ON THE CLASS OF GENERALIZING DIFFERENTIAL OPERATORS IN CLIFFORD ALGEBRA

Nguyen Canh Luong (Hanoi, Vietnam)

Dedicated to Professor Imre Kátai on his 65th birthday

Abstract. Let \mathcal{A} be a universal Clifford algebra induced by an mdimensional real linear space. It is well-know that the differential operator $\mu = \sum_{k=0}^{m} \frac{\partial}{\partial x_k} e_k$ satisfies the relations $\mu.\overline{\mu} = \overline{\mu}.\mu = \Delta_{m+1}$, where $\overline{\mu}$ is the conjugate operator of μ and $\Delta_{m+1} = \sum_{k=0}^{m} \frac{\partial^2}{\partial x_k^2}$ (see [1]). Let $m \equiv 2 \pmod{4}$ and $L(e_0, e_{A_1}, ..., e_{A_{m+1}})$ be the invertible subspace in \mathcal{A} (see [3]). In this paper we give the some conditions for the generalizing differential $D^* = \sum_{k=0}^{m+1} \alpha_k \frac{\partial}{\partial x_k}$, where $\alpha_k \in L(e_0, e_{A_1}, ..., e_{A_{m+1}})$ such that any solution of a differential equation $D^*u = 0$ is always a solution of Laplace's equation $\Delta_{m+2}u = 0$, where $\Delta_{m+2} = \sum_{k=0}^{m+1} \frac{\partial^2}{\partial x_k^2}$.

1. Preliminaries

Consider the 2^m -dimensional real space \mathcal{A} with basis

$$E = \{e_0, e_1, \dots, e_m, e_{12}, \dots, e_{12\dots m}\}.$$

The product of two elements $e_A, e_B \in E$ is given by

$$e_A \cdot e_B = (-1)^{\sharp(A \cap B)} (-1)^{P(A,B)} e_{A \Delta B}; \quad A, B \subset \{1, 2, ..., m\},$$

where

$$\begin{cases} P(A,B) &= \sum_{j \in B} P(A,j), \\ P(A,j) &= \sharp \{i \in A : i > j\}, \\ A\Delta B &= (A \setminus B) \cup (B \setminus A), \end{cases}$$

and #A denotes the number of elements of A.

Each element $a = \sum_{A} a_A e_A \in \mathcal{A}$ $(a_A \in I\!\!R)$ is called a Clifford number. The product of two Clifford numbers $a = \sum_{A} a_A e_A$; $b = \sum_{B} b_B e_B$ is defined by the formula

$$ab = \sum_{A} \sum_{B} a_{A}b_{B}e_{A}e_{B}$$

It is easy to check that in such way \mathcal{A} is turned into an associative noncommutative algebra over \mathbb{R} . It is called the Clifford algebra.

The involution for basic vector $e_{k_1k_2...k_t} \in E$; $k_1, k_2, ..., k_t \in \{1, 2, ..., m\}$ is given by $\overline{e}_{k_1...k_t} = (-1)^{\frac{t(t+1)}{2}} e_{k_1k_2...k_t}$.

For any
$$a = \sum_{A} a_A e_A \in \mathcal{A}$$
, we write $\overline{a} = \sum_{A} a_A \overline{e}_A$ and $|a| = \left(\sum_{A} a_A^2\right)^{\frac{1}{2}}$.

2. Generalizing differential operators

Definition 1 (see [3]). i) An element $a \in \mathcal{A}$ is said to be invertible if there exists an element $a^{-1} \in \mathcal{A}$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e_0$; a^{-1} is said to be the inverse of a.

ii) A subspace $X \subset \mathcal{A}$ is said to be invertible if every non-zero element in X is invertible in \mathcal{A} .

iii) $L(u_1, u_2, \dots, u_n) = lin\{u_1, u_2, \dots, u_n\}, \quad u_i \in \mathcal{A} \quad (i = 1, 2, \dots, n).$

Let $m \equiv 2 \pmod{4}$ and $L(e_0, e_{A_1}, ..., e_{A_{m+1}})$ be the invertible subspace in \mathcal{A} (see [3]).

Definition 2. i) The operator $D^* = \sum_{k=0}^{m+1} \alpha_k \frac{\partial}{\partial x_k}$, where

$$\alpha_k \in L(e_0, e_{A_1}, \dots, e_{A_{m+1}}) \quad (k = 0, 1, \dots, m+1)$$

is called a generalizing operator in \mathcal{A} .

ii) Let
$$\alpha_k = \sum_{i=0}^{m+1} a_{ik} e_{A_i}$$
 $k = 0, 1, ..., m+1$, where $e_{A_0} = e_{A_0}$. The matrix $A = (a_{ij})_{m+2}$ is called the symbol of D^* .

iii) The operator $\overline{D^*} = \sum_{k=0}^{m+1} \overline{\alpha}_k \frac{\partial}{\partial x_k}$ is called the conjugate operator of D. iv) The matrix $\overline{A} = (a'_{ij})_{m+2}$ defined by

$$\begin{cases} a'_{0j} &= a_{0j}, \\ & \text{for } i = 1, ..., m+1 \text{ and } j = 0, ..., m+1 \\ a'_{ij} &= -a_{ij} \end{cases}$$

is called the conjugate of the matrix A.

Remark. From these notations we can write

$$D^* = (e_0 \ e_{A_1} \dots e_{A_{m+1}}) A \left(\frac{\partial}{\partial x_0} \ \frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_{m+1}} \right)^T,$$

where M^T denotes the transpose of the matrix M.

Lemma 1 (see [2]). If $L(e_0, e_{A_1}, ..., e_{A_l})$, $e_{A_i} \in E$, $e_{A_i} \neq e_{A_j}$ for all $i \neq j, i, j \in \{0, 1, ..., l\}$, is invertible then

either
$$\#A_j = 4p_j + 1$$
 or $\#A_j = 4p_j + 2$ $(p_j \in I\!\!N, j = \overline{1, l}).$

Proof. Suppose that there exits $e_{A_i} \in \{e_{A_1}, e_{A_2}, \ldots, e_{A_l}\}$ such that

$$\sharp A_j = 4p_j \quad \text{or} \quad \sharp A_j = 4p_j + 3.$$

Hence

$$(e_0 + e_{A_i}).(e_0 - \overline{e}_{A_i}) = e_0 + e_{A_i} - \overline{e}_{A_i} - e_{A_i}.\overline{e}_{A_i} = 0.$$

So $e_0 + e_{A_i}$ is not invertible.

Lemma 2 (see [2]). $L(e_0, e_{A_1}, ..., e_{A_l})$, $e_{A_i} \in E, e_{A_i} \neq e_{A_j}$ for all $i \neq j$, is invertible if and only if

$$e_{A_i}\overline{e}_{A_j} + e_{A_i}\overline{e}_{A_i} = 0 \quad for \ all \quad i \neq j; \ i, j \in \{0, 1, \dots, l\},$$

where $e_{A_0} = e_0$.

Proof. Sufficiency. Suppose that $e_{A_i}\overline{e}_{A_j} + e_{A_j}\overline{e}_{A_i} = 0$ for $i \neq j$, $i, j \in \{1, 2, \ldots, l\}$. From $e_0\overline{e}_{A_j} + e_{A_j}\overline{e}_0 = 0$, we have $\overline{e}_{A_j} + e_{A_j} = 0$, $j \in \{1, 2, \ldots, l\}$.

Take
$$a = a_0 e_0 + \sum_{i=1}^{l} a_i e_{A_i} \in L(e_0, e_{A_1}, e_{A_2}, \dots, e_{A_l}), \ (a \neq 0).$$
 Write

$$a^{-1} = \frac{1}{|a|^2} \left(a_0 e_0 + \sum_{i=1}^l a_i \overline{e}_{A_i} \right).$$

Then

$$aa^{-1} = \frac{1}{|a|^2} \left(a_0 e_0 + \sum_{i=1}^l a_i e_{A_i} \right) \left(a_0 e_0 + \sum_{j=1}^l a_j \overline{e}_{A_j} \right) =$$

$$= \frac{1}{|a|^2} \left[a_0^2 e_0 + a_0 \left(\sum_{i=1}^l a_i e_{A_i} + \sum_{j=1}^l a_j \overline{e}_{A_j} \right) + \sum_{i=1}^l a_i^2 e_{A_i} \overline{e}_{A_i} + \sum_{i
$$= \frac{1}{|a|^2} \left(\sum_{i=0}^l a_i^2 \right) e_0 = e_0.$$$$

Similarly, one can check the equality $a^{-1}a = e_0$.

