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ON MULTIPLICATIVE FUNCTIONS
SATISFYING CONGRUENCE PROPERTIES II.

J. Fehér (Pécs, Hungary)

Dedicated to Professor Imre Kátai on the ocassion of his 65th birthday

1. Introduction

The function f : N→ Y is called multiplicative (f ∈M) if the condition

(∗) f(nm) = f(n)f(m)

is satisfied for all pairs n,m ∈ N, (n,m) = 1. The f is completely multiplicative
(f ∈M∗), if (∗) holds for all pairs n, m ∈ N. The function f(n) = nα (α ∈ N0)
is multiplicative and has many nice properties. For example:

(∗∗) (n + m)α ≡ mα (mod n) (∀n, m ∈ N).

As it was noticed by M.V. Subbarao (1966), namely we have

Theorem A. (M.V. Subbarao, 1966 [5]) If f ∈M and

f(n + m) ≡ f(m) (mod n) (∀n,m ∈ N),

then f(n) = nα (α ∈ N0).
Let M, N ⊂ N, and for f : N→ Y assume

(∗ ∗ ∗) f(n + m) ≡ f(m) (mod n) (∀n ∈ N, ∀m ∈ M).

First let us remind a few variants of Theorem A. In them all f satisfy the
condition (∗ ∗ ∗).
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Theorem B. (A. Iványi, 1972 [2]) If f ∈ M∗, N = N, M = {m} and
f(m) 6= 0, then f(n) = nα (α ∈ N0).

The latter result was improved, namely we have

Theorem C. (B.M. Phong and J. Fehér, 1985 [4]) If f ∈M, N = N, M =
= {m} and f(m) 6= 0 then f(n) = nα (α ∈ N).

Theorem D. (I. Joó and B.M. Phong, 1992 [3]) If f ∈M, N = {n | n ∈
∈ N, A | n} M = {B}, (A,B) = 1 and f(B) 6= 0, then there are a real valued
Dirichlet character χ (mod A) and α ∈ N0, such that f(n) = χ(n)nα (∀n ∈
∈ N, (n,A) = 1).

Theorem E. (J. Fehér, 1994, [1]) If f ∈M, N = {n2 | n ∈ N}, M = {1},
then f(2) = 2β and f(qk) = qKα(q) for all primes of the form q = 4k + 1.

Notice that the function f occuring in Theorme E satisfies also the
following condition:

ab ∈ H ⇒ f(ab) = f(a)f(b),

where

H :=

{
2ε

∏

i

qhi
i | ε = 0, 1; qi ∈ P, qi ≡ 1 (mod 4)

}
.

In this paper we prove the following theorem.

Theorem. Let f : N → Z be a multiplicative function. Assume that for
all primes p and n ∈ N

(1) f(n2 + p) ≡ f(p) (mod n).

Then: if there is a prime p0 such that f(p0) 6= 0, then

|f(qk)| = qα(qk)

for all q primes and k ∈ N.

2. Lemmas

The proof of Theorem is based on the four lemmas as follows.

Lemma 1. Let A,B, C ∈ N, (A,B) = 1. Then the diophantine equation

Ax−By = 1
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has got the solution (x, y) such that (x, c) = 1.

Proof. Let (x0, y0) be a solution, c =
s∏

i=1

pαi
i

r∏
j=1

q
βj

j be the primepower-

decomposition of c, where pi | x0, and qj |/x0. Then the pair

x = x0 + B(p1 . . . ps + 1)(q1 . . . qr),

y = y0 + A(p1 . . . ps + 1)(q1 . . . qr)

is a solution satisfying the condition (C,X) = 1.

Lemma 2. Let p0, ρ0 be two (not equal) odd primes such that
(−p0

ρ0

)
=

= −1. Then there are infinitely many odd primes q such that
(−p0

q

)
=

=
(−q

ρ0

)
= 1.

Proof. Let q = 4Mp0 + 1 (M ∈ N). Then the condition
(−p0

q

)
= 1

(where (·) is the Jacobi symbol) is fulfilled for all M . The diophantine equation

4Mp0 + 1 = −1 + ρ0L

has a solution and its solutions are: M = M0 + ρ0N, L = L0 + 4p0N . Using
we get

q = 4p0ρ0N + 4p0M0 + 1 = 4ρ0p0N + ρ0L0 − 1 (N ∈ N),

and this shows that
(−q

ρ0

)
= 1. The condition (4ρ0p0, 4p0M0 +1) = 1 implies

that among q-s there are infinitely many primes.

