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Abstract. Finding certain objects in digital images is called image seg-
mentation in digital image processing. Many segmentation techniques are
based on the fact that objects usually consist of pixels having similar colour
tints. To measure the differcnces between the colour values of the image
pixels, traditionally classical distance functions (e.g. the Euclidean one) are
considered. In this paper we show how we can take advantage of using less
known distance functions in image processing applications. As a special
family, we perform a detailed analysis for distance functions generated by
neighbourhood scquences. These distance functions are integer valued ones,
and thus their application is quite natural and descriptive for images, when
the colour coordinates of the pixels are non-negative integers. Moreover,
with taking advantage of the fact that neighbourhood sequences do not
generate metrics in gencral, we can carry through new ideas in distance
measurement that cannot be achieved by metrics. To show efficiency of our
approach, we build it into such well-known image segmentation algorithms
that are based on distance measurement, namely the definition of colour
ranges, segmenting objects by region growing and classifying image pixels
by the tools of cluster analysis. We also introduce some tools to help with
finding the appropriate distance function to have optimal results.
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1. Introduction

Extracting relevant data from multidimensional (e.g. colour) images are
important operations with growing interest [19]. If the problem is to find
objects in the images then these operations are known as segmentation methods
in the literature of digital processing. A rich family of these procedures make
use of the fact that objects are usually defined by a group of neighbouring image
pixels having similar colour data. As a natural consequence, these algorithms
need some kind of distance measurement to comparc the colours of the pixels.
Traditionally, most of these image segmentation techniques are based on
classical (e.g. Fuclidean) metrics. In some cases other metrics may provide
better results [7], but very few suggestions can be found in the literature how
to choose them. Especially, if the domain of the colour representation is some
discrete set then integer valued distance functions are also worth considering.
Beside the simplicity of handling digital distance functions they often have
more illustrative behaviour than classic metrics. Ansther important point is
that these segmentation techniques are based only on distance measurement
and the satisfaction of the triangle inequality is not a natural requirement to
hold. In other words such distance functions also may behave well that are
actually not metrics.

'The above observations has led us to the investigation of the applicability
of a special family of digital distance functions in multidimensional image
segmentation problems. Our approach is based on distance functions generated
by neighbourhood sequences, as to every neighbourhood sequence a distance
function can be assigned in natural way. The usefulness of special neighbour-
hood sequences in image processing applications was already noted in the very
first fundamental papers of digital image processing (see [20]), and also in [13]
for indexing and segmenting purposes. The main advantage of these types of
distance functions is that they can be introduced in arbitrary finite dimension
and also on different types of grid. Moreover, we can also take advantage the
fact that these distance functions are not metrics in general.

We observe three classical image processing applications that are based
on distance measurement, namely the definition of colour ranges, segmenting
objects by region growing and classifying image pixels by the tools of cluster
analysis. Some of these procedures use additional parameters and to help with
adjusting them, we propose some tools, namely some histograms composed
from the distance between the colours of the pixels. Using these tools we
illustrate the behaviour of classical metrics and distance functions based on
neighbourhood sequences, and how we can take advantage of using the latter
family. Moreover, we show our proposed tools help with choosing parameters
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to obtain optimal results. As a very general colour representation in image
processing, in our investigations we focus on the 3D Red-Green-Blue (RGB)
domain.

The structure of the paper is as follows. In Section 2 we recall some
concepts and results from the theory of neighbourhood sequences that we need
in our further analysis. Section 3 explains the application of neighbourhood
sequences in the RGB-domain for image segmentation purposes. In Section
4 we present concrete techniques for color image segmentation using different
distance functions. Finally, in Section 5 we summarize our results and indicate
some corresponding open problems.

2. Neighbourhood sequences

The classical digital (cityblock and chessboard) motions were introduced
by Rosenfeld and Pfaltz [20] for Z? (where Z? denotes the integer number set).
A cityblock step allows horizontal and vertical directions, while the chessboard
step diagonal directions, as well. According to these two types of steps, the
authors in [20] defined two distances. The dy or dg distance of two points
is the number of steps needed to get from one of the points to the other,
where only cityblock or chessboard steps are allowed, respectively. As a better
approximation of the Euclidean distance, Rosenfeld and Pfaltz suggested to
alternate the cityblock and chessboard steps, which led to the distance dy.;.