Neccessity. Suppose that $L(e_0, e_{A_1}, e_{A_2}, \ldots, e_{A_l})$ is invertible. By Lemma 1 we have

$$#A_j = 4p_j + 1$$
 or $#A_j = 4p_j + 2, p_j \in \mathbb{N}, j \in \{1, 2, \dots, l\}.$

Hence

$$e_0\overline{e}_{A_j} + e_{A_j}\overline{e}_0 = \overline{e}_{A_j} + e_{A_j} = 0 \quad \text{for} \quad j \in \{1, 2, \dots, l\}$$

Suppose that there exists $e_{A_i}, e_{A_j} \in \{e_{A_1}, e_{A_2}, \dots, e_{A_l}\}$ such that

$$e_{A_i}\overline{e}_{A_j} + e_{A_j}\overline{e}_{A_i} \neq 0.$$

By Lemma 1 we have $-e_{A_i}e_{A_j} - e_{A_j}e_{A_i} \neq 0$. It is easy to see that

either $e_{A_{\mu}}e_{A_{\nu}} = e_{A_{\nu}}e_{A_{\mu}}$ or $e_{A_{\mu}}e_{A_{\nu}} = -e_{A_{\nu}}e_{A_{\mu}}, \quad \forall \ e_{A_{\mu}}, e_{A_{\nu}} \in E.$

Hence $e_{A_i}e_{A_j} = e_{A_j}e_{A_i}$. Write $a = e_{A_i} + e_{A_j}$ and $b = \overline{e}_{A_i} - \overline{e}_{A_j}$. Then we get

$$ab = (e_{A_i} + e_{A_j})(\overline{e}_{A_i} - \overline{e}_{A_j}) = e_0 + e_{A_j}\overline{e}_{A_i} - e_{A_i}\overline{e}_{A_j} - e_0 = -e_{A_j}e_{A_i} + e_{A_i}e_{A_j} = 0.$$

So a is not invertible.

Lemma 3. The generalized differential operator $D = \sum_{k=0}^{m+1} \frac{\partial}{\partial x_k} e_{A_k}$ with $e_{A_0} = e_0$ satisfies $D.\overline{D} = \overline{D}.D = \Delta_{m+2}$, where $\overline{D} = \sum_{k=0}^{m+1} \frac{\partial}{\partial x_k} \overline{e}_{A_k}$ is the conjugate operator of D and $\Delta_{m+2} = \sum_{k=0}^{m+1} \frac{\partial^2}{\partial x_k^2}$.

Proof. By Lemma 1 and Lemma 2 we get

$$D.\overline{D} = \sum_{k=0}^{m+1} \frac{\partial}{\partial x_k} e_{A_k} \cdot \sum_{l=0}^{m+1} \frac{\partial}{\partial x_l} \overline{e}_{A_l} =$$

$$=\sum_{k=0}^{m+1}\frac{\partial^2}{\partial x_k^2}e_{A_k}.\overline{e}_{A_k}+\sum_{k\neq l}\frac{\partial^2}{\partial x_k\partial x_l}\Big(e_{A_k}\overline{e}_{A_l}+e_{A_l}\overline{e}_{A_k}\Big)=\Delta_{m+2}.$$

Similarly, one can check that $\overline{D}.D = \Delta_{m+2}$.

Lemma 4. If the matrix A is a symbol of the generalizing differential operator D^* then \overline{A} is the symbol of $\overline{D^*}$.

Proof. By Lemma 1 we have $\sharp A_j = 4p_j + 1$ or $\# A_j = 4p_j + 2$ $(p_j \in \mathbb{N}; j = \overline{1, m+1})$. Hence $\overline{e}_{A_i} = -e_{A_i}$ $i = \overline{1, m+1}$.

Suppose that $\alpha_k = \sum_{i=0}^{m+1} a_{ik} e_{A_i}$ (k = 0, 1, ..., m + 1), then

$$\overline{\alpha}_k = \sum_{i=0}^{m+1} a_{ik} \overline{e}_{A_i} = a_{0k} \overline{e}_0 + \sum_{i=1}^{m+1} a_{ik} \overline{e}_{A_i} = a_{0k} e_0 - \sum_{i=1}^{m+1} a_{ik} e_{A_i}.$$

Since

$$\overline{D^*} = \sum_{k=0}^{m+1} \overline{\alpha}_k \frac{\partial}{\partial x_k} = (e_0, e_{A_1}, ..., e_{A_{m+1}}) \overline{A} \left(\frac{\partial}{\partial x_0}, \frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_{m+1}}\right)^T.$$

The Lemma is proved.

Definition 3. i) Let Ω be a certain open domain in \mathbb{R}^{m+2} . A function $f \in C^1(\Omega; \mathcal{A})$ is said to be left monogenic in Ω if and only if $D^*f = 0$ in Ω .

ii) The set of left monogenic functions in Ω is denoted by $H(\Omega; \mathcal{A})$, and the set of orthogonal matrices of order m + 2 is denoted by O(m + 2).

Lemma 5. Let A be the symbol of the generalizing differential operator $D^* = \sum_{k=0}^{m+1} \alpha_k \frac{\partial}{\partial x_k}$, where $\alpha_k \in L(e_0, e_{A_1}, ..., e_{A_{m+1}})$. Then $A = \lambda O$, where $\lambda > 0$ and $O \in O(m+2)$ if and only if

$$\begin{cases} \alpha_i \overline{\alpha}_j + \alpha_j \overline{\alpha}_i &= 0\\ \alpha_i &= \lambda \end{cases} \quad i, j = 0, 1, \dots, m+1; \ i \neq j.$$

Proof. By Lemma 1 we have $\#A_j = 4p_j + 1$ or $\#A_j = 4p_j + 2$ $(p_j \in IN, j = \overline{1, m+1})$. Hence it is easy to check that $e_{A_k}\overline{e}_{A_k} = 1$ and $\alpha_k\overline{\alpha}_k = |\alpha_k|^2$ for $k = \overline{0, m+1}$.

Let $B = A^T A$. Then $b_{ij} = \sum_{k=0}^{m+1} a_{ki} a_{kj}$ i, j = 0, ..., m+1. By Lemma 2

we get

$$\begin{aligned} \alpha_i \overline{\alpha}_j + \alpha_j \overline{\alpha_i} &= \left(\sum_{l=0}^{m+1} a_{li} e_{A_l}\right) \left(\sum_{k=0}^{m+1} a_{kj} \overline{e}_{A_k}\right) + \left(\sum_{k=0}^{m+1} a_{kj} e_{A_k}\right) \left(\sum_{l=0}^{m+1} a_{li} \overline{e}_{A_l}\right) = \\ &= \sum_{l=0}^{m+1} \sum_{k=0}^{m+1} a_{li} a_{kj} (e_{A_l} \overline{e}_{A_k} + e_{A_k} \overline{e}_{A_l}) = \\ &= 2 \sum_{k=0}^{m+1} a_{ki} a_{kj} (e_{A_k} \overline{e}_{A_k}) = 2 \sum_{k=0}^{m+1} a_{ki} a_{kj} = 2b_{ij}. \end{aligned}$$

Thus

$$A = \lambda O, \text{ where } O \in O(m+2) \iff \begin{cases} b_{ij} = 0 \text{ for } i \neq j \\ b_{ii} = \lambda^2 \end{cases} \quad i, j = 0, ..., m+1$$

$$\iff \begin{cases} \alpha_i \alpha_j + \alpha_j \alpha_i &= 0 \text{ for } i \neq j \\ 2\alpha_i \overline{\alpha}_i &= 2|\alpha_i|^2 = 2b_{ij} = 2\lambda^2 \quad i, j = 0, 1, ..., m+1. \end{cases}$$

Lemma 5 is proved.

