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Abstract. The Ostrowski system of numeration has for scale of nu-

meration the denominators of the convergents in the continued fraction

expansion of a given real number. The aim of this paper is to study the

topological and ergodic properties of various dynamical systems arising from

this scale, especially flows associated with multiplicative sequences for which

a complete description is given.

1. Introduction

1.1. The Ostrowski α-expansion

Let α be an irrational number in the unit interval [0, 1) and [0; a1, a2, · · ·] its
continued fraction expansion. Recall that the convergents of α are the rational
numbers pn/qn (n ≥ 0) given by the classical relations p−1 = 1, p0 = 0,
pn = anpn−1 + pn−2 (hence p1 = 1) and q−1 = 0, q0 = 1 qn = anqn−1 + qn−2

(hence q1 = a1), such that

[0; a1, · · · , an] :=
pn
qn

=
1

a1 +
1

a2 + ...
+

1

an

.

These authors are supported by CNRS, UMR 6632.



134 G. Barat and P. Liardet

Then any positive integer m can be expanded as

(1) m = e0(m)q0 + · · ·+ er(m)qr , er(m) ̸= 0,

where each ej(m) is an integer (called j-th Ostrowski α-digit) of m, such that
for all j, 0 ≤ j < r, the inequalities

(2) e0(m)q0 + · · ·+ ej(m)qj < qj+1

hold. These inequalities ensure the uniqueness of the α-digits and (1) defines
the so-called Ostrowski α-expansion of m. The Ostrowski α-digits are extended
for j > r by putting ej(m) := 0. This expansion has been introduced by A.
Ostrowski in [44].

The system of inequalities (2), which are now satisfied for all j ≥ 0, is
equivalent to

(3)


e0(m) ≤ a1 − 1;

∀ j ≥ 1, ej(m) ≤ aj+1;

∀ j ≥ 1, (ej(m) = aj+1 ⇒ ej−1(m) = 0 ).

In the case α =
−1 +

√
5

2
, the sequence qn is nothing but the classical Fibonacci

sequence F0 = 1, F1 = 1, Fn+2 = Fn+1 + Fn (n ≥ 0). Inequality (3) for
j = 0 implies e0(m) = 0, so that the first digit can be omitted and then the
corresponding α-expansion is the so-called Zeckendorf expansion [53]. More
generally, α < 1/2 gives a1 ≥ 2 and yields a system of numeration (qn)n≥0 in the
usual sense (see [25]). If α > 1/2, then a1 = 1, thus e0(m) = 0 for any m. Then
(qn)n≥1 is a system of numeration, derived from α′ = [0; a2 + 1, a3, a4, . . .] ∈
∈ (0, 1/2). Notice that α′ = 1 − α. The cancellation of this useless 0 at the
beginning of the expansion can be interpreted from Theorem 2 (see Section 3.3)
by the identification between the isomorphic rotations Rα and R1−α. Without
loss of generality, we will hence suppose that a1 ≥ 2.

This paper is devoted to the study of various dynamical systems which
derive from the Ostrowski α-expansion. Although it is staying out of our
present interests, we mention that the Ostrowski α-expansion furnishes a
powerful tool to study the discrepancy of the sequence (nα (mod 1))n and
to give combinatorial properties of sturmian sequences (see for instance [5, 18,
19, 20, 21, 24, 35, 36, 47, 49, 52]). In fact, we shall especially pay attention to
isomorphisms between them.
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1.2. Almost topological isomorphisms

There are many different notions of isomorphism of dynamical systems
(topological, metric, spectral, of measured algebras, almost topological, a.s.o.).
It turns out that the relevant notion in the context is this of almost topological
isomorphism introduced by Denker and Keane (see [17]).

The context one has to begin with is purely topological. For i = 1, 2, let Ωi

be compact metrizable space, B(Ωi) its Borel σ−algebra and let Ti : Ωi → Ωi

be a (Borel) measurable map. One says that there is an almost topological
isomorphism Φ between (Ω1,B(Ω1), T1) and (Ω2,B(Ω2), T2) if there are subsets
Yi ⊂ Ωi and a map Φ : Y1 → Y2 satisfying the following conditions:

• Yi contains a dense Gδ subset of Ωi.

• Ti induces a homeomorphism from Yi onto Yi for the induced topology.

• The map Φ is a homeomorphism such that the commutation relation

Φ ◦ T2(y2) = T1 ◦ Φ(y2)

holds for any y2 ∈ Y2.

Usually, Φ is already defined on Ω1 and we are concerned with its restriction
on Y1, still denoted by Φ. Furthermore, Φ is said to be an almost topolog-
ical conjugacy (or isomorphism) from (Ω1,B(Ω1), T1) to (Ω2,B(Ω2), T2), and
(Ωi,B(Ωi), Ti), or better (Ωi, Yi,B(Ωi), Ti), is said to be an almost topological
dynamical system.

In addition, let µi be a Ti−invariant Borel measure on Ωi such that

µi(Ωi \ Yi) = 0.

If µ1(B1) := µ2(Φ
−1(B1)) for any B1 ∈ B(Ω1), then those almost topological

dynamical systems are said finitary isomorphic under Φ and the corresponding
measures µ1 = µ2 ◦ Φ−1, µ2. In the whole paper we will omit the mention
of the σ−algebra B in the dynamical systems which will be always the Borel
σ-algebra.

Notice that, if (Ω2,B(Ω2), T2) is uniquely ergodic and if Y2 has full measure
w.r.t. the invariant measure, then there is a unique T1-invariant measure µ1

on Ω1 such that µ1(Ω1 \ Y1) = 0 and in fact µ1 = µ2 ◦ Φ−1. In particular, if
Y1 is countable and contents no periodic orbit under T1, then (Ω1,B(Ω1), T1)
is also uniquely ergodic.



136 G. Barat and P. Liardet

1.3. Subshifts associated to sequences

The principal dynamical systems we will focus our attention on are flows
originated in complex unimodular sequences. Let X be a compact metrizable
space and let σ be the usual shift given by

σ(x0, x1, x2, . . .) := (x1, x2, . . .)

on the compact topological product space

XN :=
∞∏

n=0

Xn,

where Xn := X for all n. The natural projection XN → Xn will be denoted
by πn (so, the first projection is π0). A sequence x = (x0, x1, x2, . . .) in X
is an element of XN and will be also viewed as the infinite string x0x1x2 · · ·
provided that no confusion from the context could be made with an infinite
product in a topological multiplicative group. Given x in XN, the orbit of x
under the shift is the set Orb(x) = {σnx ; n ∈ N} and we consider the orbit

closure Ox := Orb(x). The restriction of σ to Ox (still denoted by σ) defines
the flow F(x) = (Ox, σ). Notice that we do not require that σ is surjective on
Ox and recall that the full shift F(X) := (XN, σ) is obtained as a flow F(x)
for many x: if ν is a probability measure on X assigning positive measure to
every non-empty open set, then almost all x ∈ XN in the sense of the product
measure ⊗∞

0 ν gives the full shift.

Let be X a compact metrizable space and T : X → X a continuous map.
Recall that the topological dynamical system (X,T ) is said to be minimal if
the only closed subset Y of X such that Y ⊂ T−1(Y ) are the full space X and
the empty set (that implies the surjectivity of T ). That is classically equivalent
to the density of all orbits. For subshifts, the minimality of F(x) is equivalent
to the property of uniform recurrence: for any s ∈ N and any ε > 0, the set

Vx(s, ε) := {n ∈ N ; |x(n+ j)− x(j)| ≤ ε for j = 0, 1, . . . , qs − 1}

has bounded gaps.

A necessary and sufficient condition for unique ergodicity of (X,B, T ) is the
uniform convergence of the sequence (SN (f))N , where SN (f) = N−1

∑
n<N

f ◦Tn

for any f ∈ C(X,C). If it is the case, there is still uniform convergence if f is
µ−continuous, that is if the set of the points of discontinuity of f has measure
zero with respect to the unique invariant measure of (X,B, T ).
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Let (G, ·) be a compact metrizable group and ζ = (ζ(n))n∈N ∈ GN. By
definition, the first forward difference sequence of ζ is the sequence ∆ζ given by
∆ζ(n) := ζ(n+ 1) · ζ(n)−1. For short, ∆ζ will be called a difference sequence.
Notice that the sequence ζ can be recovered from ∆ζ and ζ(0). Indeed, the
flows F(ζ) and F(∆ζ) are also strongly related as we will see in Section 5.

All the sequences we will look at take their values in a subgroup G of the
unit circle U. If X = U, there is a simple criterion of unique ergodicity for
F(x), which derives from the folklore.

Lemma 1. For m = (m0, . . . ,ms) ∈ Zs+1, define the character χm of

UN by χm(x) = xm0
0 xm1

1 · · ·xms
s . Let ξ ∈ UN; then F(ξ) is uniquely ergodic if

and only if, for any s ∈ N and for any m ∈ Zs+1,

N 7→ 1

N

∑
n<N

χm(σn+jξ)

converges uniformly in j when N tends to infinity.

1.4. Ostrowski α-sequences

Definition 1. A sequence f : N → R is said to be Ostrowski α-additive
if f(0) = 0 and

f(m) =
∑
j≥0

f(ej(m)qj) , m ∈ N.

Let U denote the unit circle in C. An unimodular Ostrowski α-multiplicative
sequence is a map ζ : N → U, such that ζ(0) = 1 and

(4) ζ(m) =
∏
j≥0

ζ(ej(m)qj) , m ∈ N.

A typical example of Ostrowski α-additive sequence is given by the sum-
of-digits sα defined by sα(m) =

∑
j≥0

ej(m). It is known [10, 11, 12, 14, 15]

that such sequences, with additional properties, are well-uniformly distributed
modulo 1. In particular, this is the case for the sequences n 7→ ρsα(n)where ρ
is an irrational number (see [10, 11, 12]). For usual definitions and properties
of uniform distribution, see [34].

1.5. Survey

The classical notions of q-multiplicative or q-additive sequences f have
been intensively explored and a vast amount of literature is devoted to the study
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of their statistical and harmonical properties, which have strongly motivated
this paper.

