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Abstract. We consider the renewal process defined for a random walk

whose time domain is a subset of the d-dimensional time space. Our main

result provides the asymptotic behavior of the renewal process as t → ∞.

In general, the problem considered in this paper corresponds to the classical

setting where the asymptotic behavior of the renewal process is studied for

a random walk considered only at a subsequence of indices.

1. Some facts about the classical renewal theory

Let {Xn, n ≥ 1} be independent identically distributed random variables,

and put Sn =
n∑

k=1

Xk. The sequence {Sn, n ≥ 1} is called a random walk. The

renewal process N is defined by the random walk as follows:

(1) N(t) = max{n: Sn < t}, t > 0.
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The process N(t) is well defined if P(Ω′) = 1, where the random event Ω′ is
defined by

(2) Ω′ =
{

ω ∈ Ω: lim
n→∞

Sn(ω) = ∞
}

.

In this case N(t) is finite for ω ∈ Ω′, and one can put, for example, N(t) = 0 for
ω /∈ Ω′. Note that condition (2) is satisfied if, for instance, random variables
Xn are nonnegative and their expectation µ = EXn is positive. The latter
assumption is common for the classical renewal theory whose classical problems
are to find the asymptotic behavior of both the renewal process N(t) and its
expectation U(t) = EN(t) (called the renewal function) as t → ∞. One can
easily show that U(t) is finite for all t > 0, if the random variables {Xn, n ≥ 1}
are nonnegative and nondegenerate.

The so called renewal theorem asserts that if the random variables Xn are
nonnegative and

(3) 0 < µ = EXn < ∞,

then

lim
t→∞

U(t)
t

=
1
µ

.

The dual result for the renewal process holds under the same condition (3),
namely

lim
t→∞

N(t)
t

=
1
µ

a.s.

(here and in what follows “a.s.” stands for “almost surely”).
Another representation for the renewal process and renewal function is

often useful. It is clear that

(4) N(t) =
∞∑

n=1

]{Sn < t}

(here and in what follows ] denotes the indicator function of a random event
written in brackets after it). Taking its expectation we prove that

U(t) =
∞∑

n=1

P(Sn < t).
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Along with the function U , its “density” u is considered in the renewal
theory. Assume that the random variables {Xn, n ≥ 1} are integer valued.
Then the following function

u(t) =
∞∑

n=1

P(Sn = t)

is well defined for integer values of t (for other t it vanishes). The well known
renewal theorem of Erdős, Feller, and Pollard [2] asserts that

lim
t→∞

u(t) =
1
µ

provided random variables {Xn, n ≥ 1} are aperiodic and condition (3) holds.
In general, results for u imply their counterparts for U . However the

conditions are often non-optimal when one derives results for U from those
from u. Moreover the case of non-integer valued random variables cannot be
treated in this way.

2. Some results for multiple sums

There are various generalizations of these three results above. We are
concerned with the case where multiple sums (instead of cumulative sums Sn)
are used to define the process N . First we present some notation and results
for multiple sums of random variables.

Let Nd be the space of vectors with d positive integer coordinates. El-
ements of Nd are denoted by k, n, etc. Consider a family {X(n), n ∈ Nd}
of independent, identically distributed random variables and their multiple
(rectangular) sums

S(n) =
∑

k≺n

X(k),

where “≺” is the coordinate-wise (partial) ordering, meaning k1 ≤ n1, . . . , kd ≤
≤ nd for k = (k1, . . . , kd) and n = (n1, . . . , nd). By analogy with the case d = 1,
the family {S(n), n ∈ Nd} is called a random walk in multidimensional time.
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Some properties of random walks in multidimensional time are immediate
consequences of their counterparts for the classical random walk. For example,
if the expectation µ = EXn exists, then

S(n)
|n|

P←−µ as |n| → ∞,

where n = (n1, . . . , nd) and |n| = n1 · · ·nd. The proof is obvious and makes use
of the classical law of large numbers.

Some other properties of random walks in multidimensional time are not
so clear and immediate. Below we will apply the following Smythe [13] strong
law of large numbers. In what follows we use a random variable with the same
distribution as other random variables X(n), and put ln+ z = ln(1 + z) for
z ≥ 0.

Theorem 1. Let {X(n), n ∈ Nd} be independent identically distributed
random variables such that

(5) EX = µ exists

and

(6) E|X| (ln+ |X|)d−1
< ∞.

Then

(7) P
(∣∣∣∣

S(n)
|n| − µ

∣∣∣∣ ≥ ε i.o.

)
= 0

for all ε > 0 (“i.o.” is the abbreviation of “infinitely often”).

