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INTERPOLATION BY RATIONAL FUNCTIONS

M. Pap (Pécs, Hungary)
F.Schipp (Budapest, Hungary)

Dedicated to the 65th birthday of Professor Imre Kdtai

Abstract.  The main contribution of the paper is to construct discrete
biorthogonal systems to a given system of rational functions. This can be
used to construct interpolation processes on nodes (1.2) of the unite circle.
Using a discrete analogue of the Cauchy integral formula the biorthogonal
systems and the interpolation operators can be given in a useful explicit
form. In special cases a lower and upper estimation is given for the norm
of the interpolation operators.

1. Introduction

Denote by C the set of complex numbers and let D := {z € C: |z| < 1} be
the open unite disc. The disc algebra, i.e. the set of functions continuous on
D :={z € C:|z| <1} and analytic in D will be denoted by A (see [2], [3]). In
this paper we interpolate by rational functions belonging to the m-dimensional
subspace R, C A, generated by the collection

2271

1.1 = 1<i< k=1,2,--- .
( ) ¢k£(z) (1 _Ekz)g (Z € (Cv S 6 My, 5 &y 777')
Here a € D, my € N* := {1,2,---} (k = 1,2,---,n) are fixed numbers

and mi + mo + -+ + m, = m. We note that the function ¢i, has a pole in
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aj = 1/ay ¢ D of multiplicity ¢. In the case ar, #0 (k=1,2,---.n) Ry
is the same as the set of rational functions generated by the collection
(2€C, 1<l<mg, k=1,2,---,n).

1
@ke(z) = m

If n =1 and a; = 0 then the set R,, coincides with the set of polynomials
Prn—1 of degree m — 1.
We shall consider interpolation processes on the set of nodes

(12)  Ty:= {eZ“iZ/N:Z:O,l,m,N—l}CT::{ZG(C:|z|:1}

in the unit circle T. We construct a collection ®yp (1 < € <my, k=1,2,---,n)
of polynomials, biorthogonal to (1.1) with respect to the following scalar
product on T y:

(1.3) F.G) = [F.Cly = 3 F(2)T0).

z€TN

The polynomials ®, are weighted fundamental polynomials of Hermite inter-
polation with respect the nodes ay (k=1,2,---,n).

Denote
(1.4) en(2):=2" (2€T, neZ)
the trigonometric system (see [7]). The restriction of the functions €, (k =
0,1,---,N — 1) to Ty, i.e. the discrete trigonometric system is orthonormal
with respect to the scalar product (1.3), i.e.

(1.5) [Ek,eg]]\/ = s (0 <k, l<N).

This implies that for any two polynomials

N-1 N-1
F(z):= Z 2, G(z) = Z bpz® (2 €C)
k=0 k=0
we have
N-1
(1.6) [F, G]N = Z Ckbk.

k=0
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In Section 2 we prove a discrete analogue of the Cauchy integral formula.
This will be used in Section 3 and 4 to construct systems biorthogonal to the
rational system introduced in (1.1). In Section 3 we investigate the Lagrange
interpolation. In the special case ay, := pe®™*/N (k =0,1,---, N — 1) we give
an explicit formula for the interpolation operator and we estimate the norm of
this operator.

System identification based upon the partial fraction representation of the
transfer function is recognized as a classical approach in systems science [1],
[4], [5]. This type of biorthogonal expansion can be used to find the poles of
rational functions [6].

2. Discrete Cauchy formula

For any function F' € A then Cauchy formula

1 ()
(2.1) — -
271 J (C—a)

B F(”)(a)
o n!

¢ (aeD, neN)

holds.

Replacing T by the discrete group Ty defined in (1.2) and the integral by
the sum

1

(2.2) orT

FQdC =5 3 F(Q)K

Ty CeTN

we get a similar formula for polynomials. For a function F' € A obviously

i o [ P e = o [Py ac
T

In this paper we shall use the following discrete analogue of the Cauchy
integral formula.

Theorem 1. Letn € N, N € N* be fired numbers and denote P € Pnyp—1
a polynomial. i) Then for any a € D we have

1 P(C) 1 d" P(2)

B I - VN P S
2mi ) (¢ —a)t? ¢ nldzm1— 2N
Tn

(2.3)

z=a
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i1) Furthermore if ag,a1,-- -, a, are distinct points in D, then
1 P(¢) P(a;)
2.4 — —
(24) 2mi ) ((—ap)---(C—an) d = ZQ j 1—a§v
Tn
where

n

Q(z) := H (z—ap) (2€C,j=1,2,---,n).
0=0,0£]

Proof. First we prove (2.3) for n = 0. To this end write P € Py_1 in the
form
Z c;z (2 €Q).