Let us first cite the seminal works of Bush [7] and Gelfond [26], then papers
on special q-multiplicative sequences [6, 42, 43, 16] and their generalizations,
largely studied by J. Coquet in his thesis [9] and in many subsequent other
works. Of particular interest for us are [8, 30, 45], which are mainly related
to spectral properties. The ergodic structures of sequences derived from the
sum-of-digits function n 7→ sq(n) is exploited by Kakutani in [29], while
Kamae introduces in [31] cyclic extensions of the q-adic Kakutani machine
in connection with the sum-of-digits to base q. Basic tools to investigate
dynamical properties of sequences are furnished by [13] and applications to q-
multiplicative sequences can be found in [41, 40, 37, 38]. This latter approach
inspires our investigations on the elucidation of dynamical structures behind α-
multiplicative sequences. Notice that only few methods are known concerning
the understanding of dynamical systems arizing from subsequences, except for
those obtained by induction. A typical example is the sequences n → sq(n

2)
evocated by Gelfond [26], which seems to be out of the scope of ergodic tools.
Nevertheless, the distribution approach, even in the case of restriction to the
set of prime numbers, has been already explored by I. Kátai [32, 33].

In Section 2, we recall the basic notions of α-odometer which is the exten-
sion of the map m 7→ m + 1 to a suitable compactification of N derived from
the α-expansion. This is a special but explicit case of the construction given
in [25]. Section 3 identifies the α-odometer with the rotation Rα : t 7→ t + α
on the one-dimensional torus T = R/Z by finitary isomorphism. We shall
freely identify T and its Haar measure hT with the interval [0, 1) (but also
with [−α, 1−α) for natural reasons issuing from our study) and its normalized
Lebesgue measure λ, the rotation Rα being now the addition of α (mod 1).
This yields unique ergodicity of the α-odometer and an explicit description of
its invariant measure. We then retrieve interesting results of [50]. Section 4 is
devoted to inductions of the α-odometer and study in details the return times
to cylinders. These results will be used in Section 7. For reading convenience,
Sections 2 and 3 are self contained and do assume a previous reading neither
of [25] nor of [50], which are more general.

Sections 5 and 6 are interested in flows coming from Ostrowski α-
multiplicative sequences. For such a sequence ζ, Section 5 gives the dynamical
structure of the flow F(∆ζ) associated to the difference sequence ∆ζ. It is
constant or almost topologically conjugate to the odometer. Section 6 is then
devoted to the study of the shift F(ζ) generated by ζ itself when ∆ζ is not
constant. It is proved that F(ζ) is minimal and its possible structures are
studied in details with respect to the notion of almost topological isomorphism.
For this purpose, we introduce the so-called topological essential values; they
form a subgroup of U which turns out to play a fundamental role. Section 7
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is devoted to metrical classification of F(ζ) and unique ergodicity is discussed
with criterions and examples. Our main tools are issuing from [2, 13, 40, 41] and
[48]. The final section gives various applications and examples; in particular
when α has bounded partial quotients with ζ(N) finite. If α has unbounded
partial quotients, pathological examples are exhibited: the flow F(ζ) is still
minimal but can be viewed, from a metrical point of view, as the union of a
finite or uncountable copies of the odometer. We end with the study of flows
arising from the sum-of-digits function.

2. The α-odometer

Let α be a fixed irrational real number in the interval [0, 1/2]. The aim
of this section is to introduce the Ostrowski α-odometer, that is, a natural
compactification of the set of the α-expansions of the non-negative integers
endowed with the adic machine performing the addition of 1. For more details
on the odometer for general numeration systems see [25] and its extensions [3]
and [4].

2.1. The α-compactification of N

Let Ej be the set of integers b such that 0 ≤ b < qj+1/qj , i.e. Ej =
= {0, · · · , aj+1} for j ≥ 1 and E0 = {0, · · · , a1 − 1} endowed with the discrete

topology, and let E be the infinite compact product space
∞∏
j=0

Ej . Note that in

all what follows, N denotes the set of non-negative integers, i.e. 0 ∈ N. The
set

Kα = {(xn)n≥0 ∈ E ; ∀j ≥ 0 : x0q0 + · · ·+ xjqj < qj+1} =

= {(xn)n≥0 ∈ E x0 ≤ a1 − 1 and

∀j ≥ 1 : xj ≤ aj+1 & [xj = aj+1 ⇒ xj−1 = 0]},

is a compact subspace of E. Elements of E are viewed as sequences or infinite
strings of symbols. A finite string b = b0b1 . . . bn will be said Ostrowski α-
admissible (or simply admissible) if the infinite string b0ω obtained by putting

bj = 0 for all j > n belongs to Kα. The string 0(n) (for n ∈ N) is defined

inductively by 0(0) = ∧ (the empty string) and 0(n) = 00(n−1). The natural
injection n 7→ ň of N into Kα given by m̌ := (ej(m))j≥0 will be used to

identify N with its image Ň which is a dense subset of Kα. If the finite string
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b = b0b1 . . . bn is admissible, then there is a unique integer N , namely N(b) =

=
n∑

j=0

bjqj , such that Ň = b0ω. For any finite string b = b0b1 . . . bn, |b| = n+ 1

will denote its length. By convention, | ∧ | = 0.

The addition of 1 in N gives rise to the transformation τ : Ň → Ň, called
Ostrowski α-adding machine, and given by

τ
(
e0(N)e1(N)e2(N) . . .

)
:= e0(N + 1)e1(N + 1)e2(N + 1) . . .

In the sequel, we currently identify n with ň. In order to extend the adding
machine to Kα, one needs to understand how the adding machine works with
respect to the carries. Hence it is useful to study, for x = (xn)n≥0 ∈ Kα, the
set

D(x) := {j ∈ N ; 1 + x0q0 + · · ·+ xjqj = qj+1} .

For this purpose, we need some special strings: for m ≥ 1, let Qm be the string
of length m corresponding to the α-expansion of qm − 1 and let Q0 = ∧.

Lemma 2. Let x ∈ Kα. Assume that D(x) is finite (but not empty) and
put m := maxD(x). Then D(x) = {0, 2, 4, . . . , 2n} or D(x) = {1, 3, 5, . . . , 2n+
+1} according as m is even or odd. Moreover, x = Qm+1xm+1xm+2 . . ., with

Qm+10
ω = (qm+1−1)̃ =


(a1 − 1)0ω if m = 0,

(a1 − 1)(0a3) . . . (0am+1)0
ω if m = 2ℓ, ℓ ≥ 1,

(0a2) . . . (0am+1)0
∞ if m = 2ℓ+ 1, ℓ ≥ 0,

and xm+1xm+2 ̸= 0am+3. Furthermore, xm+1 < am+2.

Proof. Assume that D(x) = {d0, . . . , dk}, with d0 < · · · < dk and put
m = dk. By definition of D(x), we have

x = Qm+1xm+1xm+2 . . . ,

where no Qm′ with m′ > m + 1 is a prefix of x. It only remains to verify
the description of Qm+1 claimed above, which is proved by induction using the
recurrence relation qm+1 − 1 = am+1qm + (qm−1 − 1), from which we derive

(5)
q2ℓ − 1 = a2ℓq2ℓ−1 + a2ℓ−2q2ℓ−3 + · · ·+ a2q1,

q2ℓ+1 − 1 = a2ℓ+1q2ℓ + a2ℓ−1q2ℓ−2 + · · ·+ (a1 − 1)q0.
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Lemma 3. The set D(x) is infinite if and only if

x = 0a20a40a6 · · · (D(x) = {1, 3, 5, · · ·}), or

x = (a1 − 1)0a30a5 · · · (D(x) = {0, 2, 4, · · ·}).

Proof. First notice that the infinite strings 0a20a40a6 · · · and (a1 −
−1)0a30a5 · · · are in Kα. If x = 0a20a40a6 · · ·, then D(x) = {1, 3, 5, · · ·}, and
if x = (a1 − 1)0a30a5 · · ·, then D(x) = {0, 2, 4, · · ·}. Conversely, let d ∈ D(x);
then by Lemma 2, the word x0 . . . xd is equal to (0a2) . . . (0ad+1) if d is odd,
and (a1−1)(0a3) . . . (0ad+1) if d is even. The two possible expressions for D(x)
follow.

2.2. Definition and first ergodic properties of the α-odometer

Definition 2. For any x = x0x1x2 . . . in Kα, let m(x) := supD(x) if
D(x) is not empty and m(x) = −1 otherwise and let τ : Kα → Kα be the map
defined by

τ(x) :=

 0(m+1)(xm+1 + 1)xm+2 . . . if m = m(x) is finite,

0ω if m(x) = +∞ .

The dynamical system (Kα, τ) is called the Ostrowski α-odometer.

The restriction of τ on Ň is just the adding machine and by Lemma 3 we
have

τ−1(0ω) = {0a20a40a6 · · · , (a1 − 1)0a30a5 · · · } .

The next theorem follows from the general theory of odometer given in [25].
Here we give a more direct and easier proof.

Theorem 1. The map τ : Kα → Kα is continuous and surjective, and the
corresponding flow (Kα, τ) is minimal.

Proof. With the notations of Definition 2 the map x 7→ m(x) from Kα

onto the compact space N ∪ {−1,+∞} is continuous by Lemma 2. It follows
from Definition 2 and the product topology that τ is continuous too.

Since the orbit of 0ω under τ , that is Ň, is dense in Kα and τ is continuous,
the minimality of τ will be proved if it is shown that 0ω lies in the orbit closure
of any point x ∈ Kα. But this is a straightforward consequence of the fact that
the sequence ℓ 7→ m(τ ℓ(x)) is unbounded.

Notice that the surjectivity follows from the density of τ(Ň), the compacity
of Kα and the continuity of τ , but it is also a consequence of the minimality.
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The preimages of 0ω play a somehow disturbing role in the understanding
of τ , what will be confirmed in Section 3. For this reason, we introduce a
further subset of Kα, which we shall often encounter in the sequel:

K∞
α = Kα \ {τ−n(0ω) ; n ≥ 1}.

Notice that K∞
α is stable by τ and that the restriction of τ to K∞

α is injective,
but not onto K∞

α . According to the definitions of Subsection 1.2 there is a
further natural subset of Kα to introduce, namely

K•
α = K∞

α \ Ň.