Later, Das et al. [3] introduced the concept of periodic neighbourhood
sequences using arbitrary periodic mixture of the cityblock and chessboard
steps, and generalised the theory to arbitrary dimension. They also derived
a closed formula for calculating the distance between two points in arbitrary
dimension determined by a periodic neighbourhood sequence. However, dis-
tance functions generated by neighbourhood sequences are not always metrics.
In [5] Das et al. gave criteria to decide whether a neithbourhood sequence
generates a metric or not. Based on the formula for calculating the distance,
Das in [4] introduced a "natural” partial ordering relation on the set of periodic
2D-neighbourhood sequences. lLater, Fazekas in (8] extended this result to
ncighbourhood sequences in 3D.

By dropping the periodicity condition, Fazekas et al. [9] extended the
concept of neighbourhood sequences. Let us fix an arbitrary positive integer n
for the whole paper. Let ¢ and 7 be two points in Z". The i-th coordinate of
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the point g is indicated by Pr;(q). Let m be an integer with 1 < m < n. The
points ¢ and r are m-neighbours, if the following two conditions hold:

e Prig)-Pr(l<1  (1<i<n),
Z:]Pr2 (q) — Pri(r)] < m.

The sequence A = {A(:)}{2,, where A(7) € {1,...,n} for all i € N, is called an
n-dimensional (shortly nD) neighbourhood scquence. If for some I € N, A(i+
+l) = A(i) (i € N), then A is periodic with period /. In this case we briefly
write A = {A(1)A(2)...A(l)}. For example, we write {12} for the neighbour-
hood sequences {1,2,1,2,1,2,...}. A point secquence ¢ = ¢, 41, -..,¢; = 7, where
qi—1 and g; are A(7)-neighbours in Z" (1 < i < (), is called an A-path from ¢
to r of length ¢t. The A-distance d(gq,r;A) of ¢ and » is defined as the length
of shortest A-path(s) between them. A closed formula for calculating the A-
distance is given in [9] for any neighbourhood sequence A.

The former results on the ”natural” ordering relation were extended in
[9], as well. Namely, for two nD-neighbourhood sequences A and B. A
is called “faster” than B if d(q,7;A) < d(q.r.B) for any ¢, € Z". The
authors in [9] gave criteria in arbitrary dimension to compare neighbourhood
sequences with respect to this ordering. 'T'his "natural” ordering has some
unpleasant structural properties (it fails to be a complete ordering) on the
set of neighbourhood sequences . However in some applications (e.g. in
those presented in this paper), it is useful to comparc any two neighbourhood
sequences, 1.e. to decide which one spreads “faster”. For this purpose a norm-
like concept, called velocity, was introduced by A. Hajdu and L. Hajdu in [12]
in a way to fit the relation ”faster”.

Distance functions generated by neighbourhood sequences are not metrics
in general and the existence of this of this property can be checked by a
criterion obtained by Nagy [16] extending the former results of Das et al. [5]
for periodic sequences. As we show it later in our applications, non-metrical
functions also provide nice results, thus it is not recommended to exclude them
for analysis. Moreover, with these non-metrical distances we have a lot more
distance functions to choose from to refine our results.

Since in many applications the so-called Minkowski distances

1/p
Lp(q,7) (Z|Pr1—Prz ) , p>1,

Lo(g,7) = max [Pri(g) — Pri(r)|
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are considered, we show the relationship between the L, metrics and the
distance functions generated by neighbourhood sequences. Namely, we have

Li(q,7) = d(g.7;{1}) > d(q,7; A) > d(q,7;{n}) = Lo(gq,7)

for any nD-neighbourhcod sequence A. L, metrics also can be approximated
by distance functions based on ncighbourhood sequences, see e.g. [3,6,11,15]
for the p = 2 case in 2D and 3D.

3. Using neighbourhood sequences in the RGB colour representation

Numerous colour image processing methods are based on the comparison
of the colour of the pixels. The 24-bit RGB colour representation (that
is the domain is betwcen black= (0,0,0) and white= (255,255,255) with
red= (255,0,0), green= (0,255,0), blue= (0,0,255), yellow= (255, 255,0),
magenta= (255, 0,253) and cyan= (0,255, 255) is a frequently applied domain.
In this section, we will consider the behaviour of neighbourhood sequences in
this 3D (RGB) colour representation in details. However, we note here that
our procedures can be easily extended to arbitrary dimensional integer image
representations, as well.