Theorem. Let $D^* = \sum_{k=0}^{m+1} \alpha_k \frac{\partial}{\partial x_k}$, where $\alpha_k \in L(e_{A_0}, ..., e_{A_{m+1}})$ and A be the symbol of D^* . Then $D^*\overline{D}^* = \overline{D}^*D^* = \lambda^2\Delta_{m+2}$ if and only if $A = \lambda O$, where $O \in O(m+2)$ and $\Delta_{m+2} = \sum_{k=0}^{m+1} \frac{\partial^2}{\partial x_k^2}$, $\lambda > 0$. **Proof.** By Lemma 5 we have

$$D^*\overline{D}^* = \left(\sum_{i=0}^{m+1} \alpha_i \frac{\partial}{\partial x_i}\right) \left(\sum_{j=0}^{m+1} \overline{\alpha}_j \frac{\partial}{\partial x_j}\right) = \sum_{i,j=0}^{m+1} \alpha_i \overline{\alpha}_j = \lambda^2 \Delta_{m+2} \quad \Longleftrightarrow$$
$$\iff \begin{cases} \alpha_i \overline{\alpha}_j + \alpha_j \overline{\alpha}_i = 0\\ \alpha_i|^2 = \lambda^2 \end{cases} \quad \text{for} \quad i, j = 0, 1, ..., m+1 \quad \text{and} \quad i \neq j \quad \Longleftrightarrow$$
$$\iff A = \lambda O.$$

Corollary 1. Let D^* be a generalizing differential operator in $\mathcal{A}, f \in \mathcal{H}(\Omega; \mathcal{A})$. If $A = \lambda O$, where $\lambda > 0, O \in O(m + 1), A$ is the symbol of D^* , then f is the solution of Laplace's equation $\Delta_{m+2}f = 0$.

Proof. From $A = \lambda O$ and $D^* f = 0$ we get $\overline{D}^* D^* f = \lambda^2 \Delta_{m+2} f = 0$. So $\Delta_{m+2} f = 0$.

Corollary 2. If the generalizing operator $D^* = \sum_{k=0}^{m+1} \alpha_k \frac{\partial}{\partial x_k}$ satisfies the relation $D^*\overline{D}^* = \overline{D}^*D^* = \lambda^2 \Delta_{m+2}$, where $\Delta_{m+2} = \sum_{k=0}^{m+1} \frac{\partial^2}{\partial x_k^2}$, then exits the linear transformation $y_i = \sum_{j=0}^{m+1} p_{ij}x_j$ such that $D^* = \sum_{k=0}^{m+1} \frac{\partial}{\partial y_k} e_{A_k}$.

Proof. Let A be the symbol of D^* . By Theorem we have $A = \lambda O$, where $\lambda > 0$ and $O \in O(m+2)$. If we choose $P = (A^T)^{-1} = (\lambda O^T)^{-1} = \frac{1}{\lambda}O = \frac{1}{\lambda^2 A}$, then we get

$$D^* = \begin{pmatrix} e_0 & e_{A_1} \dots e_{A_{m+1}} \end{pmatrix} A \begin{pmatrix} \frac{\partial}{\partial x_0} & \frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_{m+1}} \end{pmatrix}^T = \\ = \begin{pmatrix} e_0 & e_{A_1} \dots e_{A_{m+1}} \end{pmatrix} A P^T \begin{pmatrix} \frac{\partial}{\partial y_0} & \frac{\partial}{\partial y_1} \dots \frac{\partial}{\partial y_{m+1}} \end{pmatrix}^T = \\ = \begin{pmatrix} e_0 & e_{A_1} \dots e_{A_{m+1}} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial y_0} & \frac{\partial}{\partial y_1} \dots \frac{\partial}{\partial y_{m+1}} \end{pmatrix}^T.$$

References

- [1] Brackx F., Delanghe R. and Sommen F., *Clifford analysis*, Pitman advanced publishing program, Boston-London-Melbourne, 1982.
- [2] Nguyen Canh Luong, Remark on the maximal dimension of invertible subspaces in the Clifford algebras, Proc. of the Fifth Vietnamese Math. Conf. 1997, 145-150.
- [3] Nguyen Canh Luong, The condition for generalizing invertible subspaces in Clifford algebras, *Acta Acad. Paed. Agriensis*, **28** (2001), 87-91.
- [4] Kiyoham Nono, On the quaternion linearization of Laplacian Δ, Bull. of Fukuoka Univ. of Education, 35 (II) (1985), 5-10.

(Received January 10, 2004)

Nguyen Canh Luong

Faculty of Applied Mathematics Ha Noi University of Technology ncluong@mail.hut.edu.vn