Readily K•
α is a dense Gδ subset of Kα. Thus (K,K•

α, τ) is an almost topological
dynamical system. For an occurrence of K∞

α and K•
α in a more general setting

we refer to [4].

3. The Ostrowski α-expansion

We have expanded in the previous section natural integers with respect
to a numeration scale given by the denominators of the continued fraction
expansion of the irrational number α. It is also possible to expand real numbers
with respect to the basis (qnα−pn)n≥0. The aim of this section is to study the
properties of this α-expansion of real numbers, called Ostrowski α-expansion
– that has been studied and sometimes rediscovered by several authors [18,
24, 28, 35, 36, 52, 50, 51] in order to get distribution results for the sequence
(nα)n≥0 – and then to prove the isomorphism with the rotation of angle α on
the one-dimensional torus.

3.1. Definition, α-order

Definition 3. Let I(α) be the interval [−α, 1 − α]. We define the map
φ : Kα → I(α) by

(6) φ(x) :=
∞∑

n=0

xn(qnα− pn).

The inequalities

xn|qnα− pn| < an+1/qn+1 < 1/qn
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show that the series in (6) converges normally. Thus φ is well defined and
continuous. We will justify in the proof of Proposition 1 that φ(x) ∈ I(α).

In order to get an understanding of the map φ, we introduce a notion of
α-order ≺ related to the relation qnα − pn = (−1)n|qnα − pn|. By definition,
≺ is the binary relation on Kα given by x ≺ y if and only if either x = y
or there exists an index k (possibly 0) such that xj = yj for all j < k and

(−1)kxk < (−1)kyk . Clearly ≺ is a total order on Kα. For n ≥ 0, let

A(n) := (0an+2)(0an+4) . . . ;

the relations (5) yield the following helpful equation for n ≥ 1 (the last equality
remaining true for n = 0):

(7) φ
(
0(n−1)(1)(an+1 − 1)A(n+ 1)

)
= φ

(
0(n)A(n)

)
= −(qnα− pn).

Let b = b0 . . . bn be α-admissible. We denote by [b] the cylinder set

[b] := {x ∈ Kα ; x0 . . . xn = b}

and define

b− :=

 b(an+2 − 1)A(n+ 2) if n is even and bn ̸= 0,
ban+2A(n+ 2) if n is even and bn = 0,
bA(n+ 1) if n is odd;

b+ :=

 bA(n+ 1) if n is even,
b(an+2 − 1)A(n+ 2) if n is odd and bn ̸= 0,
ban+2A(n+ 2) if n is odd and bn = 0.

Since we will need these expressions several times, we compute from (7)
the values of φ at b±.

(8)

φ
(
bA(n+ 1)

)
=φ(b0ω)− (qn+1α− pn+1),

φ(b(an+2 − 1)A(n+ 2)) =φ(b0 . . . bn−1(bn − 1)0ω)− (qn+1α− pn+1)

if bn ̸= 0,

φ
(
ban+2A(n+ 2)

)
=φ(b0ω)− (qnα− pn) if bn = 0.

Let further Sn be the set of strings b := b0 . . . bn ∈ E0 × · · · × En which are
α-admissible. Then Sn has cardinal qn+1 and the family Fn := {[b] ; b ∈ Sn} is
a covering of Kα by compact subsets, called α-partition of rank n.We recall the
usual notation σ(π0, . . . , πn) for the boolean algebra generated by Fn. Note
that Fn+1 is a refinement of Fn.
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Proposition 1. The map φ is increasing with respect to ≺, i.e. for all x
and y in Kα,

x ≺ y ⇒ φ(x) ≤ φ(y).

For any admissible distinct words b and b′ we have φ([b]) = [φ(b−), φ(b+)] and
φ([b]) ∩ φ([b′]) is either empty or a singleton.

Proof. We first notice that by definition of b− and b+ we have b− ≺ x ≺
≺ b+ for any x ∈ [b]. Recall now that qnα − pn = (−1)n|qnα − pn|. Then (3)
yields

φ([b]) ⊂ [φ(b−), φ(b+)] .

In particular, φ(b−) < φ(b) < φ(b+) and, for b = ∧ and by (8),

(9) −α = φ(A(0)) ≤ φ(x) ≤ φ((a1 − 1)A(1)) = 1− α

for all x ∈ Kα: the map φ takes its values in I(α).

Let x ≺ y two distinct elements of Kα. There exists a unique word b such
that x0x1 . . . xn = y0y1 . . . yn = b and (−1)n+1xn+1 < (−1)n+1yn+1. Then, we
have x ≺ (bxn+1)

+ and (byn+1)
− ≺ y. Assume for instance that n is even:

yn+1 < xn+1 and we have by (8), noticing that xn+1 ̸= 0,

φ(y)− φ(x) ≥ φ
(
(byn+1)

−)− φ
(
(bxn+1)

+
)
≥

≥ φ(byn+1A(n+ 2))− φ(bxn+1(an+3 − 1)A(n+ 3)) ≥
≥ (yn+1 − xn+1 + 1)(qn+1α− pn+1) ≥ 0.

The case n odd is similar. It follows that if b and b′ are distinct strings of
Sn, the intersection φ([b]) ∩ φ([b′]) is either empty or reduced to one element.
Moreover, any positive integer m fulfills φ(m̃) = mα (mod 1); thus φ(Kα) is
dense in I(α). Since it is compact, φ(Kα) = I(α) and φ([b]) = [φ(b−), φ(b+)].

3.2. The canonical Ostrowski expansion

Proposition 1 ensures that any real number x ∈ I(α) admits a repre-
sentation given by the series (6), called Ostrowski α-expansion and that this
representation is unique, except if x = φ(b±) for some b in Sn for some n. For
fixed n, a direct application of (8) and φ(b) = (b0+b1q1+ · · ·+bnqn)α (mod 1)
shows that

(10)
{φ(b−) (mod 1) ; b ∈ Sn} = {φ(b+) (mod 1) ; b ∈ Sn} =

= {−mα (mod 1) ; 1 ≤ m ≤ qn+1}.

That remark and Proposition 1 yield the following
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Proposition 2. Let t1 = −α and for any integer n ≥ 2, let tn be the point
in I(α) congruent to −nα (mod 1). Let t1 = ξ0 < ξ1 < . . . < ξqn+1 = 1− α be
the increasing indexation of the set of points {1−α}∪ {tn ; n = 1, 2, . . . , qn+1}
and let In be the covering of I(α) given by the set of intervals [ξk, ξk+1], 0 ≤
≤ k ≤ qn+1 − 1.

(i) The map φ establishes a 1-1-correspondence between Fn and In.
(ii) The real numbers of I(α) having more than one preimage by φ are exactly
the points tm, m ≥ 2. Explicitly, for qn ≤ m < qn+1 and b = b0 . . . bn =
= (qn+1 −m)̌, there are two preimages, namely

(11)
−mα = φ

(
bA(n+ 1)

)
=

= φ
(
b0 . . . bn−1(bn + 1)(an+2 − 1)A(n+ 2)

)
.

After Lesca (see [35]), we conventionally define the canonical expansion of
−mα mod 1 as the expansion (11) which terminates by an infinite string of the
form A(2ℓ) = (0a2ℓ+2)(0a2ℓ+4) . . . In other words, for every n and every b ∈ Sn,
b− is always the canonical α-expansion of φ(b−). Notice that for m = −1 the
expressions (11) give −α and 1−α, as shown by (9). We thus have proved the
following.

Proposition 3. (J. Lesca) Every real number ξ, with −α ≤ ξ ≤ 1 − α,
has a unique canonical Ostrowski α-expansion, i.e.

ξ =
+∞∑
n=0

xn(qnα− pn),(12)

where 0 ≤ x0 ≤ a1 − 1, 0 ≤ xk ≤ ak+1, for k ≥ 2,

xk = 0 if xk+1 = ak+2,

x2k ̸= a2k+1, for infinitely many k (this last condition being removed for ξ =
= 1− α).

Remark 1. The expansions (12) have alternate signs. In [27] S.Ito shows
that every real number ξ, with −α ≤ ξ < 1−α, has a unique positive expansion

(13) ξ = α+

+∞∑
n=1

yn|qnα− pn|,

where 0 ≤ yk ≤ ak for each k ≥ 1, yk+1 = 0 if yk = ak and yk ̸= ak for
infinitely many k. Both expansions are extensively studied in [50] as coming
from a Markov compactum in Vershik’s terminology.



146 G. Barat and P. Liardet

3.3. Metric properties of the dynamical system Kα

Let ψ : I(α) → Kα be the map which associate to a real number ξ in
I(α) its canonical expansion, i.e. ψ(ξ) = x if and only if the series φ(x) is the
canonical expansion of ξ.

Proposition 4. The map ψ : I(α) → Kα is a right inverse of φ and
continuous at each point of I(α)∗ := I(α) \ {tm ; m ≥ 2}. Moreover, ψ is
right-continuous everywhere.

Proof. By construction, φ ◦ ψ = Id. Let ξ ∈ I(α) and x = x0 . . . xn . . . =
= ψ(ξ). For n ≥ 0, let Un = [x0 . . . xn] and Vn = φ(Un). Then ψ(Vn) ⊂ Un

for each n. If ξ ∈ I(α)∗, (Vn)n is a basis of neighborhoods of ξ, hence the
continuity of ψ at ξ. The same argument shows that ψ is right-continuous at
any point.

Remark 2. The alternative choice of (11) for the canonical expansion
would have yielded to left-continuity of ψ.

Let Rα denote the translation of angle α on [−α, 1 − α), i.e. Rα(t) :=
:= t+ α (mod 1). In the next theorem, we retrieve results from the folklore of
the nineties, and collected in [50].

Theorem 2. The flow (Kα, τ) is strictly ergodic. If µα is the unique
τ−invariant probability then Φ : x 7→ φ(x) (mod 1) (see (6)) realizes a fini-
tary isomorphism between (Kα, τ, µα) and the translation ([−α, 1− α), Rα, λ).
Moreover, if ||·|| denotes the distance to the nearest integer and an α-admissible
string b = b0 . . . bn, then

(14) µα([b]) = φ(b+)− φ(b−) =

{
||qnα||+ ||qn+1α|| if bn = 0,
||qnα|| if bn ̸= 0,

for any admissible word b = b0 . . . bn. Furthermore, if πn is the random variable
defined on the probability space (Kα, µα) by πn((x0, x1, . . .)) := xn, then the
sequence of random variables (πn)n≥0 forms an inhomogeneous Markov chain
with transition probabilities (with n ≥ 1)

(15) µα(πn = a | πn−1 = a′) =

=



||qnα||+ ||qn+1α||
||qn−1α||+ ||qnα||

if a = a′ = 0,

||qnα||+ ||qn+1α||
||qn−1α||

if a = 0 and a′ ≥ 1,

||qnα||
||qn−1α||+ ||qnα||

if a ≥ 1 and a′ = 0,

||qnα||
||qn−1α||

if 1 ≤ a ≤ an+1 − 1 and a′ ≥ 1,

0 otherwise,
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and distribution given, for n ≥ 0, by

(16) µα(πn = a) =


qn(||qnα||+ ||qn+1α||) if a = 0,

qn||qnα|| if 1 ≤ a ≤ an+1 − 1,

qn−1||qnα|| if a = an+1.

Proof. By construction, Φ is continuous and verifies Φ(τ(ň)) = Φ(ň) +
+α (mod 1) for all positive integers. Hence, by continuity we obtain Φ ◦ τ =
Rα ◦ Φ. From Proposition 1 and 2, the inverse of the restriction Φ|K∞

α
is given

on I(α)∗ by ψ.

Let µ be a Borel measure of probability on Kα such that µ◦τ−1 = µ. First
notice that since by construction τ does not have any cycle, µ is non atomic. Let
ν := µ◦Φ−1, then ν◦R−1

α = µ◦(Φ◦τ)−1 = (µ◦τ−1)◦Φ−1 = µ◦Φ−1 = ν. Hence,
by unique ergodicity of Rα, the measure ν is the Lebesgue measure λ. By
Proposition 2 and for all b ∈ Sn, φ

−1([φ(b−), φ(b+)]) is constituted by [b] and
one or two more elements, hence µ([b]) = φ(b+)− φ(b−). Thus µα := µ is well
and univocal defined. Formulas (14) are then immediate consequences of (8)
and of the classical equalities ||qnα|| = |qnα− pn|. The system of equations (3)
ensures that for given (a, a′) and finite words W and W ′ of length n and n′

respectively, the word Wa′aW ′ is admissible if and only if Wa′, 0(n)a′a and
0(n+1)aW ′ are themselves admissible. Let b0b1 . . . bn−2a

′a be an admissible
word. Then, for any N > n,

#{m < qN ; m̌ ∈ [b0b1 . . . bn−2a
′a]}

#{m < qN ; m̌ ∈ [b0b1 . . . bn−2a′]}
=

#{m < qN ; en−1(m)en(m) = a′a}
#{m < qN ; en−1(m) = a′}

,

hence µα(πn = a | πn−1 = a′, πn−2 = bn−2, . . . , π0 = b0) = µα(πn = a | πn−1 =
= a′) by unique ergodicity of (Kα, τ) and passingN to infinity. Taking arbitrary
b0b1 . . . bn−2, one deduces formulas (15) from (14) without any computation.
Formulas (16) follow from the summation µ(πn = a) =

∑
b

µ([ba]), where the

summation is taken over the strings b = b0b1 . . . bn−1 such that ba is admissible.

We have established the uniqueness of µα := µ and given its value on
cylinder sets. It remains to show that we have an isomorphism in the sense
of 1.2. That is done by considering the almost topological dynamical systems
(K,K•

α, τ) and ([−α, 1− α), [−α, 1− α) \ (Zα+ Z), Rα): since the exceptional
sets are countable and both measure non-atomic, K•

α and [−α, 1−α)\(Zα+Z)
are dense Gδ subsets with full measure of Kα and [−α, 1− α) respectively.



148 G. Barat and P. Liardet

Remark 3. Summing the relations (16) over a for fixed n gives the
classical formula

qn+1||qnα||+ qn||qn+1α|| = 1

which ensures
an+1||qnα||+ ||qn+1α|| = ||qn−1α|| .

We will use then.

4. Induction of the α-odometer

The second family of dynamical system we look at is that obtained by
induction of the α-odometer on cylinders. It turns out that the induction
is still a rotation on T, the angle of which can be computed explicitly. For
this purpose, we first study the sequence of return times to a cylinder. This
sequence can be entirely described in terms of continued fractions of real
numbers strongly related with α. Notice that since the α-odometer is a rotation
and since the cylinders correspond by Φ to intervals of length belonging to
Zα (mod 1), the situation is related with bounded remainder sets, for the
induction on which we refer to [22].

4.1. Return times

Let n be a positive integer and let C := [b0b1 . . . bn−1] ∈ Fn. Recall that
for x ∈ C the first return time to C is r(x) = min{s ≥ 1; τs(x) ∈ C}. The
sequence of (consecutive) return times is recursively defined as the increasing

sequence of positive integers
(
rk(x)

)
k≥1

, where

r1(x) = r(x) and rk(x) = r
(
τ rk−1(x)x

)
.

We denote by Mn =
[
0(n)

]
the cylinder corresponding to b0 = b1 = . . . =

= bn−1 = 0 and we first deal with C = Mn – the integer n remaining fixed
until further notice. Then r(x) is equal to qn−1 (resp. qn) whenever xn = an+1

(resp. xn ̸= an+1). Thus we can look at the sequence
(
rk(x)

)
k≥1

as an infinite

word on a two letters alphabet
{
qn−1, qn

}
, W (x) say.
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First, we claim that the word W := W (0ω) is given by the limit of its
sequence of prefixes (Wk)k≥n obtained by the initial values and the recursive
formulas

(17)


Wn = qn,
Wn+1 = (qn)

an+1qn−1,
Wk = (Wk−1)

akWk−2 for any k ≥ n+ 2.

Formulas (17) follow from the interpretation of Wk (for k ≥ n) as the word of
the return times to Mn up hitting Mk. Notice furthermore that Wk is a prefix
of Wk+1, hence the existence of limWk.

We now look at the frequency of letters in W . Define |Wk| and |Wk|0 to
be the length ofWk and the number of occurrences of qn−1 inWk, respectively.
Both sequences satisfy the recurrence relations uk = akuk−1 +uk−2; moreover,
|Wn|0 = 0, |Wn+1|0 = |Wn| = 1 and |Wn+1| = an+1 + 1, which show that
the quotient |Wk|0/|Wk| is equal to the finite continued fraction [0; an+1 +
+1, an+2, an+3, . . . , ak]. Consequently, lim |Wk|0/|Wk| exists and is equal to
ρn = [0; an+1 + 1, an+2, an+3, . . .]. We claim that

(18) lim
N

1

N
#
{
k < N ; rk+j(0

ω) = qn−1

}
= ρn,

the limit being uniform in j. In fact, W can be written as a concatenation of
copies of Wk−1 and Wk for any k ≥ n and |Wk| tends to infinity. Hence the
result by a standard argument.

In a second step, we are interested in the return times W (x) still to Mn,

but from an arbitrary point x. Let x = 0(n)xnxn+1 . . . ∈Mn ∩ K∞
α . Split x as

follows:

(19)
x = 0(n)B0B1 . . . Bm1−1xn+2m1Bm1 . . . Bm2−1xn+2m2+1 . . .

xn+2mℓ−1+ℓ−2Bmℓ−1
· · ·Bmℓ−1xn+2mℓ+ℓ−1 · · ·

where (mℓ)ℓ is a non-decreasing sequence of natural integers and the B∗’s are
blocks of length 2 of the form 0a⋆, that is, more precisely, Bj = 0an+2j+ℓ+1

for mℓ−1 ≤ j < mℓ. By convention, m0 = 0 and the string Bmℓ−1
· · ·Bmℓ−1 is

empty if mℓ−1 = mℓ. Then we have

(20) W (x) =

WnW
an+2m1+1−xn+2m1−1
n+2m1

Wn+2m1−1W
an+2m2+2−xn+2m2+1−1
n+2m2+1

Wn+2m2W
an+2m3+3−xn+2m3+2−1
n+2m3+2 Wn+2m3+1 . . .
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By convention, Wn−1 is the word of length one Wn−1 = qn−1; if xn = an+1,
then m1 = 0 and the formula above gives W (x) = WnW

−1
n Wn−1 . . ., which

has to be conventionally understood as W (x) = Wn−1 . . . No further negative
power can appear. Finally, note that for mj = xj = 0 for all j, one retrieves
W (0ω) =W . Furthermore, any prefix ofW (x) is a subword ofW and the limit
(18) also holds for x in place of 0ω (those last facts are also direct consequences
of the study of the special case x = 0ω and do not need the explicit expressions
given above).

We deal now with a general cylinder. Let x ∈ K∞
α , C = [x0 . . . xn−1] and

x′ = 0(n)xnxn+1 . . .. If xn−1 = 0, then x0 . . . xn−1ξnξn+1 . . . belongs to Kα if

and only if 0(n)ξnξn+1 . . . does. Therefore, WC(x) = W (x′) (where WC is the
infinite word of return times to C). If xn−1 ̸= 0, then x0 . . . xn−1ξnξn+1 . . .

belongs to Kα if and only if ξn ̸= an+1 and 0(n)ξnξn+1 . . . ∈ Kα. The returns
of x′ to Mn which yield an+1 as n-th coordinate are coded by qn, followed by
qn−1. In that case, one returns twice to Mn until hitting C. Since there are
never two consecutive qn−1 in W (x′), WC(x) is an infinite word on the two
letters alphabet {qn−1+ qn, qn} obtained by projection from W (x′) first by the
substitution qnqn−1 7→ qn−1 + qn, then by keeping the remaining qn’s.

Using (18), we have the following proposition.

Proposition 5. Assume x ∈ K∞
α . Let n be a positive integer and let C

be the cylinder set [x0x1 . . . xn−1]. Then the sequence of return times of x to
C is given by an infinite word WC(x) = wC,1(x)wC,2(x) . . . on a two letters
alphabet, namely {qn−1, qn} if xn−1 = 0 and {qn, qn−1 + qn} otherwise. The
word W = W[0(n)](0

ω) is obtained as the limit of the words Wk, k ≥ n defined

by (17) and all the other words WC(x) can be explicitly described in terms of
prefixes of W . Furthermore, if xn−1 = 0 ( resp. xn−1 ̸= 0), we have

lim
N

1

N
#
{
k < N ; wC,k+j(x) = qn−1

}
= [0; an+1 + 1, an+2, . . . , an+k, . . .],

lim
N

1

N
#
{
k < N ; wC,k+j(x) = qn−1 + qn

}
= [0; an+1, an+2, . . . , an+k, . . .],

the limit being uniform in j and x.

The relation

[0; an+1 + 1, an+2, . . . , an+k, . . .] + [0; 1, an+1, an+2, . . . , an+k, . . .] = 1

yields expressions for the frequency of qn in WC(x), namely

[0; 1, an+1, an+2, . . . , an+k, . . .] if xn−1 = 0,

[0; 1, an+1 − 1, an+2, . . . , an+k, . . .] if xn−1 ̸= 0 and an+1 ≥ 2,

[0; an+2 + 1, an+3, . . . , an+k, . . .] if xn−1 ̸= 0 and an+1 = 1.
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4.2. Induced α-odometer

Let X be a compact subset of Kα with nonempty interior. By minimality
of (Kα, τ), the first return time r(x) = min{r ≥ 1 ; τ r(x) ∈ X} exists for
every x (r(·) is even bounded). Then the transformation τ induces on X a

transformation T by T (x) = τ r(x)(x).

For any α-admissible string b = b0b1 . . . bn−1, let us take X = [b] and
assume for a while that bn−1 = 0. Then r(x) ∈ {qn−1, qn}. Write

X1 = [b0b1 . . . bn−20an+1] and X2 =

an+1−1∪
e=0

[b0b1 . . . bn−20e].

Let I = φ(X), I1 = φ(X1) and I2 = φ(X2). By Proposition 1, I, I1 and I2 are
intervals such that I = I1 ∪ I2, and I1 ∩ I2 is a singleton. By Theorem 2 and
the discussion in Subsection 4.1, T is isomorphic to the application T ′ : I → I
where T ′

|I1 is the translation of qn−1α (mod 1) and T ′
|I2 is the translation of

qnα (mod 1). Since τ is surjective, T is surjective, too, hence T ′ as well. Thus
T ′ is a two intervals exchange transformation, hence a translation of β which,
after renormalization to the unit interval, is given by

β =


λ(I1)

λ(I)

(
=
µα(X1)

µα(X)

)
if n is even;

1− λ(I1)

λ(I)
otherwise.

By ergodicity of (Kα, τ, µα), β is also equal to the frequency of qn−1 in WX .
Note finally that the case bn−1 ̸= 0 is similar with X1 = [b0b1 . . . bn−1(an+1−1)]
and X2 = X \X1 and we have proved the following proposition.

Proposition 6. According to the definitions above, the induced trans-
formation of τ on the α-admissible cylinder [b0b1 . . . bn−1] is isomorphic to
the rotation of angle [0; an+1 + 1, an+2, . . . , an+k, . . .] if bn−1 = 0 and angle
[0; an+1, an+2, . . . , an+k, . . .] if bn−1 ̸= 0.

5. Differences of α-multiplicative sequences

From now on, we say for short that the sequence ζ : N → C∗, is α-
multiplicative if it is Ostrowski α-multiplicative and unimodular (see Definition
1). The letter ζ will always denote such a sequence. For given ζ, the aim of the
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rest of the paper is the study of the topological structure and ergodic properties
of the flow F(ζ) .

5.1. Difference flows

In this subsection we deal with the difference sequence ∆ζ. The aim is to
describe the flow F(∆ζ). We prove in particular that it is strictly ergodic.

Lemma 4. Let ζ be an α-multiplicative sequence. Let s be a non-negative
integer. Then there exists a countable family Bs of pairwise disjoint clopen
(closed and open) sets of Kα such that n 7→

(
∆ζ(n),∆ζ(n+1), . . . ,∆ζ(n+ s)

)
is constant on B ∩N for any B ∈ Bs and

N ⊂
∪

B∈Bs

B = Kα \
s+1∪
k=1

τ−k(0ω).

Proof. We use in the sequel the notation of Lemma 2. Assume first s = 0
and let

B1 =
{
[Qrjk] ; r ≥ 0, 0 ≤ j ≤ a∗r+1 − 1 and k ≤ ar+2 − 1

}
,

where a∗k = ak if k ≥ 2 and a∗1 = a1 − 1. By Lemma 2, B1 forms a partition of

Kα \ τ−1(0ω). We deduce from τ([Qrjk]) = [0(r)(j + 1)k] that

(21) ∆ζ(n) =
ζ((j + 1)qr)

ζ(qr − 1)ζ(jqr)

whenever ň ∈ [Qrjk], which proves Lemma 4 for s = 0. Notice that in the
latter, the integer k does not occur, but we introduce the digit k to point out
in a convenient manner the constraint (j, k) ̸= (0, ar+2).

For arbitrary [b] ∈ B1, s ≥ 1 and k ≤ s, the sequence n 7→ ∆ζ(n + k)

is constant on τ−k([b]) ∩ N; thus n 7→
(
∆ζ(n),∆ζ(n + 1), . . . ,∆ζ(n + s)

)
is

constant on the intersection of N with
∩

0≤k≤s

τ−k[bk] for any (b0, b1, . . . , bs) with

[bk] ∈ B1 for 0 ≤ k ≤ s. Since [bk] is clopen, τ−k[bk] is clopen, too (hence a
finite union of cylinders). Let

Bs :=

{
s∩

k=0

τ−k[bk] ; ∀k = 0 . . . s, bk ∈ B1

}
.
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Then ∪
B∈Bs

B =
s∩

k=0

τ−k
(
Kα \ τ−1(0ω)

)
= Kα \

s+1∪
k=1

τ−k(0ω)

and Bs answers the question.

Corollary 1. The sequence n 7→ ∆ζ(n) has a unique continuous extension
to Kα \ τ−1(0ω).

Clearly this extension, denoted in the sequel by (∆ζ )̃ , is unique and takes the

constant value
ζ((j + 1)qr)

ζ(qr − 1)ζ(jqr)
on each cylinder [Qrjk] of the family B1. We

extend (∆ζ )̃ at any point w in τ−1(0ω) by continuity if it is possible, otherwise
by setting (∆ζ )̃ (w) = ℓw, where ℓw is the limit point of (∆ζ )̃ at w which has
the smallest positive argument. In all cases, we get a µα-continuous function.

Theorem 3. Let ζ be an α-multiplicative sequence and let ∆ζ = (ζ(n +
+1)/ζ(n))n∈N. Then the flow F(∆ζ) is strictly ergodic.

Proof. We first prove that F(∆ζ) is uniquely ergodic. Let s ∈ N and
m = (m0, . . . ,ms) ∈ Zs+1. Put x = (∆ζ(n))n with the notation of Lemma 1
and define the sequence

η(n) = χ∆ζ,m(n) = ∆ζ(n)m0∆ζ(n+ 1)m1 · · ·∆ζ(n+ s)ms .

By Lemma 4, η can be extended to a continuous function on Kα \
s+1
∪

k=1
τ−k(0ω),

constant on B for any B ∈ Bs, taking there a value ηB . Since the sets
τ−k(0ω) are finite, η can be ultimately extended to a function η̃ defined on Kα,
continuous everywhere with finitely many possible exceptional points. Hence
η̃ is µ−continuous and

lim
N

1

N

∑
n<N

η(n+ j) =
∑
B∈Bs

ηBµα(B) =

∫
Kα

η̃(x) dµα(x),

the limit being uniform in j. By Lemma 1, this shows unique ergodicity of
F(∆ζ). The following general Lemma 5 below implies that F(∆ζ) is minimal.

Remark 4. The integral above can be explicitly computed in some
simple cases. Set m = (1). Then χ∆ζ,m = ∆ζ, which is constant on the
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cylinders [Qrjk], j ≤ a∗r+1 − 1, k ≤ ar+2 − 1 of B1, where it takes the value

ζ((j + 1)qr)

ζ(qr − 1)ζ(jqr)
. Therefore, the mean values 1

N

∑
n<N

∆ζ(n) converge to

(22)

∫
Kα

(∆ζ )̃ dµα =
∞∑
r=0

ar+2−1∑
k=0

a∗
r+1−1∑
j=0

ζ((j + 1)qr)

ζ(qr − 1)ζ(jqr)
µα([Qrjk]) =

=
∞∑
r=0

||qrα||
a∗
r+1−1∑
j=0

ζ((j + 1)qr)

ζ(qr − 1)ζ(jqr)
.

Lemma 5. Let X and Y be compact metrizable spaces and let T : X → X
be a continuous map such that the flow (T,X) is minimal. Let {Bi ; i ∈ I} be

a countable family of open pairwise disjoint subsets of X such that
∪
i∈I

Bi = X.

Then for any map Γ : X → Y which take constant value on each set Bi and
for each point x ∈ X such that Tn(x) ∈

∪
i∈I

Bi for all n ∈ N, the flow F(γx)

associated with the sequence γx = (Γ(Tnx))n≥0(∈ Y N) is minimal. Moreover,
if x′ ∈ X also satisfies Tn(x′) ∈

∪
i∈I

for all n ∈ N, then Oγx = Oγx′ .

Proof. Let x ∈ X such that Tnx ∈
∪
i∈I

Bi for all integers n ≥ 0 and any

k ≥ 0, let i(k) be such that T kx ∈ Bi(k). We have to show that the sequence γx
is uniformly recurrent or equivalently that for all open set V in Y N such that
V ∩Oγx ̸= ∅, the set {k ∈ N ; σk(γx) ∈ V } has bounded gaps. Let V be such an
open set, then there exists n ≥ 0 satisfying σn(γx) ∈ V and consequently there
are open sets V0, · · · , Vs in Y such that V0× . . .×Vs×Y N ⊂ V and Γ(Tn+jx) ∈
∈ Vj for 0 ≤ j ≤ s. Let W = Bi(n) ∩ T−1Bi(n+1) ∩ . . . ∩ T−sBi(n+s). Notice
that W is a nonempty open set and that

{k ∈ N ; T kx ∈W} ⊂ {k ∈ N ; σk(γx) ∈ V }.

By minimality of (T,X), the set {k ∈ N ; T kx ∈ W} has bounded gaps, and
so is for the set {k ∈ N ; σk(γx) ∈ V } as expected.

To complete the proof, let x′ ∈ X such that Tn(x′) ∈
∪
i∈I

Bi for all n ≥ 0.

By density of {T kx ; k ∈ N} inX and continuity of T , there exists an increasing
sequence of natural numbers (nj)j such that (σnj (γx))j converges to γx′ . Thus
γx′ ∈ Oγx and finally Oγx = Oγx′ .

Corollary 2. For any x ∈ Kα, O(∆ζ) = O(n 7→ ∆ζ (̃τnx)).
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Proof. Choose in the above lemma X = Kα, Y = U, Γ = ∆ζ ,̃ with the
family B1. If x ∈ K∞

α , the equality of the corollary is justO(∆ζ) = Oγ0ω
= Oγx .

If x ∈ τ−k(0ω) for a given k ≥ 1, by construction γ0ω = σkγx. It remains
to prove that γx ∈ Oγ0ω

. Let w = τk−1(x) and let (mj)j be an increasing
sequence of integers converging to w in Kα, such that lim

j
∆ζ(τ(m̌j)) = ∆ζ (̃w).

Using the continuity of ∆ζ˜at each point τn(x), n ∈ N \ {k − 1}, we obtain
lim
j
σmj−k+1γ0 = γx.

We can now refine Theorem 3.

Theorem 4. The flow F(∆ζ) is either constant or almost topological
isomorphic to (Kα, τ).

We first establish a general lemma.

Lemma 6. Let h denote the Haar measure on T and let V be a nonempty
open set in T such that:

1. h(∂V ) = 0 (where ∂V denotes the boundary of V ),

2. h(V ) < 1,

3. V splits the torsion points of T, i.e. for all torsion points r ̸= 0, if
V + r = V h-a.e., then r = 0.

Then the map

ϑ : T −→ {0, 1}N

x 7−→ ϑx := (1V (x+ n·α))n≥0

(where 1V (·) is the indicator function of V ) is continuous at each point in
E = T \

∪
n≥0

R−n
α (∂V ) and its restriction on E is one-to-one.

Proof. The continuity property of ϑ follows from that of Rα. Choose x
and y in E and assume ϑx = ϑy. Equivalently, for all integers n, the equalities
1V (x+ n·α) = 1V (y + n·α) hold. The condition h(∂V ) = 0 ensures that 1V is
h−continuous. Then unique ergodicity of (T, Rα) yields∫
T

|1V (x+ t)−1V (y+ t)|h(dt) = lim
N→∞

1

N

∑
n<N

|1V (x+nα)−1V (y+nα)| = 0.

Thus V + x = V + y h− a.e. Since 1 < h(V ) < 0, x− y cannot be irrational
and the last condition finally gives x = y.

Proof of the Theorem. Let

(23)
Ξζ : Kα −→ O∆ζ

x 7−→ γx =
(
∆ζ (̃τnx)

)
n≥0

.
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By Corollaries 1 and 2, the application Ξζ is well defined, continuous at each
point in K∞

α , and Oγx = O∆ζ for all x ∈ Kα. Moreover, we have a commutative
diagram expressed by the relation σ ◦ Ξζ = Ξζ ◦ τ.

Assume that F(∆ζ) is not constant. By Theorem 2 and Lemma 4, there
exists v ∈ U such that

V =
∪

B∈B1
∆ζ(B)={v}

φ(B ∩ K∞
α )

is a nonempty open subset of ]−α, 1−α[ with non-full measure. Furthermore,
V is a finite or countable union of disjoint open subintervals of the form ]tn, tm[
which eventually accumulate to −α or 1−α (notation of Proposition 2). Thus
∂V ⊂ {tm; m ≥ 1} ∪ {1 − α} and it has measure zero. Therefore, the
assumptions of Lemma 6 are fulfilled (after identifying T with [−α, 1 − α)),
Ξζ ◦ ψ is one-to-one on I(α)∗ and Ξζ is one-to-one on K∞

α .

We claim that the inverse bijection of Ξζ (restricted to K∞
α ), which is

defined on Σ := Ξζ(K∞
α ), is continuous. Recall that if X and Y are metric

spaces, D a dense subset of X and f : X → Y , then f is continuous on
X if and only if for any x ∈ X and any sequence (dn)n of D converging
to x, we have lim f(dn) = f(x). Let x ∈ K∞

α ; by construction Ξζ(x) =
= lim

ň→x
(∆ζ (̃n),∆ζ (̃n+1), . . .). Let (mj)j be an increasing sequence of integers

such that
(
Ξζ(m̌j)

)
j
converges to Ξζ(x). We have to show that lim

j
m̌j = x.

By compacity of Kα, we can assume that y := lim
j
(m̌j) exists. If y ∈ K∞

α ,

continuity and injectivity of Ξζ ensure that y = x. If τk(y) = 0ω for some

k, then σk(limj Ξζ(m̌j)) = σkx = ∆ζ, hence τkx = 0ω (by injectivity, since
0ω ∈ K∞

α ), which is not allowed. Thus Ξζ realizes an homeomorphism between
K∞

α and Σ.

We prove now that both K∞
α and Σ (⊂ O∆ζ) are countable intersections

of dense open subsets of compact spaces. It is obvious for K∞
α . For Σ, note

that the elements of O∆ζ \ Σ are exactly the lim
j
σnj (∆ζ), where (nj)j is an

increasing sequence of integers with lim
j
ňj ∈ τ−k(0ω) for some k ≥ 1. Thus

O∆σ \ Σ =
∪
k≥1

σ−k(∆ζ).

Let w ∈ τ−1(0ω) and let Lw(ζ) be the set of z ∈ U such that there exists
an increasing sequence of integers (mk)k which converges in Kα to w and
lim
k

∆ζ(mk) = z. It follows by construction that

lim
k
σmk(∆ζ) = (z,∆ζ(0),∆ζ(1),∆ζ(2), . . .).
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Reciprocally, any sequence (z,∆ζ) := (z,∆ζ(0),∆ζ(1),∆ζ(2), . . .) with z ∈
∈ ∪

w∈τ−1(0ω)
Lw belongs to O∆ζ , so that

σ−1(∆ζ) =
∪

w∈τ−1(0ω)

{(z,∆ζ) ; z ∈ Lw(ζ)}

and more generally, for any k ≥ 2:

σ−k(∆ζ) =

=
∪

v∈τ−k(0ω)

{(∆ζ̃(v), . . . ,∆ζ̃(τk−2v), z,∆ζ(0),∆ζ(1), . . .) ; z ∈ Lτk−1v}.

In particular, O∆ξ \ Σ is a countable union of compact sets of empty interior.
The underlying almost topological dynamical systems are (K•

α, τ) and its
image (Ξζ(K•

α), σ), hence Ξ realizes an almost topological isomorphism between
(Kα, τ) and (O∆ζ , σ).

For the sequel we need to extend Ξ−1
ζ at all points of O∆ζ (and use

abusively the same notation). In fact, if ξ ∈ σ−k(∆ζ) we have

ξ = (∆ζ̃(v), . . . ,∆ζ̃(τk−2v), z,∆ζ(0),∆ζ(1), . . .)

with τk(v) = 0ω. There are two possible values for v; we fix one of them by

assuming τk−1(v) = 0a20a40a6 · · ·. Now we put Ξ−1
ζ (ξ) = v.

Theorem 4 has two interesting corollaries. The first one will be useful in
the next sections and follows actually from Theorems 2 and 4. The second
one extends to α-multiplicative sequences the following result: a sequence f is
both p- and q-multiplicative for coprime integers p and q, if and only if, ∆f
is constant (and consequently there exists θ ∈ U such that f(n) = θn for all
n ∈ N).

Corollary 3. Let (mk) be an increasing sequence of integers. Then the
following propositions are equivalent:

1. The sequence (σmk(∆ζ))k converges to ∆ζ in O∆ζ .

2. The sequence (mk·α)k converges to 0 in T.

3. The sequence (mk)k converges to 0ω in Kα.

Corollary 4. A sequence ζ is both α- and β-multiplicative for distinct
irrational α and β in [0, 1/2] if and only if ∆ζ is constant.

Proof. If ∆ζ is constant, then ζ = ζ(1)n for any integer n ≥ 0. Therefore
ζ is α-multiplicative for any α. Conversely, if ∆ζ is not constant and if
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ζ is α-multiplicative, then Theorem 4 ensures that F(∆ζ) is isomorphic to
([−α, 1 − α), Rα), which is isomorphic to ([0, 1), Rβ) only for β ∈ {α, 1 −
−α}.

6. α-multiplicative flows

6.1. Relation between F(∆ζ) and F(ζ)

We first need to recall some basic facts about skew products. Assume that
G is a compact metrizable group and let hG be its Haar measure. We identify
GN with GN ×G by means of the map J : GN → GN ×G defined by

(24) J(g0, g1, g2, . . .) := (∆g, g0),

where g = (g0, g1, . . .) and ∆g := (g1g
−1
0 , g2g

−1
1 , . . .). Readily J is an

homeomorphism of inverse map

J−1((h0, h1, . . .), γ) = (γ, h0γ, h1h0γ, h2h1h0γ, . . .)

and we let the reader to verify that the full shift F(G) is topologically conjugate
under J to the skew product

F(G)⊔π0G := (GN ×G, σ′),

where π0 : GN → G is the first projection and

σ′((g0, g1, . . .), γ) := (σ(g0, g1, . . .), π0(g0, g1, . . .)γ) = ((g1, g2, . . .), g0γ).

For notational convenience, we shall omit π0 in the sequel and note F(G)⊔G
for the skew product given by π0. Moreover, for each γ ∈ G, let g 7→ g · γ
denote the G-action on GN given by

(g0, g1, g2, . . .) · γ := (g0γ, g1γ, g2γ, . . .).

We refer to [13] and [41] for more information on the subject in a more
general setting. Note that the map g 7→ ∆g is continuous, surjective, commutes
with the underlying shifts, and that for any g ∈ GN,

∆(Og) = O∆g.
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Lemma 7. Let g ∈ GN. Then J(Og) = O∆g ×G if and only if

(25) ∀ γ ∈ G, g · γ ∈ Og.

If it holds, then the flow F(g) is conjugate (by restriction of J to Og) to
F(∆g)⊔G = (O∆g ×G, σ′).

Proof. The inclusion J(Og) ⊂ O∆g × G is trivial. The characterization
of the inverse inclusion is based on the observation that ∆g = ∆(g · γ) for all
g ∈ GN and all γ ∈ G, hence J(g · γ) = (∆g, g0γ). Assume (25). Then

J(Og) ⊃ J({g · γ ; γ ∈ G}) = {∆g} ×G,

hence J(Og) = O∆g ×G. Reciprocally, assume the equality J(Og) = O∆g ×G

to hold. Then, J−1(∆g, g0γ) = g · γ ∈ Og, and (25) follows. The last part of
the lemma is a consequence of its first part and of the discussion above.

Example 1. We have already met the case where ∆ζ is constant, say equal
to θ. This corresponds to ζ(n) = θn. Let G = U(θ) be the closed subgroup
of U generated by θ; Property (25) is verified and F (∆ζ) = ({(θ, θ, θ, . . .)}, σ)
is trivial. We then retrieve a classical result from Lemma 7 which says that
F(ζ) is topologically conjugate by means of the first projection Oζ → G to the
translation x 7→ θx on G. Note that this translation is uniquely ergodic.

If ∆ζ is not constant, the possible existence of a continuous extension of
ζ on Kα will play an important role in the study of the flow F(ζ). The next
lemma is interested in that topological property.

Lemma 8. Let ζ be an α-multiplicative sequence. Then the following
propositions are equivalent:

(i) lim
k→∞

sup
n∈Mk

∣∣ζ(n)− 1
∣∣ = 0.

(ii) The sequence (ζ ◦ Sk)k is uniformly convergent, where

Sk(x) := e0(x)q0 + · · ·+ ek−1(x)qk−1

for x ∈ Kα.

(iii) The sequence ζ can be extended to a continuous function on Kα.

Proof. (i) ⇒ (ii) by Cauchy’s criterion.

(ii) ⇒ (iii): for given k, the function ζ ◦ Sk is constant on the cylinders of
the α-partition Fk−1 (see Subsection 3.1). Thus ζ ◦ Sk is continuous and its
uniform limit is continuous, too.

(iii) ⇒ (i): assume that lim sup sup
n∈Mk

∣∣ζ(n)− 1
∣∣ > 0. Then there exist

increasing sequences (nj)j and (kj)j of positive integers and a real constant
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κ such that nj < qkj , ňj+1 ∈ Mkj+1 and |ζ(nj) − 1| ≥ κ > 0 for all j. By

construction, for all (j, k, ℓ) ∈ N3 with j ̸= k, we have eℓ(nj)eℓ(nk) = 0. Let

x ∈ Kα defined by Skm(x) =

(
m∑
j=0

nj

)
ˇ for any index m. Then the sequence

(ζ ◦ Sk(x))k does not converge and ζ can not be extended to a continuous
function at the point x.

The flow F(ζ) when ζ has a continuous extension on Kα is of a particular
interest.

Theorem 5. Let f : Kα → U be a continuous map such that the sequence
ζ : n 7→ f(n) is α-multiplicative. Then the flow F(ζ) is topologically conjugate
to F(∆ζ) – the conjugation map being realized with ∆ (restricted to F(ζ)).
Moreover, the map Ξζ : Kα → O∆ζ (see (23)) is continuous, surjective (and
realizes an almost topological isomorphism of the underlying flows).

Proof. It is clear that ∆ is a continuous epimorphism of flows from F(ζ)
onto F(∆ζ). In order to prove that ∆ is one-to-one on Oζ let us first notice
that due to the continuity of f we have

Oζ = {(f(τnx))n≥0 ; x ∈ Kα}.

Let ξ and ξ′ be in Oζ and suppose that ∆(ξ) = ∆(ξ′). There exist x and
x′ in Kα such that ξ = (f(τnx))n and ξ′ = (f(τnx′))n. Assume x ∈ K∞

α ; if
x′ ∈ K∞

α , using (23) and the proof of Theorem 4, we obtain Ξ−1(∆ξ) = x = x′.

If x′ ∈ τ−k′
(0ω) for an integer k′ ≥ 1, by construction σk′

(∆(ξ′)) = ∆ζ, hence

Ξ−1(σk′
(∆(ξ′))) = 0ω = τk

′
x′ = τk

′
x in contradiction with the assumption on

x. Finally, suppose there are positive integers k and k′ verifying x ∈ τ−k(0ω)

and x′ ∈ τ−k′
(0ω). We may assume k′ ≥ k and now Ξ−1(σk′

ξ′) = Ξ−1(∆ζ) =

= 0ω = τk
′
(x); consequently k = k′ and ξn = ξ′n for any n ≥ k, but we also

have ξn = ξ′n if 0 ≤ n < k by the product formula

(∆ξ)n · · · (∆ξ)k−1 =
f(τn+1x)

f(τnx)

f(τn+2x)

f(τn+1x)
· · · f(0ω)

f(τk−1x)

= f(τnx)−1 = ξ−1
n .

We have proved that ∆ is a continuous and bijective map between the compact
spaces Oζ and O∆ζ , hence it is an homeomorphism as expected, which
commutes with the corresponding shifts. The last part of the theorem is clear.

Remark 5. If f separates the two points of τ−1(0ω), then the map x 7→
7→ (f(τnx)n from Kα to Oζ realizes a topological isomorphism between the
α-odometer and the flow F(ζ).
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Remark 6. Let G be the closed subgroup of U generated by ζ(N). Under
the assumption of Theorem 4, the skew product F(∆ζ)⊔G is certainly not
minimal. In fact, the image of Oζ by J is a nontrivial shift invariant compact
subspace of F(∆ζ)⊔G, and according to a result of H. Furstenberg [23] the first
projection p on O∆ζ is a continuous coboundary, namely p(y) = c(σy)/c(y) ,
where c(·) is the continuous map defined by

c(y) = (∆−1(y))0 (y ∈ O∆ζ).

6.2. Topological essential values

From now on, we fix G = G(ζ) (the closed subgroup of U generated by all
the values of ζ), g := ζ ∈ G(ζ)N, and apply the general discussion above to this

case. For k ∈ N, recall that Mk = [0(k)], and set ζ(Mk) = {ζ(n) ; ň ∈Mk}.
Definition 4. The elements in

(26) G1(ζ) =
∩
k

ζ(Mk).

are called topological essential values of ζ.

The following proposition collects facts about G1(ζ) and F(ζ), which are
bounded up with each other.

Proposition 7. The set G1(ζ) of topological essential values is a compact
subgroup of G(ζ), and

G1(ζ) = {γ ∈ G(ζ) ; ζ · γ ∈ Oζ} =

= {γ ∈ G(ζ) ; (∆ζ, γ) ∈ J(F(ζ))} =

= {γ ∈ G(ζ) ; Oζ ·γ = Oζ}.

The flow F(ζ) is surjective. The closed orbit Oζ has isolated points if and only
if ζ(n) = ρn for every n and some root of unity ρ. Furthermore, the characters
χ of G(ζ) such that χ◦ζ admits a continuous extension to Kα are exactly those
whose restriction to G1(ζ) is trivial. Eventually, the following propositions are
equivalent:

1. G1(ζ) = G(ζ).

2. For any z ∈ G(ζ), ζ·z ∈ Oζ (Condition 25) of Lemma 7).

3. For any non-negative integer k, the set ζ(Mk) is dense in G(ζ).

4. For any character χ of G(ζ), if χ ◦ ζ can be extended to a continuous
function on Kα, then χ is the trivial character.
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Proof. Obviously, G1(ζ) is a compact subset of G(ζ) containing 1. Let be
(z, z′) ∈ G1(ζ)

2. Due to the particular structure of the decreasing sequence of

compact sets ζ(Mk), we are able to select two increasing sequences of integers
(nj)j and (kj)j such that , nj ∈ Mkj with nj < qkj+1−1, lim

j
ζ(n2j) = z and

lim
j
ζ(n2j+1) = z′. By construction, ζ(n2j+n2j+1) = ζ(n2j)ζ(n2j+1) ∈ ζ(Mk2j ).

Passing to the limit leads to zz′ ∈ G1(ζ). Thus G1(ζ) is a submonoid of U.
Since G1(ζ) is compact, it is either equal to Uℓ (the group of ℓ-th roots of
unity) some ℓ or to U.

The flow F(ζ) is surjective if and only if ζ ∈ σ(Oζ). For this purpose, we
prove that there exists an increasing sequence of integers (mk)k such that σmkζ
tends to ζ. Using the above method, we can build an increasing sequence of
integers (mk)k with mk ∈Mk, and lim

k
ζ(mk) = 1. But ζ(n+mk) = ζ(n)ζ(mk)

if 0 ≤ n < qk, proving that lim
k
σmkζ = ζ. Consequently, Oζ has isolated points

if and only if it is periodic, that is if ζ(n) = ρn for every n and some root of
unity ρ.

For γ ∈ G(ζ), ζ·γ belongs to Oζ if and only if there exists an increasing
sequence (mk)k of integers such that σmkζ tends to ζ·γ. By Corollary 3, that
is equivalent with m̌k tends to 0ω and ζ(mk) tends to γ, hence the equality
G1(ζ) = {γ ∈ G(ζ) ; ζ · γ ∈ Oζ}. The second equality then follows from the
commutation J(σmkζ) = (σmk∆ζ,mk). The third equality is a straightforward
consequence of the first one.

Let χ be a character on G(ζ). Lemma 8 applied to the α-multiplicative
sequence χ ◦ ζ shows that

χ

(∩
k

ζ(Mk)

)
=
∩
k

χ ◦ ζ(Mk) = {1}

if and only if χ ◦ ζ can be extended to a continuous function on Kα, hence the
characterization of these characters.

For g = ζ ∈ G(ζ)N Condition (25) becomes: for any z ∈ G(ζ) there exists
an increasing sequence (mj)j of integers such that (σmjζ)j tends to ζ·z when
j tends to infinity. The equivalence between the conditions is then immediate
from the first part of the proposition.

6.3. The structure of the α-multiplicative flow F(ζ)

We are ready to give a full description of the flow F(ζ). The next theorem
deals with the easy case where G1(ζ) = G(ζ) and follows easily from the above
study except for the minimality.
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Theorem 6. Let ζ be an α-multiplicative sequence such that ∆ζ is not
constant. The flow F(ζ) is topologically conjugate (by J) to (F(∆ζ)×G, σ′) if
and only if for any integer k ≥ 0, ζ(Mk) is dense in G(ζ). In that case, F(ζ)
is a minimal flow almost isomorphic to (Kα ×G(ζ), Tζ), with

Tζ : Kα ×G(ζ) −→ Kα ×G(ζ)

(x, γ) 7−→ (τx, γ∆ζ (̃x)) ,

the almost isomorphism from (F(∆ζ)×G, σ′) to F(ζ) being given by

H(x, γ) = J−1(Ξζ(x), γ).

Proof. We only prove the minimality of F (ζ). Choose ε > 0 and a positive
integer s. By density of ζ(Mk) in G(ζ) for any integer k and precompacity of
U, there exists a finite subset A = A(s, ε) of Ms+1 such that

(27) ∀ z ∈ G(ζ), ∃ a ∈ A : |z − ζ(a)| ≤ ε.

Choose an integer t such that ek(a) = 0 for all a ∈ A and all k ≥ t. Let

m ∈ Ms+t+1. Taking z = ζ(m) in (27) shows that there exists am ∈ A

with |ζ(am) − ζ(m)| ≤ ε. Hence, for all integers j, 0 ≤ j < qs, one gets
|ζ(j)− ζ(j + am +m)| ≤ ε, so that

{am +m ; m ∈Ms+t+1} ⊂ Vζ(s, ε).

But A is bounded and Ms+t+1 has bounded gaps (see Section 4); therefore
Vζ(s, ε) has bounded gaps, too.

We now extend the above result to the general case.

Theorem 7. Let ζ be an α−multiplicative sequence such that ∆ζ is not
constant and let G1(ζ) be the compact group of topological essential values of ζ.
Then: (i) there exists a continuous map f0 : Kα → U such that the sequence
ζ0 : n 7→ f0(n) is α-multiplicative, ζ1 := ζ/ζ0 takes its values in G1(ζ) and
G1(ζ1) = G1(ζ);

(ii) the flow F(ζ) is minimal, almost topologically conjugate to (F(∆ζ)×
×G1(ζ), σ

′′) with

σ′′(g, γ) =

(
σ(g), γg0

f0(Ξ
−1
ζ (g))

f0(Ξ
−1
ζ (σg))

)
.

In particular, if ∆ζ1 is constant, equal to θ, then F(ζ) is almost conjugate to
the direct product F(ζ0)× (U(θ), z 7→ zθ);
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(iii) assume that ζ = ζ1ζ0 with ζi α-multiplicative, ∆ζ1 not constant, and
ζ0 can be extended to a continuous map f0 : Kα → U. Then G1(ζ) = G1(ζ1),
and the flow F(ζ) is almost topologically conjugate to the flow F(ζ1);

(iv) Let ζ = ζ1ζ0 be a factorization as in (iii), then F(ζ) is almost
topologically conjugate to (F(∆ζ1)×G1(ζ), σ

′).

Proof. (i) If G(ζ) = G1(ζ), the function f0 = 1 answers the question.
Thus we may assume G(ζ) ̸= G1(ζ). Therefore G1(ζ) = Uℓ for some ℓ ≥ 1.

Since G1(ζ) is the decreasing intersection of the closed sets ζ(Mk) in a compact
space, those tend to G1(ζ) for the Hausdorff distance. Consequently, there
exists an integer k such that

(28) ∀n ∈Mk, ∃ζ1(n) ∈ Uℓ : |ζ(n)− ζ1(n)| <
1

3
| exp(iπ/ℓ)− 1|,

the choice of ζ1(n) being unique. For n ∈ Mk and k1 > k, let n1 = ek(n)qk +
+ · · ·+ ek1−1(n)qk1−1 and n2 = n− n1. Then

|ζ1(n)− ζ1(n1)ζ1(n2)| ≤ |ζ1(n)− ζ(n)|+ |ζ1(n1)− ζ(n1)|+ |ζ1(n2)− ζ(n2)|,

showing that ζ1(n) = ζ1(n1)ζ1(n2) by (28). Finally extend ζ1 to N by
ζ1(n) = ζ1(ek(n)qk + ek+1(n)qk+1 + · · ·). Then ζ1 is α−multiplicative and

Lemma 8 shows that ζ0 = ζζ−1
1 is extendable to a continuous function f0 on

Kα. Moreover, by construction, ζ1(N) = G1(ζ) = G1(ζ1) = G(ζ1) = Uℓ.

(ii) The minimality of F(ζ) can be derived from a suitable modification
of the proof given in Theorem 6. Let ζ1 and ζ0 be as in (i) and choose ε > 0
and k0 ≥ k1 such that the inequality k ≥ k0 implies |1 − ζ0(u)| ≤ ε/2 for
any u ∈ Mk. Fix an integer s ≥ 1 and a subset A = {n0, . . . , nℓ−1} of Ms+1

such that the Hausdorff distance between ζ1(A) and G1(ζ) is less than ε/2.
Choose an integer t ≥ k0 such that ek(a) = 0 for all a ∈ A and k ≥ t. For any

m ∈ Ms+t+1 there exists am ∈ A with |ζ1(am) − ζ1(m)| ≤ ε/2. Therefore, for
any integer j ∈ {0, . . . , qs − 1} we can write

|ζ(j)− ζ(j + am +m)| = |ζ(j)− ζ(j)ζ(am)ζ(m)| = |1− ζ(am)ζ(m)| ≤
≤ |1− ζ1(am)ζ1(m)|+ |1− ζ0(am +m)| ≤ ε,

so that the inclusion

{am +m ; m ∈Ms+t+1} ⊂ Vζ(s, ε),

holds and implies that Vζ(s, ε) has bounded gaps.
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The flow F(ζ) is topologically conjugate to the compact σ′-invariant subset
J(Oζ) in F(∆ζ)×G throw the map J : G(ζ)N → G(ζ)N ×G(ζ) given in (24).
Introduce the almost automorphism

A : (g, γ) 7→
(
g, γf0(Ξ

−1
ζ (g))

)
of F(∆ζ)⊔π0G := (GN ×G, σ′) to obtain A ◦J(F(ζ)) = F(∆ζ)×G1(ζ). Then
F(ζ) is almost conjugate by A ◦ J to (O∆ζ ×G1(ζ), σ

′′) with

(29) σ′′(g, γ) =

(
σ(g), γg0

f0(Ξ
−1
ζ (g))

f0(Ξ
−1
ζ (σg))

)
.

If ∆ζ1 is constant, equal to θ, then O∆ζ = O∆ζ0 ·θ and a short computation
gives σ′′(g, γ) = (σ(g), γθ). Identifying O∆ζ0 with O∆ζ by ξ 7→ ξ·θ, the
transformation (29) viewed on O∆ζ0 × G1(ζ) is topologically conjugate by

(g, γ) 7→ (∆−1(g), γ) (Theorem 5) to the direct product F(ζ0)×F(n 7→ θn).

(iii) The equality G1(ζ) = G1(ζ1) is a straightforward consequence of the
definition of essential topological values. Let Q : Oζ1 → Oζ be defined as

follows. Let ξ be in Oζ1 . If ∆ξ ∈ Y1 := O∆ζ1 \
∪
k≥1

σ−k(∆ζ1) there exists a

unique x ∈ K∞
α such that Ξζ1(x) = ∆ξ and put

(30) Q(ξ) = (f0(τ
nx)ξ(n))n≥0.

Thus we have proved the almost isomorphism we claimed.

Nevertheless it is possible to extend Q to the whole closed orbit, what we
do now. If ∆ξ ̸∈ Y1, there exists k ≥ 1 such that σk∆ξ = ∆ζ1 and we know
from the proof of Theorem 4 that ∆ξ has the form

(∆ζ1̃(v), . . . ,∆ζ1̃(τ
k−2v), z,∆ζ1(0),∆ζ1(1), . . .)

with v ∈ τ−k(0ω) selected as v = Ξ−1
ζ1

(∆ξ), and z ∈ Lτk−1(v)(ζ1). Then, put

(31) Q(ξ) = (f0(τ
nv)ξ(n))n (∈ Oζ),

so that σkQ(ξ) = (z, zζ(1), zζ(2), zζ(3), . . .). The map Q commutes with the
corresponding shifts, is continuous at each point of ∆−1(Y1) and one-to-one

on ∆−1(Y1). By interchanging ζ1 and ζ, and after replacing f0 by f0 we can
define an analogous map P : Oζ → Oζ1 which is continuous and one-to-one on

∆−1(Y ) with Y := O∆ζ \
∪
k≥1

σ−k(∆ζ). In fact Q(∆−1(Y1)) = ∆−1(Y ) and

P ◦Q(ξ) = ξ for any ξ ∈ ∆−1(Y1). This ends the proof of (iii).
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The assertion (iv) follows from (iii) and Theorem 6.

Remark 7. Property (i) in Theorem 7 shows that Lu(ζ) = f0(u)G1(ζ)
for u ∈ τ−1(0ω). This property is particularly interesting when G1(ζ) = Uℓ.
In that later case, if ζ = ζ ′1ζ

′
0 is another factorization with G(ζ ′1) = G1(ζ) and

ζ ′0 extendable to a continuous map on Kα, then ζ
′
1/ζ1 only depend on a finite

numbers of digits. In other words, there exists k such that ζ ′1/ζ1 is constant on
Mk.

Example 2. Let ζ(n) = θsα(n) with θ ∈ U fixed. Clearly G(ζ) = G1(ζ) =
= U(θ), where U(θ) (the closed subgroup of U generated by θ).

Example 3. Choose an integer ℓ ≥ 2 and let ζ be the α-multiplicative
sequence defined by ζ(bq0) = e2iπbβ for 0 ≤ b ