(xj)
2p′n−1(xj)

(j = 1, . . . , n− 1).
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2. Preliminaries

2.1. The classical orthogonal polynomials

Let us consider the homogeneous differential equation

(9) u′′ + f · u = 0.

Lemma 1. If P
(α,β)
n (α, β > −1) denotes the Jacobi polynomial of degree

n, and
w(x) = (1− x)

α+1
2 (1 + x)

β+1
2 ,

then u = wP
(α,β)
n satisfies the differential equation (9) with

f(x) =
1
4

1− α2

(1− x)2
+

1
4

1− β2

(1 + x)2
+

2n(n + α + β + 1) + (α + 1)(β + 1)
2(1− x2)

.

Proof. Cf. (4.24.1) in [13].

Lemma 2. If L
(α)
n (α > −1) denotes the Laguerre polynomial of degree

n, and
w(x) = e−

x
2 x

α+1
2 ,

then u = wL
(α)
n satisfies the differential equation (9) with

f(x) =
2n + α + 1

2x
+

1− α2

4x2
− 1

4
.

Proof. Cf. (5.1.2) in [13].

Lemma 3. If Hn denotes the Hermite polynomial of degree n, and

w(x) = e−
x2
2 ,

then u = wHn satisfies the differential equation (9) with

f(x) = 2n + 1− x2.

Proof. Cf. (5.5.2) in [13].
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2.2. The fundamental polynomials

Let us introduce the notations

r(x) = (x− x0)ε1(x− xn)ε2 ,

q(x) = (x− x0)δ1(x− xn)δ2 ,

where εi, δi ∈ {0, 1, 2, . . .} and εi ≥ δi for i = 1, 2.

Lemma 4. If on the system of nodes (4) the weight function w satisfies
the conditions

(10) w(xi) 6= 0, (qwpn−1)′′(xi) = 0 (i = 1, . . . , n− 1),

then for k = 1, . . . , n− 1 the polynomials
(11)

Ak(x) =
r(x)
r(xk)

l2k(x) +
q(x)pn−1(x)

r(xk)p′n−1(xk)
×

×


ck +

x∫

x0

[
l′k(xk)lk(t)− l′k(t)

t− xk
· r(t)
q(t)

+ aklk(t) + bkpn−1(t)
]

dt





satisfy the weighted (0,2)-interpolational conditions

(12) Ak(xi) = δi,k, (wAk)′′(xi) = 0 (i = 1, . . . , n− 1),

where

(13) ak = − (rw)′′(xk)
2(qw)(xk)

− 2l′k(xk)
(r

q

)′
(xk),

and bk, ck are arbitrary constants. Furthermore, for k = 1, . . . , n − 1 the
polynomials

(14) Bk(x) =
q(x)pn−1(x)

2q(xk)w(xk)p′n−1(xk)



ãk +

x∫

x0

[
lk(t) + b̃kpn−1(t)

]
dt





satisfy the weighted (0,2)-interpolational conditions

(15) Bk(xi) = 0, (wBk)′′(xi) = δi,k (i = 1, . . . , n− 1),

where ãk and b̃k are arbitrary constants.
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Proof. We are looking for Ak (k = 1, . . . , n− 1) in the form of

(16) Ak(x) =
1

r(xk)

{
r(x)l2k(x) + q(x)pn−1(x)gk(x)

}
,

where gk is a polynomial. From (7) it is obvious, that Ak(xi) = δi,k for i, k =
= 1, . . . , n − 1. For i 6= k, the condition (wAk)′′(xi) = 0 is equivalent to the
equation

2l′k
2(xi)w(xi)r(xi) + 2w(xi)q(xi)p′n−1(xi)g′k(xi) = 0,

and because of w(xi) 6= 0, q(xi) 6= 0, and p′n−1(xi) 6= 0, we have

g′k(xi) = − l′k
2(xi)r(xi)

p′n−1(xi)q(xi)
=

−1
p′n−1(xk)

· l′k(xi)
xi − xk

· r(xi)
q(xi)

.

This inspires us to define g′k as

g′k(x) =
1

p′n−1(xk)

{
l′k(xk)lk(x)− l′k(x)

x− xk
· r(x)
q(x)

+ aklk(x) + bkpn−1(x)
}

.

It is clear, that g′k is a polynomial, and

gk(x) =

=
1

p′n−1(xk)



ck +

x∫

x0

[
l′k(xk)lk(t)− l′k(t)

t− xk
· r(t)
q(t)

+ aklk(t) + bkpn−1(t)
]

dt



 ,

furthermore

(17) g′k(xk) =
1

p′n−1(xk)

{
r(xk)
q(xk)

[
l′k

2(xk)− l′′k(xk)
]
+ ak

}
.

The coefficient ak we determine from the condition (wAk)′′(xk) = 0, which
is equivalent to

(18)
(wr)′′(xk)+4r(xk)l′k(xk)

[
w′(xk) + w(xk)l′k(xk)

]
+

+4w(xk)r′(xk)l′k(xk) + 2w(xk)q(xk)ak = 0,

where we substituted (17). On using pn−1(xk) = 0, from the condition (10)

(wpn−1)′′(xk) = −2q′(xk)w(xk)p′n−1(xk)
q(xk)

,
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and hence, by (8)

w′(xk) + w(xk)l′k(xk) =
1

2p′n−1(xk)

[
2p′n−1(xk)w′(xk) + w(xk)p′′n−1(xk)

]
=

=
(wpn−1)′′(xk)

2p′n−1(xk)
= −q′(xk)

q(xk)
w(xk).

Thus the equation (18) can be written in the form

(wr)′′(xk) + 4l′k(xk)w(xk)
[
−r(xk)

q′(xk)
q(xk)

+ r′(xk)
]

+ 2(wq)(xk)ak = 0,

and we obtain (13) for ak (k = 1, . . . , n− 1).
Finally, applying (10) it is easy to verify that

(wBk)′′(xi) =
1

2q(xk)w(xk)p′n−1(xk)
× 2q(xi)w(xi)p′n−1(xi)lk(xi) = δi,k,

and Bk(xi) = 0 for i, k = 1, . . . , n− 1.

In the next section we will determine the constants bk, ck, ãk and b̃k, such
that, the polynomials Ak and Bk are of minimal degree and fulfil the additional
interpolational conditions for different choices of q.

3. Results

Theorem 1. For n ≥ 2 let {xi}n
i=0 be a set of distinct nodes in [a, b], and

pn−1(x) = c(x− x1) . . . (x− xn−1). Let w ∈ C2(a, b) be a weight function. If

(19)

xn∫

x0

pn−1(t)dt 6= 0,

and

(20) w(xi) 6= 0, (wpn−1)′′(xi) = 0 (i = 1, . . . , n− 1),
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then there exists a unique polynomial Qn of degree at most 2n − 1, which
fulfils weighted (0,2)-interpolational conditions at x1, . . . , xn−1 with boundary-
type conditions at x0 and xn, that is

(21)
Qn(xi) = yi (i = 0, 1, . . . , n− 1, n),

(wQn)′′(xi) = y′′i (i = 1, . . . , n− 1),

where yi, y
′′
i are arbitrary real numbers.

Proof. Applying Lemma 4 with r(x) = (x − x0)(x − xn) and q(x) = 1,
and from the condition Ak(x0) = 0 we obtain for k = 1, . . . , n− 1

(22)

Ak(x) =
(x− x0)(x− xn)

(xk − x0)(xk − xn)
l2k(x) +

pn−1(x)
(xk − x0)(xk − xn)p′n−1(xk)

×

×
x∫

x0

[
l′k(xk)lk(t)− l′k(t)

t− xk
(t− x0)(t− xn) + aklk(t)dt + bkpn−1(t)

]
dt,

where

(23) ak = −
(
(x− x0)(x− xn)w

)′′(xk)
2w(xk)

− 2l′k(xk)(2xk − x0 − xn).

From the condition Ak(xn) = 0 we get
(24)

bk =
−1

xn∫
x0

pn−1(t)dt





xn∫

x0

l′k(xk)lk(t)− l′k(t)
t− xk

(t− x0)(t− xn)dt + ak

xn∫

x0

lk(t)dt



 .

Now we are looking for A0 in the form of

A0(x) = pn−1(x)g0(x),

where g0 is a polynomial of degree at most n. It is obvious that A0(xi) = 0
(i = 1, . . . , n − 1). For the weighted second derivative at xi (i = 1, . . . , n − 1)
we have

(wA0)′′(xi) = 2w(xi)p′n−1(xi)g′0(xi) = 0,

hence
g′0(xi) = 0 i = 1, . . . , n− 1,

that is
g′0(x) = a0pn−1(x),
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and it follows

g0(x) = a0

x∫

xn

pn−1(t)dt + c0.

From the condition A0(xn) = 0 we have c0 = 0, and from A0(x0) = 1

a0 =
1

pn−1(x0)
x0∫

xn

pn−1(t)dt

,

and hence

(25) A0(x) =
pn−1(x)

pn−1(x0)
xn∫
x0

pn−1(t)dt

xn∫

x

pn−1(t)dt.

In a similar way we construct

(26) An(x) =
pn−1(x)

pn−1(xn)
xn∫
x0

pn−1(t)dt

x∫

x0

pn−1(t)dt.

It is obvious, that the polynomials Ak (k = 0, 1, . . . , n) are of degree at
most 2n − 1, and Ak(xi) = δi,k for i = 0, 1, . . . , n, and (wAk)′′(xi) = 0 for
i = 1, . . . , n− 1.

Now applying (14), from the condition Bk(x0) = 0 we get ãk = 0, and

(27) Bk(x) =
pn−1(x)

2w(xk)p′n−1(xk)

x∫

x0

[
lk(t) + b̃kpn−1(t)

]
dt,

where

(28) b̃k = −

xn∫
x0

lk(t)dt

xn∫
x0

pn−1(t)dt

is determined by the condition Bk(xn) = 0. Hence Bk is a polynomial of
degree ≤ 2n− 1, furthermore Bk(xi) = 0 (i = 0, . . . , n), and (wBk)′′(xi) = δi,k

(i = 1, . . . , n− 1).
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As the polynomials Ak (k = 0, 1, . . . , n) and Bk (k = 1, . . . , n− 1) defined
by (22)-(28) are the basis polynomials of the interpolational problem (21), the
polynomial

(29) Qn(x) =
n∑

k=0

yk Ak(x) +
n−1∑

k=1

y′′k Bk(x)

is of degree at most 2n− 1 and fulfils the equations (21).

For the proof of the uniqueness we study the homogeneous problem: Find
a polynomial R̄n of degree at most 2n−1 such that R̄n(xi) = 0 (i = 0, 1, . . . , n),
and (wR̄n)′′(xi) = 0 (i = 1, . . . , n − 1). From these conditions it is obvious,
that

R̄n(x) = (x− x0)(x− xn)pn−1(x)ḡn−2(x),

where ḡn−2 is a polynomial of degree at most n− 2. As for i = 1, . . . , n− 1

(wR̄n)′′(xi) = 2w(xi)p′n−1(xi)[(x− x0)(x− xn)ḡn−2]′(xi) = 0,

and w(xi) 6= 0, p′n−1(xi) 6= 0, therefore with a constant c̄

(x− x0)(x− xn)ḡn−2(x) = c̄

x∫

x0

pn−1(t)dt.

Substituting x = xn we get c̄
xn∫
x0

pn−1(t)dt = 0, and hence c̄ = 0, that is

Rn(x) ≡ 0, which completes the proof.

Corollary 1. Let the set of nodes be

−1 = xn < xn−1 < ... < x1 < x0 = 1

where {xi}n−1
i=1 are the roots of the Jacobi polynomial P

(α,β)
n−1 of degree n − 1

(α, β > −1; n ≥ 2), and let the weight function be

w(x) = (1− x)
α+1

2 (1 + x)
β+1
2 .

If
1∫

−1

P
(α,β)
n−1 (t)dt 6= 0,
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then there exists a unique polynomial Qn of degree at most 2n− 1, which fulfils
weighted (0,2)-interpolational conditions at the zeros of P

(α,β)
n−1 with boundary-

type conditions at x0 = 1 and xn = −1.

Proof. Now pn−1(x) = P
(α,β)
n−1 (x). By Lemma 1 the condition (20) is

satisfied.

Remark. Corollary 1 was stated and proved by L. Szili [15] in 1993.

In the special case α = β = −1/2, when the inner nodes are the zeros of the
Tchebyscheff polynomials of of first kind, the explicit form of the interpolational
polynomial was given by S. Eneduanya [4] in 1985.

In 1994 P. Bajpai [1] studied the special case α = β = 1/2, when the inner
nodes are the zeros of the Tchebyscheff polynomials of second kind. He also
proved convergence theorem.

In 1969 J. Prasad and A. Verma [11] studied the special case α = β, they
also proved convergence theorem.

Theorem 2. For n ≥ 2 let {xi}n
i=0 be a set of distinct nodes in [a, b], and

pn−1(x) = c(x− x1) . . . (x− xn−1). Let w ∈ C2(a, b) be a weight function. If

(30) w(xi) 6= 0,
(
(x− xn)wpn−1

)′′(xi) = 0 (i = 1, . . . , n− 1),

then there exists a unique polynomial Qn of degree at most 2n − 1, which
fulfils weighted (0,2)-interpolational conditions at x1, . . . , xn−1 with boundary-
type conditions at x0 and xn.

Proof. We apply Lemma 4 with r(x) = (x − x0)(x − xn) and q(x) =
= (x− xn). In order to get the minimal degree 2n− 1 for Ak, let bk = 0, and
ck = 0 due to the condition Ak(x0) = 0. Hence we obtain for k = 1, . . . , n− 1

(31)

Ak(x) =
(x− x0)(x− xn)

(xk − x0)(xk − xn)
l2k(x) +

(x− xn)pn−1(x)
(xk − x0)(xk − xn)p′n−1(xk)

×

×
x∫

x0

[
l′k(xk)lk(t)− l′k(t)

t− xk
(t− x0) + aklk(t)

]
dt,

where

(32) ak = −
(
(x− x0)(x− xn)w

)′′(xk)
2(xk − xn)w(xk)

− 2l′k(xk).

Furthermore let

(33) A0(x) =
(x− xn)pn−1(x)

(x0 − xn)pn−1(x0)
,
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and

(34)

An(x) =
p2

n−1(x)
p2

n−1(xn)
− (x− xn)pn−1(x)

p2
n−1(xn)

×

×
{

pn−1(x0)
x0 − xn

+
1

pn−1(xn)

x∫

x0

pn−1(xn)p′n−1(t)− p′n−1(xn)pn−1(t)
t− xn

dt

}
.

It is obvious that the polynomials Ak (k = 0, 1, . . . , n) are of degree at most
2n − 1, and Ak(xi) = δi,k for i = 0, 1, . . . , n, and (wAk)′′(xi) = 0 for i =
= 1, . . . , n− 1.

Now applying (14), for k = 1, . . . , n− 1 we obtain

(35) Bk(x) =
(x− xn)pn−1(x)

2w(xk)(xk − xn)p′n−1(xk)

x∫

x0

lk(t)dt,

which is a polynomial of degree ≤ 2n − 1, and also Bk(xi) = 0 (i = 0, . . . , n),
and (wBk)′′(xi) = δi,k (i = 1, . . . , n− 1).

As the polynomials Ak (k = 0, 1, . . . , n) and Bk (k = 1, . . . , n− 1) defined
by (31) - (35) are the basis polynomials of the interpolational problem (21),
the polynomial

(36) Qn(x) =
n∑

k=0

yk Ak(x) +
n−1∑

k=1

y′′k Bk(x)

is of degree at most 2n− 1, and fulfils the equations (21). The uniqueness can
be proved in a similar way as in Theorem 1.

Corollary 2. If the nodes are

−1 = xn < xn−1 < ... < x1 < x0 = 1

where {xi}n−1
i=1 are the roots of the Jacobi polynomial P

(α,β)
n−1 of degree n − 1

(α, β > −1; n ≥ 2), and

w(x) = (1− x)
α+1

2 (1 + x)
β−1

2

is the weight function, then there exists a unique polynomial Qn of degree at
most 2n− 1, which fulfils weighted (0,2)-interpolational conditions at the zeros
of P

(α,β)
n−1 with boundary-type conditions at x0 = 1 and xn = −1.
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Proof. Now pn−1(x) = P
(α,β)
n−1 (x). By Lemma 1 the function (1+x)wpn−1

fulfils the conditions (30).

Theorem 3. For n ≥ 2 let {xi}n−1
i=0 be a set of distinct nodes in [a, b], and

pn−1(x) = c(x− x1) . . . (x− xn−1). Let w ∈ C2(a, b) be a weight function. If

(37) w(xi) 6= 0, (wpn−1)′′(xi) = 0 (i = 1, . . . , n− 1),

then there exists a unique polynomial Qn of degree at most 2n − 1, which
fulfils weighted (0,2)-interpolational conditions at x1, . . . , xn−1 with initial-type
conditions at x0, that is

(38)

Qn(xi) = yi (i = 0, 1, . . . , n− 1),

Q′
n(x0) = y′0

(wQn)′′(xi) = y′′i (i = 1, . . . , n− 1),

where yi, y
′′
i , y′0 are arbitrary real numbers.

Proof. Applying Lemma 4 with r(x) = (x−x0)2 and q(x) = 1, and using
the condition Ak(x0) = 0, we obtain for k = 1, . . . , n− 1

(39)

Ak(x) =
(x− x0)2

(xk − x0)2
l2k(x) +

pn−1(x)
(xk − x0)2p′n−1(xk)

×

×
x∫

x0

[
l′k(xk)lk(t)− l′k(t)

t− xk
(t− x0)2 + aklk(t) + bkpn−1(t)

]
dt,

where

(40) ak = −
(
(x− x0)2w

)′′(xk)
2w(xk)

− 4l′k(xk)(xk − x0).

From the condition A′k(x0) = 0 we get

(41) bk = − aklk(x0)
pn−1(x0)

.

Furthermore, let

(42) A0(x) =
pn−1(x)
pn−1(x0)



1− p′n−1(x0)

p2
n−1(x0)

x∫

x0

pn−1(t)dt



 .
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It is obvious that the polynomials Ak (k = 0, 1, . . . , n − 1) are of degree
at most 2n − 1, and Ak(xi) = δi,k for i = 0, 1, . . . , n − 1, A′k(x0) = 0 and
(wAk)′′(xi) = 0 for i = 1, . . . , n− 1.

The polynomial

(43) C0(x) =
pn−1(x)
p2

n−1(x0)

x∫

x0

pn−1(t)dt

is also of degree at most 2n−1, and C0(xi) = 0 for i = 0, 1, . . . , n−1, C ′0(x0) = 1
and (wC0)′′(xi) = 0 for i = 1, . . . , n− 1.

Now applying (14), we have

(44) Bk(x) =
pn−1(x)

2w(xk)p′n−1(xk)

x∫

x0

[
lk(t) + b̃kpn−1(t)

]
dt,

where

(45) b̃k = − lk(x0)
pn−1(x0)

.

It is easy to verify, that Bk is a polynomial of degree ≤ 2n − 1, furthermore
Bk(xi) = 0 (i = 0, . . . , n − 1), B′

k(x0) = 0, and (wBk)′′(xi) = δi,k (i =
= 1, . . . , n− 1).

As the polynomials Ak (k = 0, 1, . . . , n− 1), Bk (k = 1, . . . , n− 1) and C0

defined by (39)-(45) are the basis polynomials of the interpolational problem
(38), the polynomial

(46) Qn(x) =
n−1∑

k=0

yk Ak(x) +
n−1∑

k=1

y′′k Bk(x) + y′0C0(x)

is of degree at most 2n− 1 and fulfils the equations (38). The uniqueness can
be proved in a similar way as in Theorem 1.

Remark. Theorem 3 was stated and proved by J. Balázs [3] in 1998. In
[3] the basis polynomials Ak are derived in a different form.

Theorem 4. For n ≥ 2 let {xi}n−1
i=0 be a set of distinct nodes in [a, b], and

pn−1(x) = c(x− x1) . . . (x− xn−1). Let w ∈ C2(a, b) be a weight function. If

(47) w(xi) 6= 0,
(
(x− x0)wpn−1

)′′(xi) = 0 (i = 1, . . . , n− 1),
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then there exists a unique polynomial Qn of degree at most 2n − 1, which
fulfils weighted (0,2)-interpolational conditions at x1, . . . , xn−1 with initial-type
conditions at x0.

Proof. We apply Lemma 4 with r(x) = (x − x0)2 and q(x) = (x − x0).
Following the steps of the proof of Theorem 3, we obtain for k = 1, . . . , n− 1

(48)

Ak(x) =
(x− x0)2

(xk − x0)2
l2k(x) +

(x− x0)pn−1(x)
(xk − x0)2p′n−1(xk)

×

×
x∫

x0

[
l′k(xk)lk(t)− l′k(t)

t− xk
(t− x0) + aklk(t)

]
dt,

where

(49) ak = −
(
(x− x0)2w

)′′(xk)
2(xk − x0)w(xk)

− 2l′k(xk);

(50)

A0(x) =
p2

n−1(x)
p2

n−1(x0)
− (x− x0)pn−1(x)

p2
n−1(x0)

×

×


2p′n−1(x0) +

1
pn−1(x0)

x∫

x0

pn−1(x0)p′n−1(t)− p′n−1(x0)pn−1(t)
t− x0

dt



 ,

(51) C0(x) =
(x− x0)pn−1(x)

pn−1(x0)
,

and

(52) Bk(x) =
(x− x0)pn−1(x)

2w(xk)(xk − x0)p′n−1(xk)

x∫

x0

lk(t)dt.

As the polynomials Ak (k = 0, 1, . . . , n), Bk (k = 1, . . . , n − 1) and C0,
defined by (48)-(52) are the basis polynomials of the interpolational problem
(38), the polynomial

(53) Qn(x) =
n−1∑

k=0

yk Ak(x) +
n−1∑

k=1

y′′k Bk(x) + y′0C0(x)
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is of degree at most 2n− 1 and fulfils the equations (38). The uniqueness can
be proved in a similar way as in Theorem 1.

Corollary 3. If the nodes are

0 = x0 < x1 < ... < xn−1,

where {xi}n−1
i=1 are the roots of the Laguerre polynomial L

(α)
n−1 of degree n − 1

(α > −1;n ≥ 2), and
w1(x) = e−

x
2 x

α+1
2

or
w2(x) = e−

x
2 x

α−1
2

are weight functions, then there exists a unique polynomial Qn of degree at
most 2n− 1, which fulfils weighted (0,2)-interpolational conditions at the zeros
of L

(α)
n−1 with initial-type conditions at x0 = 0.

Proof. Let pn−1(x) = L
(α,β)
n−1 (x). By Lemma 2 the conditions (37) and

(47) are satisfied with the weight functions w1 and w2, respectively.

Theorem 5. For n ≥ 2 let {xi}n
i=0 be a set of distinct nodes in [a, b], and

pn−1(x) = c(x− x1) . . . (x− xn−1). Let w ∈ C2(a, b) be a weight function. If

(54) w(xi) 6= 0, (wpn−1)′′(xi) = 0 (i = 1, . . . , n− 1),

and

(55)
p′n−1(x0)p′n−1(xn)

xn∫

x0

pn−1(t)dt+

+p′n−1(x0)p2
n−1(xn)− p′n−1(xn)p2

n−1(x0) 6= 0,

then there exists a unique polynomial Qn of degree at most 2n − 1, which
fulfils weighted (0,2)-interpolational conditions at x1, . . . , xn−1 with additional
interpolatory conditions at x0 and xn, that is

(56)
Qn(xi) = yi, (wQn)′′(xi) = y′′i , (i = 1, . . . , n− 1),

Q′n(x0) = y′0, Q′
n(xn) = y′n,

where yi, y
′′
i , y′0 and y′n are arbitrary real numbers.
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Proof. Applying Lemma 4 with r(x) = (x − x0)2(x − xn) and q(x) = 1,
we obtain for k = 1, . . . , n− 1
(57)

Ak(x) =
(x− x0)2(x− xn)

(xk − x0)2(xk − xn)
l2k(x) +

pn−1(x)
(xk − x0)2(xk − xn)p′n−1(xk)

×

×
{

ck+

x∫

x0

[
l′k(xk)lk(t)− l′k(t)

t− xk
(t− x0)2(t− xn) + aklk(t) + bkpn−1(t)

]
dt

}
,

where

(58) ak = −
(
(x− x0)2(x− xn)w

)′′(xk)
2w(xk)

− 2l′k(xk)(xk − x0)(3xk − 2xn − x0).

The equations A′k(x0) = 0 and A′k(xn) = 0 are equivalent to the linear system
(59)

p′n−1(x0)ck + p2
n−1(x0)bk = −akp′n−1(x0)lk(x0),

p′n−1(xn)ck +


p′n−1(xn)

xn∫

x0

pn−1(t)dt + p2
n−1(xn)


 bk =

= −p′n−1(xn)

{
(xn − x0)2l2k(x0)+

+

xn∫

x0

[
l′k(xk)lk(t)− l′k(t)

t− xk
(t− x0)2(t− xn) + aklk(t)

]
dt

}
−

−akpn−1(xn)lk(xn),

which has unique solution for bk and ck if and only if its determinant is not 0,
that is the condition (55) is fulfilled.

From (14) we have

(60) Bk(x) =
pn−1(x)

2w(xk)p′n−1(xk)



ãk +

x∫

x0

[
lk(t) + b̃kpn−1(t)

]
dt



 ,

where the constants ãk and b̃k are determined from the equations

B′
k(x0) = 0, B′

k(xn) = 0,
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that is, from the linear system
(61)

p′n−1(x0)ãk + p2
n−1(x0)b̃k = −p′n−1(x0)lk(x0),

p′n−1(xn)ãk +
[
p′n−1(xn)

xn∫

x0

pn−1(t)dt + p2
n−1(xn)

]
b̃k = −pn−1(xn)lk(xn)−

−
xn∫

x0

lk(t)dt,

which has unique solution for ãk and b̃k if and only if the condition (55) is
fulfilled.

Furthermore, the polynomial

(62) C0(x) = pn−1(x)



c0

x∫

x0

pn−1(t)dt + d0





fulfils the conditions

C0(xi) = 0, (wC0)′′(xi) = 0, (i = 1, . . . , n− 1),

C ′0(x0) = 1, C ′0(xn) = 0,

where the constants c0 and d0 are the unique solutions of the linear system

(63)

p′n−1(x0)d0 + p2
n−1(x0)c0 = 1,

p′n−1(xn)d0 +


p′n−1(xn)

xn∫

x0

pn−1(t)dt + p2
n−1(xn)


 c0 = 0,

if and only if the condition (55) is fulfilled.
In a similar way we obtain, that the polynomial

(64) Cn(x) = pn−1(x)



cn

x∫

x0

pn−1(t)dt + dn





fulfils the conditions

Cn(xi) = 0, (wCn)′′(xi) = 0 (i = 1, . . . , n− 1),

C ′n(x0) = 0, C ′n(xn) = 1,
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where the constants cn and dn are the unique solutions of the linear system

(65)

p′n−1(x0)dn + p2
n−1(x0)cn = 0,

p′n−1(xn)dn +


p′n−1(xn)

xn∫

x0

pn−1(t)dt + p2
n−1(xn)


 cn = 1,

if and only if the condition (55) is fulfilled.
As the polynomials Ak, Bk (k = 1, . . . , n − 1), C0 and Cn defined by

(57)-(65) are the basis polynomials of the interpolational problem (56), the
polynomial

(66) Qn(x) =
n−1∑

k=1

yk Ak(x) +
n−1∑

k=1

y′′k Bk(x) + y′0C0(x) + y′nCn(x)

is of degree at most 2n− 1 and fulfils the equations (56). The uniqueness can
be proved in a similar way as in Theorem 1.

Corollary 4. On [−1, 1], if the weight function is

w(x) = (1− x2)
α+1

2 ,

then for odd n there exists a unique polynomial Qn of degree at most 2n − 1,
which fulfils weighted (0,2)-interpolational conditions at the zeros of P

(α,β)
n−1 with

additional interpolatory conditions for the first derivative at x0 = 1 and xn =
= −1.

Proof. Let pn−1(x) = P
(α)
n−1(x). By Lemma 1 the function wpn−1 fulfils

the conditions (54). For odd n the polynomial P
(α)
n−1 is even function, and using

P
(α)
n−1(1) =

(
n−1+α

n−1

)
and P

(α)′

n−1(x) = 1
2 (n + 2α)P (α+1)

n−2 (x), one can verify (55).
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