Note that (7) ⇐⇒ (5)–(6) (see [13]).
Several extensions of this result are known in the literature. We mention

the following one because it is heavily related to the subject of this paper (see
Indlekofer and Klesov [7]) .

Theorem 2. Let {X(n), n ∈ Nd} be independent identically distributed
random variables and let D ⊆ Nd. The relation

(8) P
(∣∣∣∣

S(n)
|n| − µ

∣∣∣∣ ≥ ε i.o. for n ∈ D

)
= 0

holds if and only if (5) holds and

(9)
∑

n∈D

P(|X| ≥ |n|) < ∞.
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Theorems 2 and 1 coincide in the case of D = Nd, since (9) ⇐⇒ (6) in this
case.

We should also like to mention that Theorem 2 is proved in [7] only for the
case of d = 2 and a special choice of the domains D described in Conjecture 1.
In this respect its formulation above can be treated as a conjecture in the case
of a general domain D. The authors hope that it holds for all d ≥ 2 and for
the obvious generalization of domains D to the case of d ≥ 3.

3. Renewal function in multidimensional time

In the case of d = 2, Ney and Wainger [12] consider the function

ud(t) =
∑

n∈Nd

P(S(n) = t)

for integer t and for integer valued random variables X(n). They called it the
renewal sequence constructed by a random walk in a multidimensional time.
The name for ud is clear in view of the analogy with the case d = 1, although
there is no “renewal” process behind it if d > 1. The problem for d > 1 mimics
the one for d = 1, namely it is to investigate the asymptotic behavior of ud(t)
as t →∞ (t integer).

Ney and Wainger [12] realized that the behavior of ud for d > 1 is different
of what is seen in the case of d = 1. Say, ud is no more bounded. They also
mention that the classical method of a difference equation satisfied by u(t) does
not work for d > 1, since “. . . there does not appear to be a natural analog
of this equation in dimension two, mainly because the lattice points of the
plain are not linearly ordered under the natural order”. The same, of course,
is true for higher dimensions. Using Tauberian methods Ney and Wainger [12]
nevertheless were able to give the asymptotics for both ud and

Ud(t) =
∑

n∈Nd

P(S(n) < t)

for d = 2 and under some additional conditions (as it became clear after further
investigations their conditions are too restrictive).

The conditions of Ney and Wainger [12] are weakened in Maejima and
Mori [11]. Moreover Maejima and Mori [11] consider the case of general d. It
is also true that their conditions work effectively only for d = 2, 3. However
they mention that “. . . our results might be true for d ≥ 4 if an order estimate
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in the divisor problem is improved for such d”. Note also that the methods of
the proof in Maejima and Mori [11] are the same as in Ney and Wainger [12],
except for better estimates of the rate of convergence in the local central limit
theorem which allow them to relax conditions of Ney and Wainger [12].

Maejima and Mori [11] were perhaps the first to mention explicitly the
relationship between the Dirichlet divisors problem in number theory and limit
theorems for multiple sums in probability theory (see [6] for other examples
of such relationships). One can say even more, namely that any improvement
in the Dirichlet divisors problem will result in an improvement in the renewal
theorem for multiple sums.

Further developments of the topic are due to Galambos and Kátai [4]–
[5]. They used a better estimate in the local central limit theorem and
obtained a further sharpening of results in Maejima and Mori [11], however they
understand that “. . . lack of knowledge in number theory imposes limitations
on our results . . . ”.

The authors of all the papers mentioned above tried to present an explicit
asymptotics of ud in the form

lim
t→∞

ud(t)
(ln t)d−1

=
1

µ(d− 1)!

(t is integer). However this result can be achieved only for d ≤ 3 at the present
time. We stress once more that this is because the “expected” rate of decay of
the remainder term in the Dirichlet divisors problem is not proved yet.

It is clear that the behavior of ud depends on the distribution of terms
X(n), although asymptotically it becomes the same irrespective of a distribu-
tion from a certain (wide) class. To highlight the dependence of ud on the
distribution F of terms X(n) we even will sometimes write ud,F rather than
ud.

In Galambos, Indlekofer and Kátai [3] a successful attempt was made to
describe the asymptotics of ud,F via the asymptotics of ud,Φ, where Φ is the
standard Gaussian distribution:

ud,F (t) = ud,Φ(t) + o
(
(ln t)d−1

)
, t →∞

(t is integer). The idea of approximation in terms of the Gaussian distribution
is common in probability theory. In the context of the renewal theorem in
multidimensional time, it not only made it possible to relax conditions up to
the existence of the second moment of X(n) but also worked for all d ≥ 1. It
is also worthwhile to mention that the asymptotics of ud,Φ still depends on the
asymptotics of the remainder term in the Dirichlet divisors problem.
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In contrast to ud, the asymptotic behavior of Ud can be obtained for all
d ≥ 1. It is shown in Klesov [8] that

lim
t→∞

Ud(t)

(ln t)d−1
=

1
µ(d− 1)!

provided the first moment exists and is positive. The direct probabilistic
methods developed in Klesov [8] allow one to prove the result for all d ≥ 1. A
sharpening of this result (also proved in Klesov [8]) reads as follows: there is a
polynomial P of degree d− 1 such that

(10) lim
t→∞

[
Ud(t)

t
− 1

µ
P

(
ln

t

µ

)]
= 0.