Lemma 3. Let 2 < q be a prime such that q|/A and p 6= q a prime such

that
(−p

q

)
= 1. Then for all α ∈ N there exist x, u ∈ N such that

qαup = x2A2 + p, (q, u) = (p, u) = 1.

Proof. Let T and v be positive integers such that

(2) qαv = A2 · T + 1.
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The relation (2) shows that
(

T

q

)
=

(−1
q

)
⇒

(
Tp

q

)
=

(−p

q

)
= 1, hence

there is x0 ∈ N such that

(3) x2
0 ≡ Tp (mod qα+1).

The numbers x = x0 + kqα+1 are also solutions of (3), hence we can choose
the k so that p|x. So we can assume that in (3) p|x0. By the Lemma 1, we
can choose v satisfying (2) and also (v, pq) = 1. The relation (3) shows that,
denoting

L :=
x2

0 − Tp

qα
, u∗ := vp + LA2,

we get q|L, q|/v and so q|/u∗. The relation (2) implies

(4) qαvp = TpA2 + p.

From this we see that

qαvp = qα(u∗ − LA2) = qα

(
x2

0 − Tp

qα
A2

)
= qαu∗ − x2

0A
2 + TpA2,

and (4) also implies that qαu∗ = x2
0A

2 + p. Here p | x0 implies p‖X2
0A2 + p

and this in turn implies u∗ = up, p|/u.

One can prove (in a similar way) the following

Lemma 4. Let 2|/A and α ∈ N. Then there are infinitely many primes
p > 2 such that

(5) 2αup = x2A2 + p, (u, 2p) = 1.

3. Proof of the theorem

Assume that f fulfills the conditions of the theorem. First we show that
f(p) 6= 0 for all primes p.

Let p, q be primes such that p 6= q, p 6= p0, q 6= p0, qk‖f(p0) and assume

pu p0 = x2q2(k+1) + p0, (u, pp0) = 1.
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Then
f(p)f(u)f(p0) ≡ f(p0) (mod qk+1),

which implies
f(p)f(u) ≡ 1 (mod q),

showing that f(p) 6= 0.
By the Lemmas 2, 3, 4 we see that

(α) p0 = 2 ⇒ f(11) = 0.

p 6= p0 and p 6= 11 and
(−11

p

)
= 1 ⇒ f(p) 6= 0,

p 6= p0 and p 6= 11 and
(−11

p

)
= −1 ⇒ ∃q prime, for which

(−11
q

)
=

(−q

p

)
= 1, and so f(11) 6= 0 ⇒ f(q) 6= 0 ⇒ f(p) 6= 0.

(β) 2 < p0 and 2 < p 6= p0 and
(−p0

p

)
= 1 ⇒ f(p) = 0,

2 < p0 and 2 < p 6= p0 and
(−p0

p

)
= −1 ⇒ ∃q > 0 prime, for which

(−p0

q

)
=

(−q

p

)
= 1, and so

f(p0) 6= 0 ⇒ f(q) 6= 0 ⇒ f(p) 6= 0.

Finally, let qα be a given power of the prime q, and a prime ρ, such that
ρ 6= q. Then there are u, x ∈ N and a prime p( 6= q), such that

qαup = x2ρ2k + p, (u, pq) = 1.

From this we see that

(6) f(qα)f(u)f(p) ≡ f(p) (mod pk).

For f(p) 6= 0 ∃s ∈ N0, ρs‖f(p). Assuming that k > s the relation (6) shows
that

f(qα)f(u) ≡ 1 (mod ρ),

consequently ρ|/f(qα).
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4. Remarks

(a) It seems that the function f satisfying the conditions of the Theorem as
well as the congruence (1) are power functions. It seems to us that to
prowe the independence of α(pk) upon k and p is not easy task.

(b) If for some prime p0, f(p0) = 0, then obviously f(p) = {◦}. In this case
there is a solution f of (1) such that f ∈ M\M∗. An example of such
function:

f(1) = 1, f(9) = 2 and f(n) = 0 if n 6= 1, 9.
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