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WEIGHTED (0,2)-INTERPOLATION
WITH INTERPOLATORY BOUNDARY CONDITIONS

M. Lénéard (Kuwait)

Dedicated to Professor Imre Kdtai,
on the occasion of his 65th birthday

Abstract. The weighted (0,2)-interpolation is studied in a unified way
with two additional interpolatory conditions. The question is how to
choose the nodal points and the weight function w so that the problem
is regular. We formulate sufficient conditions on the nodal points and on
the weight function. In the regular cases we find simple explicit forms of
the interpolational polynomial. Special cases are presented when the nodes
are the zeros of the classical orthogonal polynomials.

1. Introduction

P. Turédn initiated the study of (0,2)-interpolation in order to get an
approximate solution to the differential equation

y'+fy=0.
The first results were published by J. Surdnyi and P. Turdn [12] in 1955. In
1961 J. Baldzs [2] introduced a generalization of this problem, the weighted
(0,2)-interpolation problem: Let the system of nodes

(1) —00<La<Tpp < Tp—in<...<Tin <b<oo
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be given in the finite (or infinite) open (or closed) interval (a,b) and let
w € C?%(a,b) be a weight function. Find a polynomial R, of minimal degree
satisfying the conditions

(2) Rn(xk,n) = Yk,n; (an)//(xk,n) = y;c/,n (k = 1a ce,nin e N)’

where yx ., yp. ,, are arbitrary given real numbers.

The questions are how to choose the nodal points and the weight function
w, so that the problem is regular (it has a unique solution) and in the regular
case to find simple explicit form of R,, in order to prove convergence.

J. Baldzs [2] investigated the above problem on the interval [—1, 1], when

the nodes are the roots of the ultraspherical polynomial P,SO‘) (a > —1), and
the weight function is w(z) = (1 — 22)(®*D/2, He showed, that in this case
there does not exist a polynomial of degree < 2n—1 satisfying the requirements
(2). He proved, that if n is even, then under the condition

(3) Rn(o) = Zyk,nli,n(o)
k=1

there exists a unique polynomial of degree < 2n which satisfies (2) (if n is odd,
then the uniqueness fails). (Here li ,(z) represent the Lagrange-fundamental
polynomials corresponding to the nodal points x, ,.) He gave the explicit form
of this polynomial and proved convergence theorem.

Several authors investigated the weighted (0,2)-interpolation with the
additional Baldzs-type condition (3) on the roots of the classical orthogonal
polynomials (I. Jo6 [5], I. Jo6 and L. Szili [6], J. Prasad [7], [8], [9], [10],
L. Szili [14]). Then L. Szili [15] treated the weighted (0,2)-interpolational
problem with Baldzs-type condition in a unified way on the roots of all
classical orthogonal polynomials with respect to the existence, uniqueness and
representation (explicit formulae).

In special cases J. Bajpai [1], S. Eneduanya [4], and J. Baldzs [3] substi-
tuted the additional condition (3) with interpolatory type conditions. For more
results on (0,2) interpolation we refer to the survey paper of L. Szili [16].

In this paper we study the weighted (0,2)-interpolation problem in a
unified way with different interpolatory conditions. In these cases we determine
sufficient conditions on the nodes and the weight function, for the problem to
be regular. In the corollaries we give examples, when the nodes are the zeros
of the classical orthogonal polynomials.

The problem: On the finite or infinite interval [a, )] let x;,,7=0,...,n
be distinct points (the nodal points of interpolation), and let w € C?(a,b) be a
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weight function on (a,b). Find a polynomial @, of minimal degree satisfying
the weighted (0,2)-interpolational conditions

Qn(mz,n) = Yin, (an)”(xi,n) = y;:n (Z =1...,n— 1)7
with the additional interpolatory conditions

Qn (-170,71) = Yo,n» Qn (-rn,n) = Yn,n, (boundary - type)
or
Qn (xO,n) = Yo,n, ng (:EO,H) = ytl),nv (initial - type)

or
Q:z(xO,n) = yé,n’ an(xn,n) = y’:’L,n’

where Y n, Y > Yn,n and y;,, are arbitrary real numbers.
In what follows, let n be a fixed positive integer and for the sake of

simplicity we will use z; instead of the double indexed x;,. Let [a,b] be a
finite or infinite interval, and let