The polynomial P is strongly related to the polynomial in the decomposition of
the number of divisors in the Dirichlet problem; its leading coefficient obviously

is
1

(d− 1)!
. The condition on terms X(n) imposed in [8] is

t(log t)2(d−1)P(X ≥ t) → 0, t →∞,

which is much weaker than the existence of the second moment. Moreover, in
the case of d = 1 the latter condition is even weaker that the main assumption
(3).

The approach in Klesov [8] differs from those in the preceding papers. It
is based on direct probabilistic methods that allow one to reduce the problem
to the law of large numbers for original sums S(n).

A closed problem is considered in Klesov and Steinebach [10]. Namely let
D ⊆ Nd and

UD(t) =
∑

n∈D

P(S(n) < t).

Put

(11) AD(t) = card{n ∈ D: |n| ≤ t}.

Then under appropriate conditions on X(n) and on the function A

(12) lim
t→∞

UD(t)
AD(t/µ)

= 1.

The proof in Klesov and Steinebach [10] is completely “probabilistic” in the
sense that (12) is derived from the law of large numbers for sums S(n) (similarly
to Klesov [8]) and some ideas from Indlekofer and Klesov [7].
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4. Renewal process in multidimensional time

Up to now we were talking about the renewal function Ud and its density
ud. Nothing was said about the renewal process itself. The reason is that
relation (1) is meaningless for d > 1, since the set Nd is not linearly ordered
with respect to the natural order, and thus the definition of the renewal process
is not straightforward if d > 1. Relation (4) is helpful in this respect and the
representation of N via the sum of indicator functions serves as the definition
for all d ≥ 1:

Nd(t) = card{n:S(n) < t} =
∑

n∈Nd

]{S(n) < t}.

The asymptotics of Nd defined in this way is studied in Klesov and Steinebach
[9]. Again the proof there is based on an idea of reducing the problem to
known results in probability theory, namely to the strong law of large numbers
for multiple sums (Theorem 1 above). The expansion like (10) is also obtained
in Klesov and Steinebach [9], however it holds for d = 2 and d = 3, while for
d > 3 it holds only under a conjecture on a underlying rate of approximation
in the Dirichlet divisors problem.

In this paper we consider the renewal process in the setting similar to
Theorem 2 and relation (12). Namely let D ⊆ Nd and put

(13) ND(t) = card{n ∈ D: S(n) < t} =
∑

n∈D

]{S(n) < t}.

Since there will be no confusion in notation we will omit the subscript D and
write N(t) rather than ND(t). The result below holds for all d ≥ 1 and all
domains D for which the function AD defined by (11) is pseudo regularly varying
(see defining property below) The subscript D is also omitted for the function
A.

5. Main result

Now we are ready to state the main result.
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Theorem 3. Assume that {X(n), n ∈ Nd} are nonnegative independent
identically distributed random variables such that relations (5) and (6) hold and
µ > 0. Let D ⊆ Nd be an infinite domain of Nd for which

(14) lim
c↓1

lim sup
t→∞

A(ct)
A(t)

= 1,

where the function A is defined by (11) (we omit the subscript D). Then

lim
t→∞

N(t)
A(t/µ)

= 1 a.s.

where the process N is defined by (13) (we omit the subscript D).

The following result is obtained in [9].

Corollary. Assume that {X(n), n ∈ Nd} are nonnegative independent
identically distributed random variables such that relations (5) and (6) hold
and µ > 0. If D = Nd, then

lim
t→∞

N(t)
t(ln t)d−1

=
1

µ(d− 1)!
a.s.

The corollary follows immediately from Theorem 3, since

A(t) ∼ 1
(d− 1)!

t(ln t)d−1, t →∞.

The latter is a rough estimate in the Dirichlet divisors problem. Indeed, A(t)
represents in this case the number of solutions of the inequality |n| ≤ t in
positive integer numbers. Several proofs of this results are known in the
literature; an elementary proof is given in [10].