Observe that for ¢ € Ty we have ¢V = 1 and consequently

¢ 11 1-@)N 1 =
(—a 1—a 1—-a¥ 1—-a 1-a" jgoa]c]'
Applying (1.6) for

L ¢ ;| N
FQ)=P©), GO =2y =1=n 2 @ (CeTy)

7=0

we get
P(¢
27m C—a CEZTN
= [F,Glw N Z cja’ = _7)

and for n =0 (2.3) is proved.
To show (2.4) write P € Pp4n—_1 in the form

(2.5) P(2) = Q(2)(z — ao) - (2 — an) + R(2),

where R € P,,,Q € Py_o. Applying Lagrange interpolation formula to R we
get

= R(a;) gi(f?) (z €C).
i—0 VANV
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By (2.5) P(a;) = R(a;) (j =0,1,---,n) and consequently

Since @ € Pn—_2, the orthogonality of the discrete trigonometric system
implies

T{ Q(¢) d¢ =0,

and applying (2.3) in the case n = 0 for the constant polynom we get (2.4).

Observe that the right hand side in (2.4) can be expressed by the divided
differences of the function

P(z)
H = D
()= 22 (zeD)
Namely (2.4) is equivalent to
1 P(¢)
9 L — H(a, - .
( 6) Qﬂ_iT/ (C_ao)(c_an) dC (G'TH 7&1,&0)
(Compare e.g. [3], p. 247.)
Since for any H € A
H (™)
H(ap, - ,a1,a09) — (@) as a;—a (j=0,1,---,n),

n!

for n > 1 (2.3) follows from (2.6).

Taking the limit in (2.3) as N — oo we obtain the continuous variant of
the formula.
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3. Lagrange interpolation, biorthogonal expansion

In this section using the scalar product [-, -]y introduced by (1.3) we shall
construct discrete biorthogonal systems depending on the vector parameter

(3.1) a= (a1, as, - -,a,) €D",
where a; # a;, if i # j. Namely for z € Cand k=1,2,...,n set

1
176]@2.

(3.2) onl2) =

First we show

Theorem 2. Let N > n. Then the system

1—aly
BN (2) == ®N (2,0) := wk(a:) wi(2),
(3.3) n
wi(2) i=wp(z,0) = [ (z—a;) (k=1,2,....n)
J=1.4#k

is biorthogonal to the system (8.2) with respect to [, ]n, i.e.
(3.4) (@, ¢eln = 0ke (1< kL <),
where k¢ is the Kronecker symbol. Especially if n = N and
(3.5) ap == pe*™* N (0<p<1,k=1,...,N)
then using the notation ®Y (z, p) := ®N (2, a) we get

_ N N _ N
3o o= CEE) S gk— )

Proof. By (2.3) and (3.2) for 1 < k,¢ < n and for { € Ty we get

1
oY b == Y oY ~ > (¢ =
[ k 7¢£] N <€TN k (C) (L[C N CGT _ a[

1 @,QV(C) @k (@) 11— akN w(ag)

- dc = -
27 f (—ay ¢= 1—al 1-—a) wi(ax)

= Ope
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and (3.4) is proved.

The numbers a, (kK = 1,...,N) in (3.5) are the roots of the equations
N — pN =0 and consequently

N
Hz—aj (z€C).

Jj=1
Hence we get

N
I1(z —qj)
wk(z):JZI = Gl (z€C,z # ay).

Z — Qg Z — Qg

Taking the limit as z — a; we get

wi(ag) = lim

Thus in the special case (3.6) follows from (3.3).

The biorthogonal expansion of the function f : T — C with respect to the
system ¢ (k=1,---,n) is defined by

(37) n af vaq)k N¢k( ) (ZEC)'
k=1

Obviously I,JL\{ f € Aand in the case n = NN the function I ]J\\{ .f interpolates
f in the points of Ty:

(3-8) (INaf)(z) = f(2) (2 €Ty).

Indeed the existence of biorthogonal system implies that the system
(¢, 1 < k < N) is linearly independent on Ty and consequently every function
f:Tny — C can be written in the form

N

f(2) = cktr(z) (2 €Ty),

k=1

where ¢, € C. Hence by biorthogonality we get ¢, = [f, @] (1 < k < N), and
consequently on the set Ty (3.8) is satisfied.
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Introducing the kernel function

(3.9) (z,w;a) quk N (w,a) (z,weC)

the operator I,)', can be written in the form

(3.10)

(LY )z ZZf Zf N(z,Cia) (2 €C).

k 0CETN CETN
It is easy to see that the norm of the operator
Iﬁa :C(T)— A
is

(3.11) 1| —max— > KN (2.¢a)l.