(4) Oy L1y -y Tne1, Ty € [a,b]

be distinct nodes. Let p,_1 be a polynomial of degree n-1, for which

(5) Pr—1(2;) =0 (i=1,...,n—1),
and let
(6) i(z) = Pn-1(2) G=1,....,n—1)

P () (@ — )

be the fundamental polynomials of Lagrange interpolation corresponding to
the nodal points x1,...,x,_1. Hence

(7) lj(xi):dl-d- (Z',j:].,...,nfl),
and
) By = Lol
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2. Preliminaries

2.1. The classical orthogonal polynomials

Let us consider the homogeneous differential equation

9) u' + fru=0.

Lemma 1. If pLA (o, B > —1) denotes the Jacobi polynomial of degree

n, and
a+1 B+1

w(z) =1 -2)= (1+z) 7,

then u = wP,(f"ﬁ) satisfies the differential equation (9) with

11— 11-62 2n(n+a+B+1)+(a+1)(B+1)
@ =1a—mptiazar * (1 — 22) '

Proof. Cf. (4.24.1) in [13].

Lemma 2. If Lg{l) (a > —1) denotes the Laguerre polynomial of degree
n, and

then u = wL{™ satisfies the differential equation (9) with

2n+a+1 1—a?
= + —

1
f@) 2z 422 4

Proof. Cf. (5.1.2) in [13].

Lemma 3. If H, denotes the Hermite polynomial of degree n, and

M)

x

w(z)=e 7,
then uw = wH,, satisfies the differential equation (9) with

flz)=2n+1— 22

Proof. Cf. (5.5.2) in [13].
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2.2. The fundamental polynomials

Let us introduce the notations
r(z) = (. — 20)™ (z — )%,
q(z) = (& — 20)™ (x — 2)%,
where €;,6; € {0,1,2,...} and g; > ¢; for : = 1,2.

Lemma 4. If on the system of nodes (4) the weight function w satisfies
the conditions

(10) w(z;) #0, (qupn—1)"(z;) =0 (i=1,...,n—1),

then for k=1,...,n — 1 the polynomials

(11)

P~ : W + aklk(t) + bkpn_1(t) dt

ot/ [%’“)l’“(ﬂ—lz(t) r(t

~—

Zo

satisfy the weighted (0,2)-interpolational conditions

(12) Ag(z:) = 6i ks (wAy)" () =0 (i=1,...,n—1),
where
(rw)’(ze) o, Ty’
1 = 7 VR 9 Z
( 3) Qg 2(qw)(mk) lk(xk)(q) (xk)>
and by, ¢, are arbitrary constants. Furthermore, for k = 1,...,n — 1 the
polynomials

T

@ | / [168) + B (1) e

Zo

q(2)pp—1(x)

(14) By (z) = 2q(xr)w(zk)pl, 1

satisfy the weighted (0,2)-interpolational conditions
(15) Bk(LL'Z) = 0, (ka)N({,Ci) :62"]6 (Z = 1,...,n— 1)7

where ay and by are arbitrary constants.
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Proof. We are looking for Ay, (k=1,...,n— 1) in the form of

1

(16) Ag(z) = @)

{r@i @) + a@pa-1@)ge(a)}.

where g, is a polynomial. From (7) it is obvious, that Ay (z;) = ;1 for i,k =
=1,...,n—1. For i # k, the condition (wAg)"(z;) = 0 is equivalent to the
equation

20, (i (i) (1) + 201w (2:)gh (1) = 0,
and because of w(z;) # 0, q(x;) # 0, and p},_; (z;) # 0, we have

IRACHEED) et S/ A O R 1)
phoa(w)q(zs)  ph_y(xzk) xi—xe qa)

g (i) =

This inspires us to define g, as

| {l;m)f(_xi ) 1) o)+ bkpn1<x>} .

g (x) = e

It is clear, that gj. is a polynomial, and

gr(z) =
- T 711(1%) cr + / [ lk(xk)tlki(ti,’: () . 22; + apli(t) + bkpnl(t):| dt p,
furthermore
(17) gr(Tr) = o 711(%) {ZEZ:; [l;c2($k) — U ()] + Cbk} .

The coefficient aj, we determine from the condition (wAy)” (z)) = 0, which
is equivalent to

a8) (wr)" (xg)+4r(zg) ), (zx) [w’(cck) + w(xk)l;(xk)} +
+dw(zp)r (zp) . (zr) + 2w(xg)q(zk)ak = 0,

where we substituted (17). On using p,—_1(x) = 0, from the condition (10)

2q' (wg)w(zy)py,_1 (Tk)
q(wy)

(wpn—1)"(zx) = —

)
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and hence, by (8)

w'(z1) + wlz)l, (vr) = 2p! ) [QPZ_1($k)w'($k) + w(wg)py_q (zr)| =

n—1 (mk

_ (wpn—1)"(m) _ (k)
2p,_1 (k) q(zr)

Thus the equation (18) can be written in the form
q ()
q(zk)

and we obtain (13) for ar (k=1,...,n—1).
Finally, applying (10) it is easy to verify that

(wr)” (1) + 4l (wp)w (k) | —r(ok) +r'(xg) | +2(wq)(zx)ar = 0,

1

WB) ) = S (s

7 2q(wi)w(@i)py_q (2:)lk(2:) = 0k,

and By(z;) =0fori,k=1,...,n—1.

In the next section we will determine the constants by, ci, ar and l;k, such
that, the polynomials Ay and By are of minimal degree and fulfil the additional
interpolational conditions for different choices of q.

3. Results

Theorem 1. Forn > 2 let {x;}1, be a set of distinct nodes in [a,b], and
Pno1(x) =c(x —21)...(x — 2y_1). Let w € C*(a,b) be a weight function. If

Tn

(19) / P (D)dE 0,

Zo

(20) w(x;) # 0, (wpn_1)"(x2;) =0 (i=1,...,n—1),
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then there exists a unique polynomial Q. of degree at most 2n — 1, which
fulfils weighted (0,2)-interpolational conditions at x1,...,%,—1 with boundary-
type conditions at xo and x,, that is

Qn(mi):yi (iZO,l,...,n—l,n),

21
=y (w@n)"(x:) =y (i=1,...,n-1),

where y;, yi' are arbitrary real numbers.

Proof. Applying Lemma 4 with r(z) = (z — 20)(z — z,) and ¢(z) = 1,
and from the condition Ay (z¢) = 0 we obtain for k=1,...,n—1

Afe) = =@ =) o pa-1(a)

N T LSl e TPy PR P R

- x ] [l;f(:rk)tl’“_(t;; () (t — 20)(t — 20) + arly(£)dt 4 bppp_1 ()| dt,
where

(23) ap=— (=~ xO);fU(_;;)w)H(x’“) 2 (k) (22 — T — ).

From the condition A(x,) = 0 we get

(24)

by = = ”(wdt 7'52(“”’“)5’“_“35; ) (4 o)t = )t + a 7’lk(t)dt

Now we are looking for Ay in the form of

Ao(f) = Pnf1($)go($)a

where gg is a polynomial of degree at most n. It is obvious that Ag(z;) = 0
(i =1,...,n—1). For the weighted second derivative at z; (i =1,...,n— 1)
we have

(wAo)" (2;) = 2w(w;)py,—1 (i) go (i) = 0,

hence

that is
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and it follows

go(x) = ag /pn—l(t)dt + ¢o.

Tn

From the condition Ag(z,) =0 we have ¢y =0, and from Ag(zg) =1

1
ag = 0 s
Prn—1(z0) [ pn_1(t)dt
and hence
(25) Ag(z) = p”;i(x) / Pr_1(t)dt.
pnfl(x()) fpnfl(t)dt x
xo
In a similar way we construct
x
(26) A () = Pri(z) o1 (B)dt.
pnfl(xn) fpnfl(t)dtzg
o

It is obvious, that the polynomials Ay (k = 0,1,...,n) are of degree at
most 2n — 1, and Ag(z;) = 6, for i = 0,1,...,n, and (wAg)"(z;) = 0 for
i=1,...,n—1.

Now applying (14), from the condition B (xz¢) = 0 we get ar = 0, and

(27) By(z) = MZL)I)% / [lk(t) + EkpnA(t)}dt,
where
Tf'lk(t)dt
(28) b= =5
[ pn_1(t)dt

is determined by the condition By(z,) = 0. Hence By is a polynomial of
degree < 2n — 1, furthermore By(x;) =0 (i =0,...,n), and (wBy)"(z;) = dik
(i=1,...,n—1).
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As the polynomials A, (k=0,1,...,n) and By (k=1,...,n—1) defined
by (22)-(28) are the basis polynomials of the interpolational problem (21), the
polynomial

(29) Qn(z Z Ye Ar(z) + Z Yk

is of degree at most 2n — 1 and fulfils the equations (21).

For the proof of the uniqueness we study the homogeneous problem: Find
a polynomial R,, of degree at most 2n—1 such that R, (x;) =0 (i = 0,1,...,n),
and (wR,)"(z;) =0 (i = 1,...,n — 1). From these conditions it is obvious,
that
Rn(x) =(z - l‘o)(l‘ - mn)pn—l(x)gn—Q(x)a

where g, _s is a polynomial of degree at most n —2. Asfori=1,...,n—1

(wRy)" (2:) = 2w(@:)p;, 1 (@) [(x — 20) (¥ — T)Fn—2]'(z:) = 0,
and w(x;) # 0, pl,_;(x;) # 0, therefore with a constant &

x

(& — 20)(& — Zn)Gn_a(z) = /pn J(t)dt.

zo

Tn
Substituting * = x,, we get ¢ [ p,—1(t)dt = 0, and hence ¢ = 0, that is
xo

R, (z) = 0, which completes the proof.
Corollary 1. Let the set of nodes be

1=z, <zh1<..<T1<20=1

,ﬁ)

where {x;} 711 are the roots of the Jacobi polynomial P( of degree n — 1

(o, 3> —1;n > 2), and let the weight function be

B+1

wz)=1-2)T (1+2)7.

If

1

/ PP )t + 0,

-1
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then there exists a unique polynomial Q,, of degree at most 2n — 1, which fulfils

weighted (0,2)-interpolational conditions at the zeros of P,(LOi’iB)

type conditions at xg =1 and x, = —1.

with boundary-

Proof. Now p,_1(x) = P,goif)(x) By Lemma 1 the condition (20) is
satisfied.

Remark. Corollary 1 was stated and proved by L. Szili [15] in 1993.

In the special case « = 3 = —1/2, when the inner nodes are the zeros of the
Tchebyscheff polynomials of of first kind, the explicit form of the interpolational
polynomial was given by S. Eneduanya [4] in 1985.

In 1994 P. Bajpai [1] studied the special case o = § = 1/2, when the inner
nodes are the zeros of the Tchebyscheff polynomials of second kind. He also
proved convergence theorem.

In 1969 J. Prasad and A. Verma [11] studied the special case a« = 3, they
also proved convergence theorem.

Theorem 2. Forn > 2 let {x;}_, be a set of distinct nodes in [a,b], and
Pn_1(x) =c(z —21)...(x — xH_1). Let w € C*(a,b) be a weight function. If

(30)  w(z) #0, (@ —z)wpp_1) (x)=0 (i=1,...,n—1),

then there exists a unique polynomial Q. of degree at most 2n — 1, which
fulfils weighted (0,2)-interpolational conditions at x1,...,Tn—1 with boundary-
type conditions at xg and x,.

Proof. We apply Lemma 4 with r(z) = (z — x¢)(z — x,) and ¢(z) =
= (z — x,,). In order to get the minimal degree 2n — 1 for Ay, let by = 0, and

¢ = 0 due to the condition Ag(zo) = 0. Hence we obtain for k=1,...,n—1
@)@ —ra) (@ = 2P (@)
) = o 20 @n =) ™ o= 20)(en — )y (o)
(31 F Tl lu(0) — 10
X/[ k P—— k (t — x0) + arli(t)| dt,
where
(32 o = AT ) ) gy

2z — xp)w(xg)

Furthermore let

(33) Ao(x) =
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and

— X
p%—l(xn) pi_l(éﬂn)

(34) ) {pn_1<x0>+ 1 /”‘pn_lun)p;_l(t)—p;_1<mn>pn_1<t> dt}.

A (o) = Pamr@) (@ = 2)pana (@)

Ty — Tn pnfl(mn) t— Tn
xo

It is obvious that the polynomials A; (k = 0,1,...,n) are of degree at most
2n — 1, and Ag(z;) = 6; for i = 0,1,...,n, and (wAg)"(z;) = 0 for ¢ =
=1,...,n—1.

Now applying (14), for k =1,...,n — 1 we obtain

_ @wpea@ ]
& B) = St —aeherte | O

Zo

which is a polynomial of degree < 2n — 1, and also Bi(x;) =0 (: =0,...,n),
and (wBg)"(z;) =6, (i=1,...,n—1).

As the polynomials Ay (k=0,1,...,n) and By (k=1,...,n— 1) defined
by (31) - (35) are the basis polynomials of the interpolational problem (21),
the polynomial

(36) Zyk A(z) + Zy

is of degree at most 2n — 1, and fulfils the equations (21). The uniqueness can
be proved in a similar way as in Theorem 1.

Corollary 2. If the nodes are
1=z, <zp1<..<xr1<20=1

1 ,ﬁ)

where {x;} =, are the roots of the Jacobi polynomial P(
(o, 8> —1;n>2), and

of degree n — 1

B—1

w(z) = (1—2)F (1 +2)°7

is the weight function, then there exists a unique polynomial @, of degree at
most 2n — 1, which fulfils weighted (0,2)-interpolational conditions at the zeros

of Pr(filﬁ ) with boundary-type conditions at g =1 and z, = —1.
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Proof. Now p,_1(z) = Péi’lﬁ) (). By Lemma 1 the function (1+z)wp,—1
fulfils the conditions (30).

Theorem 3. Forn > 2 let {z;}/=) be a set of distinct nodes in [a,b], and
pn_1(z) =clx —z1)...(x —2y_1). Let w € C?(a,b) be a weight function. If
(37) w(xl) 7&0’ (wpn—l)//(xi) =0 (7’ = 1,...,71* 1)3

then there exists a unique polynomial Q, of degree at most 2n — 1, which
fulfils weighted (0,2)-interpolational conditions at x1, . .., T,—1 with initial-type
conditions at xq, that is

Qn(x;) =y; (i=0,1,...,n—1),

(38) Q. (o) = o
(wQyn)" (z;) =y (i=1,...,n—1),

where y;,y!', yo are arbitrary real numbers.

Proof. Applying Lemma 4 with r(z) = (z — 20)? and ¢(z) = 1, and using
the condition Ag(zo) = 0, we obtain for k=1,...,n—1

7 M 9 " Pn—l(x) %
Ap(x) = (-Tk _ x0)2l (@) + (zg — -%’O)QP;L—l(xk)
(39) el —
X / [l’“(xk)tlk_(tzck s (t —20)? + axly(t) + bppn—1(t)| dt,
where
(a0 o = LIV ) )0 ),

2w(xk)

From the condition A} (zo) =0 we get

agly(xo)
41 by = ————%.
( ) ¥ pn—l(l‘o)
Furthermore, let
paci(@) ) phoi(wo) /
42 A = 1-— n—1(t)dt
( ) O(x) pn—l(xo) p%_l(xo) p 1( )
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It is obvious that the polynomials A (k = 0,1,...,n — 1) are of degree
at most 2n — 1, and Ag(z;) = d; for i = 0,1,...,n — 1, A\ (zg) = 0 and
(wAg)"(z;)=0fori=1,...,n—1.

The polynomial

_ pn—l(fr) [
(43) Co(fﬁ) = pii_l(ajo) /pn_l(t)dt

Zo

is also of degree at most 2n—1, and Cy(z;) = 0fori =0,1,...,n—1, C{(zg) =1
and (wCy)"(x;))=0fori=1,...,n— 1.

Now applying (14), we have

(44) Bul) = gt [0+ b, (0],
where
(45) A

Pn—1(0)

It is easy to verify, that By is a polynomial of degree < 2n — 1, furthermore
Bi(z;) =0 (i = 0,...,n—1), B(zo) = 0, and (wBy)"(z;) = dip (i =
=1,...,n—1).

As the polynomials Ay (k=0,1,...,n—1), By (k=1,...,n—1) and Cy
defined by (39)-(45) are the basis polynomials of the interpolational problem
(38), the polynomial

(46) Zyk Ap(z) + Zy ) + yoCo()

is of degree at most 2n — 1 and fulfils the equations (38). The uniqueness can
be proved in a similar way as in Theorem 1.

Remark. Theorem 3 was stated and proved by J. Baldzs [3] in 1998. In
[3] the basis polynomials Ay, are derived in a different form.

Theorem 4. Forn > 2 let {x;}!=) be a set of distinct nodes in [a,b], and
Pr—1(x) =clxr —x1) ... (x — Tp_1). Let w € C?(a,b) be a weight function. If

47 w@)#0, (@@ —zo)wpe_1) (@) =0 (i=1,...,n—1),
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then there exists a unique polynomial Q. of degree at most 2n — 1, which
fulfils weighted (0,2)-interpolational conditions at x1, ..., T,—1 with initial-type
conditions at xq.

Proof. We apply Lemma 4 with r(z) = (z — 20)? and ¢(z) = (z — o).
Following the steps of the proof of Theorem 3, we obtain for k=1,...,n—1

) =TT @ a0)pa(@)

(xk - x0)2 (= 20)2p),_1 (1)
(48) / — 1
where

0 el

_ Pa_1(x) (x — x0)pn—1(x)
Q@ = T B

1 /’Cpn_mo)p;_l(t) — Dy (0)Pa1 (1)

x| Hneal@o) + Pn71($o)x t— o a e
(51) Cola) = W
and
o (‘T — xo)pnfl(x) [
(52) Brle) = ) on — x0)p, 1 (o) [

xo
As the polynomials Ay (k = 0,1,...,n), B (k =1,...,n — 1) and Cy,

defined by (48)-(52) are the basis polynomials of the interpolational problem
(38), the polynomial

(53) Z yr Ax(x) + Z Yk ) + y5Co(x)
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is of degree at most 2n — 1 and fulfils the equations (38). The uniqueness can
be proved in a similar way as in Theorem 1.

Corollary 3. If the nodes are
O=zg<21 <... <ZTp_1,

where {x; ’;;11 are the roots of the Laguerre polynomial Lgﬁ)l of degree n — 1

(> —1;n>2), and
or

are weight functions, then there ezists a unique polynomial Q, of degree at
most 2n — 1, which fulfils weighted (0,2)-interpolational conditions at the zeros

of Lffi)l with initial-type conditions at xo = 0.

Proof. Let p,—1(z) = Lffif)(x) By Lemma 2 the conditions (37) and
(47) are satisfied with the weight functions w; and ws, respectively.

Theorem 5. Forn > 2 let {z;}7_, be a set of distinct nodes in [a,b], and
pn1(z) =clx —x1)...(x —2p_1). Let w € C*(a,b) be a weight function. If

(54) w(w;) # 0, (wpp—1)"(xz;) =0 (i=1,...,n—1),
and
gy P / Paa(Dydt+

11,1 (20)Ph 1 (Tn) — D1 (@n)Ph 1 (20) # 0,

then there exists a unique polynomial Q. of degree at most 2n — 1, which
fulfils weighted (0,2)-interpolational conditions at x1,...,x,—1 with additional
interpolatory conditions at xo and x.,,, that is

Qn(xz) = Yi, (an)//(wl> = y2/7 (Z = 1a e, — 1)7

(56) / / / /
Qn(zo) = Yo Qn(xn) = Yns

where y;, y!', yo and yl, are arbitrary real numbers.
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Proof. Applying Lemma 4 with r(z) = (z — 2¢)?(x — x,,) and ¢(z) = 1,
we obtain for k=1,...,n—1
(57)
(x —0)? (7 — )
(zr — 0)?(xk — Tn)

) pnfl(x)
(@) + (wr — 20)2 (ar — )Py (20)

y { Ck+/ |:l;g($k)lk(t) - l;q(t) (t — zo)z(t — :Z:n) + aklk(t) + bkpn_l(t)] dt },

t— xp

Zo

where

((sc —20)%(x — xn)w)”(xk)

(58) ax = — 2w(xy)

- 212(@6)(%@ — Sfo)(?lxk — 2z, — xo).

The equations A} (z¢) = 0 and A} (z,) = 0 are equivalent to the linear system
(59)

Ph_1(z0)ck + P (20)br = —ap;, 1 (w0)lk(20),

Tn

Py (@n)ek + p;4¢<xn>jfpn71a>dt+-pigl<xn> by =

Zo

= —p;L—l(xn) { (Tn — x0)2l,2€($0)+

Tn

g

T

le(@e)li(t) — 1(2)
t—xp

(t — 20)2(t — ) + arlp(t) 1 dt } —

—agPn—1(xn)lk(zy),

which has unique solution for by and ¢ if and only if its determinant is not 0,
that is the condition (55) is fulfilled.

From (14) we have

(60) &“*szﬁ%hm it [ [0 +hpns(0]ar

xo
where the constants a; and l;k are determined from the equations

Bllg('ro) =0, Blle(mn) =0,
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that is, from the linear system
(61)

Pl (0)ar + pa_1(x0)bk = —pjy_1 (w0)lk(20),

Tn

Pln—l(xn)&k + [p;v,—l(xn) /pn—l(t)dt er?z—l(xn)]z’k = *pn—l(xn)lk(mn)*

Zo

which has unique solution for a; and by, if and only if the condition (55) is
fulfilled.

Furthermore, the polynomial

x

(62) Co((E) = pn,l(x) Co /pnfl(t)dt + do

o
fulfils the conditions

CO (1‘1)
Co(zo) =

0, (wCo)"(z;) = 0, (i=1,...,n—1),
1, Cy(zn) =0,

where the constants ¢y and dy are the unique solutions of the linear system

Ph_1(z0)do + p2_1(z0)co = 1,

Tn

P 1 (@n)do + | Py () / Pooa (Dt + 2 ()| 0 =0,

Zo

(63)

if and only if the condition (55) is fulfilled.
In a similar way we obtain, that the polynomial

x

(64) (@) = Prs () { cn / P (B)dt + d,

fulfils the conditions
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where the constants ¢, and d,, are the unique solutions of the linear system

p;zfl(xO)dn + pi,l(xo)cn =0,

Tn

Py 1 (@n)dn + |y () / Pooa (Ot + P2y ()| en = 1.

zo

(65)

if and only if the condition (55) is fulfilled.

As the polynomials Ag, Br (k = 1,...,n — 1), Cy and C,, defined by
(57)-(65) are the basis polynomials of the interpolational problem (56), the
polynomial

66)  Qule) = Sk Ale) + 3l Bul) + uhColw) + 4, Ca()
k=1 k=1

is of degree at most 2n — 1 and fulfils the equations (56). The uniqueness can
be proved in a similar way as in Theorem 1.

Corollary 4. On [—1,1], if the weight function is

w(z) = (1-2%)",
then for odd n there exists a unique polynomial @Q, of degree at most 2n — 1,

which fulfils weighted (0,2)-interpolational conditions at the zeros of PT(LOLF ) with
additional interpolatory conditions for the first derivative at o = 1 and z,, =
=-1.

Proof. Let p,_i(z) = P\”),(z). By Lemma 1 the function wp,_; fulfils

n—1

the conditions (54). For odd n the polynomial P,(Loi)l is even function, and using
P (1) = (") and P((f)l z) = L(n+2a0) PtV (2 , one can verify (55).
n—1 n—1 2 n—2

n—1
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