6. Proof

First we consider the case of µ = 1. Fix 0 < ε < 1 and define three
processes

N1(t) =
∑
n∈D;

|n|<(1−ε)t

]{S(n) < t},

N2(t) =
∑
n∈D;

(1−ε)t≤|n|<(1+ε)t

]{S(n) < t},

N3(t) =
∑
n∈D;

|n|≥(1+ε)t

]{S(n) < t}.
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Below we obtain necessary estimates for the processes N1, N2, and N3.

Case of N1. We have (recall that µ = 1)

|N1(t)−A((1− ε)t)| =
∑
n∈D;

|n|<(1−ε)t

]{S(n) ≥ t} ≤
∑
n∈D;

|n|<(1−ε)t

]

{
S(n)
|n| − µ ≥ ε1

}
,

where
ε1 =

ε

1− ε
.

Let

ξ(ε, ω) = card
{

n ∈ D:
∣∣∣∣
S(n, ω)
|n| − µ

∣∣∣∣ ≥ ε

}

for ε > 0. We finally obtain

(15) |N1(t)−A((1− ε)t)| ≤ ξ(ε1).

Case of N2. Since the indicator function does not exceed 1,

(16) N2(t) ≤ A((1 + ε)t−A((1− ε)t).

Case of N3. Put
ε2 =

ε

1 + ε
.

Then

(17) N3(t) ≥
∑
n∈D

|n|≥(1+ε)t

{
S(n)
|n| − µ ≤ −ε2

}
≤ ξ(ε2).

Now we combine estimates (15), (16) and (17):

N(t) ≤ |N1(t)−A((1− ε)t)|+ A((1− ε)t) + N2(t) + N3(t) ≤

≤ ξ(ε1) + A((1 + ε)t) + ξ(ε2).

By Theorem 1 there are random events Ω1 and Ω2 such that P(Ω1) = P(Ω2) =
= 1 and ξ(ε1, ω) is finite for ω ∈ Ω1, while ξ(ε2, ω) is finite for ω ∈ Ω2.
Therefore for all ω ∈ Ω1 ∩ Ω2

lim sup
t→∞

N(t, ω)
A(t/µ)

≤ lim sup
t→∞

A((1 + ε)t/µ)
A(t/µ)

,
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whence for all ω ∈ Ω1 ∩ Ω2

(18) lim sup
t→∞

N(t, ω)
A(t/µ)

≤ lim
ε↓0

lim sup
t→∞

A((1 + ε)t/µ)
A(t/µ)

= 1

by condition (14).
Similarly we obtain the lower bound

N(t) ≥

≥ − |N1(t)−A((1− ε)t)|+A((1− ε)t)+N2(t)+N3(t) ≥ −ξ(ε1)+A((1− ε)t).

Again for all ω ∈ Ω1

lim inf
t→∞

N(t, ω)
A(t/µ)

≥ lim
ε↓0

lim inf
t→∞

A((1− ε)t/µ)
A(t/µ)

= 1

by condition (14). The latter estimate together with (18) completes the proof
of the theorem in the case of µ = 1.

In the case of a general µ, we introduce random variables X1(n) = X(n)/µ,
their rectangular sums S1(n), and the corresponding renewal process N1(t).
Obviously EX1(n) = 1 and N1(t) = N(tµ). Thus applying the part of the
theorem proved in the case of the unit expectation we get

lim
t→∞

N(tµ)
A(t)

= 1 a.s.

which is equivalent to what had to be proved.

7. Concluding remarks

Remark 1. We used condition (6) in the proof of the theorem. It is seen
from the proof that this condition is optimal if D = Nd, that is in the case of
the above corollary. For other sets D it may be too restrictive, however one
can improve it in many “regular” cases (see [7] for more details).

Remark 2. Functions satisfying condition (14) are called pseudo regularly
varying in [1], where one can also find other properties of those functions similar
to those that regularly varying functions have. An example of pseudo regularly
varying functions is presented by Karamata’s regularly varying functions. On
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the other hand, there are non-regularly varying functions that satisfy condition
(14), say

A(t) =
{

0, for t = 0,
t exp {sin(ln t)} , for t > 0.

A less “exotic” example of a non-regularly varying function being nevertheless
a pseudo regularly varying function is given by

A(t) =





1, for t ∈ [0, 1);
2k, for t ∈ [

22k, 22k+1
)
, k ≥ 0;

t/2k+1, for t ∈ [
22k+1, 22(k+1)

)
, k ≥ 0.

An open problem is to describe domains D for which condition (14) holds.
A partial case of this problem for d = 2 is as follows.

Conjecture 1. Let f and g be two functions such that

f(x) ≤ x ≤ g(x), x ≥ 1.

Let D = {(i, j): f(i) ≤ j ≤ g(i)}. Is it true that condition (14) holds?
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