CeTN

If n = N and ay, is defined by (3.5) then the operator (3.7) depends on N
and p and will be denoted by Iy ,:

N-1

Inpf =Y [£ 20 C.0)]ér (ar:=pe®™* /N k=1, N-1).
k=0

In this case the kernel KXY can be written in a useful closed form.

Theorem 3. Let aj, := pe*™*/N (0 < k < N). Then the kernel KY is of
the form

1—pMw 2V —wh
KN Z,w;a :(
(3.12) n( ) 1—(p2)N  z—w

K¥(w,w;a) =N (w € Ty).

(we Ty,z €C,z#w),
Furthermore there exist constants C1,Cs independent on N and p such
that

1-—
(3.13) Cll—|— logN < | n,pll < 1—1—02 logN (N e N%).
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Proof. If w € Ty, z € C and z # w then by (3.6) we get

KN (z,w;0) =
_(1—#W2§§ 1 a _(1—#W%v§: ¢ _
-~ NpN =l -z W - a ~ NpVN o= (¢ —p2)(¢— pw)
(1pN)%v-1‘/‘ p dg N
N 2mi (€ = p2)(C — pw)
1 =-pMw 11 1 1
PN z—w%ﬂ/(g—pz_C—pw>dg

Tn

Applying (2.3) we get

Ky (2, w;a) =
=P 1 1 1 Cw(l—pN) 2N —wh
Y z—w<1—@@N_1—OMVJ__1—@mN z—w

and the first part of (3.12) is proved. Taking the limit as z — w, we get the
second part of (3.12).

To prove (3.13) for any ¢ = >™*/N € Ty and z = 2™ € T set

_ |sin N7t|(1 — p™V)

- t € R).
|1 _ pN62szt| ( )

The function Fy is periodic with period 1/N. Thus we can assume that
t| < L and Fy(t) can be written in the form
2N

N-1
|sin Nwt| | sin Nt 1 | sin N7t .
Fn(t) = = Nrt| Ly(t
v N|Sin7rt|+ N ]; sinm(£ —t) N\sinwﬂﬂsm | L (®),
where
N-1
1 1 1
L=ty b (k)
N — sinw(; —1) 2N

(1-p")
11— pNeZmiNe|’
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It is easy to see that

1- N : N _2miNt N
(3.14) I{leaﬁchN() T3 7 rtrélﬂgﬂ—p e |=1-p
and
1
(3.15) —(logN —1) < Ly(t) <logN+2 (teR,N>2)
T

and (3.13) follows from (3.14) and (3.15).
To show (3.15) set N = 2N’ 4+ r (r =0,1) and take the decomposition

Ly(t) =
T S S S S N S S
N &~ sinm(£ —¢) N — sinm(£ —t) i) sinm(£ —¢)
N’ N'4r—1
1 1 1 1
= — + —_ — =
N ; sinm(£ —t) N ; sinm(&FE — 1)
1 i 1 L1 Nt 1
Nk: sinm(£ —t) N P sinm(£ +t)
Hence we get
- 2 & 1
NZ - 2k:+1 <Ln(t)<F 2.~ 2k~ Dr
k=1 gin ~———— k=1 sin ~———*—
2N 2N
Applying the inequality
2 . T
—rx <sinx <zx (nggf)
s 2
we have
N/—l N'—1 1
)< |1 —_
Zk+1/2— Inlt) = +;k+1/2

and consequently (3.15) holds. From (3.15) we get that (3.13) is satisfied for
Cy =1/10,C = 2 and N > 4.

Applying (3.13) for a sequence py (n > 4) we get
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Corollary. If for the sequence pn (n > 4)

1 1/N
1-— < 1 (N>4
( logN) S PN S (N >4)

is satisfied, then the interpolation operators In ,, (N > 4) are uniformly
bounded

sup [[In,py || < 3.
N>4

4. Biorthogonal systems in the general case

Generalizing the construction of Section 3 we fix the complex vector
a=(a,as,...,a,) €D,
where a; # a;, if ¢ # j and consider the rational functions

o

(1 - Ekz)“‘l

(4‘1) ¢kl(2) = ¢(k7£)(2) =

(zeC,k=1,2,...,n, £=0,1,...,m — 1),

where my,mo, -, m, € N* are given numbers. Obviously the numbers a} :=
1/ay, are the poles of ¢yp with the multiplicity £ + 1. Set

m:(ml,mQ,...,mn), m:=mi+ -+ my,

(4.2)
Tn :={(6,§) 1§ €N,0<j <my, i =1,2,---,n}.

We show that there exists a collection of polynomials
Dy = (P?}M)(-, a) € Pt (B, 0) € Tm)
such that the systems
(¢iri € Tm), (®iri € Tm)
are biorthogonal with respect the scalar product [, -]y, if N > m, i.e.

(43) [(I)kb ers}N = 5kr§és ((k, é)v (Ta S) € jm)
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Moreover the polynomials ®, can be written in the form

(4.4) Ppe = wibre (K, €) € Tm),

where

(4.5)

Pip € Prny—1, wi(z) = H z—a;)™ (k=1,2,...,n,z € C).
i=1,i#k

The polynomials Py, can be expressed by the partial sums of the Taylor-
series expansion

1— z
P, =P = _
(46) % (2) e (2, 0) o) g pik(z — ax)’

(lz —ag| < 7,2 € D,ry ::mln{|aj—ak| 2i=1,2,---,n,5 #k}),

namely
mkféfl
(4.7) Pre(2) = (2 — ag)" Z pik(z —ar) (2 €C, (kL) € Tn)
j=0
and by (4.6)
P ag,a) 1 d

We prove

Theorem 4. Let a = (a1,---,a,) € D", where a; # aj, if 1 < 1,j <n
and i # j and fix the vector m = (mq,---,my) with m; € N* and the natural
number N > m := mq + -+ + my. Then there exists an unique system of

polynomials @, ) € Prn—1 ((k,€) € Tn) such that the systems ¢, ¢y and @ p)
((k,£) € Tm) are biorthogonal with respect the scalar product (1.3). Moreover
the polynomials @, ¢y can be written in the form (4.4) and the coefficients of
Pyy are defined by (4.6) and (4.7).

Proof. By (2.3) for ( € Ty we have

1 Do ()C° ¢
[(I)k%(zsrs]]\/: N Z ( = §s+1 - N Z kz -

CETn CGTN
_ L/ Pre(€) oLl Pre(2)
2mi ) (¢ — a,)st! shdes 1—2N| _

Tn
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and consequently the systems in question are biorthogonal if and only if

l d® @kg(z)
sl dzs1— 2N

(48) = Jkréés

Z=a,

for any couple (k,¢), (r,s) € Tn.
The solutions of equations (4.8) are connected with the weighted Hermite
interpolation problem

(v @) (@) = bij ((i,5) € Tm),
where py(2) := (1 — zV)71 (2 € C) is the weight function and b;; are given

numbers. Namely the polynomials @y, ((k,¢) € Jm) can be expressed by the
fundamental polynomials of this interpolation problem.

From (4.8) it follows that @y, is of the form

Dpo(2) = Pre(z H (z—aj)™ = Pr(z)wr(z) (z€C)
j=1,j#k

and by (4.8)
(4.9) (pvwePiee)P (ar) = 6551 (€< j < my).
This is equivalent to

> (1) towen) 4@ P ) = 853t (655 < my)

i=0

Thus P{)(a)) = 0, if i < £ and

J (7—1) P()
(4.10) Z (o) 7™ Nak) Pug () _ e (g < j < ).

(= i!

We consider the infinite system of linear equations with respect to
Pro; Pkl - - -5 Pkis - - -

! pnwi) 9™ (ay) i
(4.11) ZT ki =0 (j €N).
=0
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The coefficient of py; in j-th equation is (pyws)(axr) # 0, consequently
this system has a unique solution. Comparing this with (4.10) and (4.11) we
get

PO an ‘
% = Pre—i) (1 >1).

It is clear that the Taylor-coefficients of the function

Pi(z) = 1‘2 Zpka—ak (12— axl < 7))

satisfy (4.11) and Theorem 2 is proved.

To evaluate the numbers py; we introduce the function

,_.
3

/

(2) 1
Sk(z) = ) :Z Z pp (lz — ak| < rg),

=0 TN Sk

where €}, = exp(27ij/N). Hence by
¢ Lo ; 0—j
) = Y () P st ) (e
3=0

we get the following recursion:

L

1
(4~12) Pr(e+1) = m Zpk:jsk(efj) (L€ N)a
3=0
where
S(’L ak N—-1 ’i n (—1)2
(4.13) s := Z 7Z+1 (i € N).
§=0 (ar — Ej i+ j=1j#k (ak — a;)

On the basis (4.12) and (4.13) the coefficients py; can be computed.
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