To calculate the distance generated by neighbourhood sequences, we recall
a formula of Nagy [18] fcr the 3D space which has a simpler form than the one
given for arbitrary dimension in [9]. For this purpose we need the concept of
the limited neighbourhood sequences ([5,9]). The sequence A(") with elements
AM(4) = min(A(:), h) is the h-dimcnsional limited sequence of A. The A-
distance of the points q,r € Z? is given by d(q,7; A) = max{v(1),ds,ds},
where

; i-1
dy = max{ i ’ (1) +0(2) > > AP
i ji=1

and

—

dz =max<{i | v(l)+v(2)+v(3)> y A7) ¢ s

ji=1

and the values v(j) (j = 1,...,3) correspond to the values |Pr;(g) — Pr;(r)|
(i=1,...,3)ordered in a non-decreasing way, i.e. v(1) = max{|Pr(q)—Pr;(r)|}

and v(3) = miin{|Pr(q) — Pr;(r)}.
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The criterion given for arbitrary dimension in [5,9] to check whether a
neighbourhood sequence is ”faster” than another one can be formulated as
follows. In the 3D case let A and B 3D- neighbourhood sequences . 'Then

(q.m; A) < d(q,r; B) for all ¢,r € Z?, if and only 1f r 4(2) ) > z B®)(j

and EA(j) > Z B(j). For example it can be easily checked that the
j=1 Jj=1
periodic neighbourhood sequences {31} and {2} cannot be compared using
this "natural” ordering relation.
As we noted earlier, neighbourhood sequences do not generate metrics in
general. For the 3D case we formulate the general criterion of Nagy [16] given
for arbitrary dimension. \'amely, the 3D- nelgh hourhood sequence A generates

a metric on Z? if and only if Z ARI(G) > Z AR)(i) for all h, j, k € N with
i=k+1 i=]

1 < h <€ 3. Roughly speaking, those neighbourhood sequences fail to generate

metrics that become "slower” as c.g. {31}. (For such sequences the triangle

inequality is not satisfied.)

Now, we illustrate the behaviour of neighbourhood sequences in measuring
the distances between colours. First, let us consider the following three colours
given by their RGB coordinates: C1(60,60,60) (dark grey), C2(180, 180, 180)
(light grey), C5(240, 30,90) (raspberry red). Calculating the distances of these
colours with respect to the neighbourhood sequences {1}, {2}, and {3}, we get
the distance values shown in Table 1.

A= {1} Ay = {2} Az = {3}
d(Cy, Cs) 360 180 120
d(C1, Cs) 240 180 180
d(C2, Cs) 300 150 150

Table 1. 'The distances of colours depending on the neighbourhood sequence
used

The entries of the table show that not only the distance values, but also the
respective distances (i.e. the concepts "closer” and "farther”) highly depend on
the chosen neighbourhood sequences . More precisely, for the neighbourhood
sequences {1}, {2} and {3}, the colours (C;.C3), (C2,C3), and (Ci,Cs) are
the closest, respectively.

The above used three neighbourhood sequences generate metrics. In
the following example we show a distance function which does not meet the
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triangular inequality. Let Ay = {3,2,1}, C4(30,30,30), Cs(88,69,50) and
(Cs(108, 109, 109). Then it is easy to calculate the distances:

d(C4, C{,; A4) =58
d(Cs5. Cs; Ag) = 59
d(C4, Cs', A4) = 118

As we can see the triangular inequality (d(Cs, Cs; As) + d(Cs, Cs; Ag) >
d(C4, Cs; As)) does not hold for these values.
In the next example we will use the non-periodic neighbourhood sequence
As ={1,1,1,2,2,2,2,2,3,3,...}, with A(¢) = 3 for all 7 > 8. Let us consider
some As-distances in the RGB-cube:

d((0,0,0),(255,255,255); As) = 259
d((255,0.0). (0, 0,255); As) = 257

d((0. 255, 0), (0,0,0); A3) = 255
d((100,50,50), (200, 250, 100); As) = 200
d((75,175, 124),(149.101,199); As) = 75

Moreover, A5 generates a metric on 7. and hence on the RGB-cube.
g

4. Applications in image segmentation based on distance functions

By involving distance functions generated by neighbourhood sequences |,
we can perform a more general distance measurement approach as usual in
concrete colour image processing tasks. As we have a corresponding research
on stone parts segmentation, the applicability of methods will be shown for
images that contain stone particles captured by a microscope. The main
challenge here is to detect special type of stones and to separate different stone
parts. The whole segmentation procedure considers many image processing
techniques among which the colour based segmentation is a basic approach.
Now we present those segmentation methods that are found to be suitable
in our research. Accordingly, we show the advances that can be achieved
by considering new families of distance functions in defining colour ranges,
performing segmentation by region growing and separating image segments by
clustering.
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Beside showing examples for the advantages of our approach, we also
introduce some tools which nicely describe the behaviour of the distance
measurement in the given image segmentation procedure. As the whole
approach is based on the differences between colour values with respect to
the chosen distance function, we found histograms composed from these values
to be natural descriptors.

4.1. Colour ranges

Using the basic version of this procedure [10] we can find those pixels in
the image whose colours are within a given threshold distance to an initially
fixed seed colour. In the software realizations of this method usually one special
function is fixed and the user should choose the seed colour and the threshold
value without any guidelines.

Our purpose is to make it possible to change not only the seed colour
and threshold value, but alsc the distance function to gain even more optimal
results. Using a ”faster” distance function with a lower threshold value and a
"slower” distance function with a higher one, similar results can be obtained.
Identical results rarely can be achieved in this way, since the occupied regions
(spheres) of the distance functions geometrically differ, but the differences
can be very small. However. using alternative distance measurement (e.g.
distance functions based on neighbourhood scquences ) we can gain additional
possibilities beside just adjusting the speed of the distance function. Namely,
neighbourhood sequences do not generate metrics in general, thus we can carry
through such ideas that would have no sense in the case of classical metrics.
One such idea in image segmentation is to start frem a seed colour (object
point) and grab many pixels with close colours rapidly as they are assumed to
be object points. Then to avoid the inclusion of non-object points we want to
decrease the inclusion of the number of pixels. To realize this idea a distance
function is needed which becomes "slower”. However, this property contradicts
triangle inequality thus cannot be achieved by a metric.

To help with choosing a suitable distance function d, we use colour range
histograms. After fixing a seed point = having seed colour ¢;, the k-th column
of this histogram represents the number of those image pixels y for which
k— 1 < d(cz,¢y) < k+ 3. Note that for integer valued distance functions
we can use the simpler condition d(cz,c,) = k. Then a local minimum of
this histogram is a natural choice for the threshold value, since local minima
indicate those parts of the colour cube which colours are taken by a small
number of image pixels. Especially, the first mode of the histogram (the closest
colours to the seed) is possible to be the most important in applications. As

the modality of the colour range histogram depends on the chosen distance
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function, a distance function is expected to perform better if the desired local
minimumn can be detected better in its corresponding histogram. For example,
if the first local minimum has great importance, the first valley of the histogram
should be as deep and wide as possible.

To illustrate the above ideas in choosing the suitable distance functions
and corresponding threshold values we present an illustrative example. Let us
consider the original image in Figure 1 (a), where the aim is to separate the
stone part indicated by a dashed (manually defined) boundary. First we show
the differences regarding to different distance functions, when one seed colour
1s fixed and the threshold value is adjusted accordingly to obtain approximately
the same quality of results.

Original image (a)

()

Figure 1. Colour ranges from the seed colour = (221,120, 162) based
on different distance functions; (a) L; metric, threshold= 48, (b) Lo met-
ric, threshold= 25, (¢) distance function generated by {3333333333111...},
threshold= 35.

It can be nicely observed that in this case the idea of choosing a distance
function which becomes “slower” (namely the one generated by the neighbour-
hood sequence {3333333333111 ...} nicely worked, as it did not emerge that
many non-object pixels as the metric L; or Ly. To determine the suitable
threshold values we used the corresponding colour range histograms shown in
Figure 2.

Note that the histogram on Figure 2 (c) has the best behaviour when the
focus is on the modality of the first mode. This behaviour has led to the better
quality of result shown in Figure 1 (c).

The colours of objects are usually not homogeneous. A usual reason is
that illumnination causes many colour shades which can be also observed in our
images captured by a microscope. In this case it is a natural improvement to
consider more seed colours to describe the objects. Using this technique, the
threshold values obviously should be decreased and less non-object points will
be involved. Colour range histograms can be used again to find optimal distan-
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(a) (b)

Figure 2. Colour range histograms accoprding to different distance func-
tions: (a) L; metric, (b) L. metric, (c) distance function generated by

{3333333333111...}

ce functions with respect to each of the seed colours, separately. Our following
example illustrates the advantages of using more seed colours with smaller
threshold values. In Figure 3 the results shown in Figure 1 (a)-(c¢) are improved
by considering more seed colours.

(a) (b) (0) (@)

Figure 3. Colour ranges using three seed colours: (a) seed colour =
(223,121, 158), L metric, threshold= 20. (b) seed colour = (222,129,124),
L; metric threshold= 40, (c) seed colour = (228,134,135), L, metric,
threshold= 10 (d) union of (a), (b), (c).

4.2. Region based segmentation

It is a very usual requirement in image segmentation methods that the
resulted segments should be connected, where connectedness is defined based
on the well-known 4- or 8-neighboring relations in 2D (which are equivalent,
in the present terminology, to the 1- and 2-neighboring relations, respectively).
A digital set is 4-connected (resp. 8-connected) if any two of its points can be
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reached by such a sequence of its points where the consecutive elements in the
sequence are 4-neighbours (resp. 8-neighbours).

To preserve connectivity we insert our approach for colour ranges into a
region growing algorithm. Region growing techniques are classical procedures
(see [10, 21]) for finding connected seginents that consist of pixels with similar
colours. Starting from a seed point (inner point of the region) and fixing a
threshold value we merge those neighbours of the seed point whose colours
are within a distance to the colour of the seed point. Then we continue with
merging those pixels that are neighbours previously merged ones and also have
colours within the given threshold to the seed colour. The procedure stops,
when no more pixels can be merged in this way.

[t is clear that a natural extension of our colour range approach leads to
a general region growing method. Namely, we achieve region growing with
requiring spatial connectivity to the seed point beside considering colour range
information. In this way we can also take advantage of the use of our alternative
colour distance measurement also for region growing. Colour range histograms
can be extended naturally for region growing purposes. Let a distance function
d, a seed point z with colour ¢, and a threshold value T" be fixed. Then the
k-th column of the region growing histogram represents the number of those
pixels y for which k& — % <d(ez,¢y) < k+ % and there exists a 4-path between
z and y such that for any element z of the path d(¢z,¢y) < 7T In Figure 4 we
show an example for region growing histogram.

Note that the shape of the histogram is like a cumulative one, and its
jumps indicate those distance values, where remarkable number of new pixels
are merged. That is the suggested choices of thresholds are the distance values
corresponding to the very beginning of the constant sections of the histogram,
as it is shown in Figure 4 (b). The regions occupied by the algorithm when
reaching the indicated values can be observed in Figure 5.

—_— s

Pixels reached

|

22 95 122 144 Distance

(b)

Figure 4. Region growing of stone parts; (a) original image with seed point
having seed colour = (85,145, 59) indicated, (b) region growing histogram of
the metric L.
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(2)

Figure 5. Occupied regions of region growing according to the threshold values
(a) 22, (b) 95 (c) 122, (d) 144.

We can see that after occupying the first (desired) stone part a the distance
22, the next relevant change in region growing occurred only at the distance
95, when this amount of colour change let the algorithm grow over the crack
around the seed stone part. The huge difference between Figure 5 (¢) and
(d) shows that in spite of the relatively small distance increment. the region
growing histogram rapidly increases for larger values. This phenomenon easily
can be explained by noting that after enierging a segment S having large colour
distance from the seed, those segments which are connected with S and have
closer distance values to the seed are imunediately =merged.

The proposed region growing procedure naturally can be improved by using
the optimisation techniques (more seed colours, modality analysis to choose
appropriate distance functions, etc.) discussed at the colour range approach.

4.3. Classifying colours with cluster analysis

In such segmentation tasks if no a priori information or user interaction
are available, automatic methods are needed. In such situations the widely
applied methods of cluster analysis can be used. A huge number of clustering
approaches are known, and basically all of them are based on some distance
measurement. Thus the question also arises here, whether the application of
the other distance functions than the classical one may lead to better results.
As alternative possibilities, we used digital distance functions generated by
neighbourhood sequences again, and achieved nice results. To comparc the
performance of different distance functions first we considered hierarchical
clustering [1] with moving centroids that were rounded when integer valued
distance functions were applied. To initialize this clustering procedure we put
every colour in the image into separate clusters. Then at every further step we
merge those two clusters which are closest to each other with respect to the
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chosen distance function. The algorithm stops when an initially fixed number
of cluster is reached or when the distance of the closest two clusters is larger
than an initially fixed threshold value. Since hierarchical clustering does not
need any pre-processing or additional arguments we considered it as the most
objective approach to compare the efficiency of different distance functions. In
Figure 6 we show the results of hicrarchical clustering obtained by using various
distance functions.

(d)

Figure 6. Results of hierarchical clustering into six clusters using different
distance functions; (a) original image, (b) L; metric, (¢) Lo metric, (d)
distance functions generated by {123}.

It is always a very sophisticated problem in image processing to decide
which method provides the ”best” result. The reason is that the decision
highly depends on the subjective impressions of the human receiver. Hence it
Is a usual practice to ask a group of people for taking sides in such questions.
Nevertheless, these surveys are rather expensive and time consuming, and
thus many error functions were composed to make these decision based on
quantitative measures. To evaluate the results of clustering methods such a
measure is the one proposed by Levine and Nazif [14]. In our investigations we
used this uniformity measure with a slight modification and calculated

L
3 o}
— =
T Lo?’
where L is the number of final clusters, o? is the i-th within-class variance,
while o is the between-class variance. Note that 0 < E, and the smaller £ is
the better, the corresponding result can be assumed. Especially, we have £ = 0
if we put every group of pixels with the same colour in separate clusters. In
Table 2 we present our results on clustering Figure 6 (a) into six clusters with
different distance functions.



206 A. Hajdu, J. Kormos, B. Nagy and Z. Zdrgd

E I L {12y | {123} | {11113333} | {31}
Hierarchical | 0,03432 | 0,03427 | 0,02362 | 0,02631 |  0,03426 | 0,07480
K-means | 0,02862 | 0,02862 | 0,02555 | 0,02614 | _ 0,02610 | 0,02612

Table 2. Levine and Nazif error after classifying intc six clusters using different
distance functions and clustering methods

The quantitative analysis in Table 2 nicely shows that neighbourhood
sequences are worth taking in consideration in clustering procedures, as well. In
our special investigation on segmenting stone parts, hierarchical clustering does
not seem to be a good choice in general, since no hierarchy can be observed
in these types of images. Hence we observed another type of, namely the
K-means, clustering method (see [1]). The classic version of this algorithm
determines R initial cluster centroids and then puts every element into the
cluster having the closest centroid. Table 2 contains our experimental results
according to the Levine and Nazif uniformity measure for the same task as
in the case of hierarchical clustering. From the table we can see that the K-
means clustering procedure yields more reliable results (at least quantitatively)
than the hierarchical one. Moreover, these results show that distance functions
based on neighbourhood sequences can be nicely applied here, as well.

5. Conclusions

In this paper we showed how the special family of distance functions
generated by neighbourhood sequences can be applied successfully in colour
image segmentation beside classical metrics. It was also explained how the
choice of different distance functions may improve the results. These methods
are based on the suitable choice of distance functions and threshold values to
define ranges around fixed seed colours. Our approach was given for the RGB
colour representation, but they can be extended to arbitrary dimension [5,9,16]
and also to other types of girds [17]. By the help of the relation introduced
in [5,9] or the velocity value in [12], we can choose faster or slower distance
functions or we can even ignore metrical properties [9,16]. As an application
area, we presented stone parts segmentation, where the main task is to extract
the different types of stones from an image captured by microscope.
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In this topic there are still some unsolved problems like finding the suitable
seed colours, threshold values and neighbourhood sequences to achieve optimal
results. The precise mathematical solution of these problems is quite sophis-
ticated even for the reason that the goodness of the result may be subjective
decision. We defined some theorctical tools (histograms) that help with finding
the suitable parameters, as the modes of the histograms will represent segment
classes in the image.
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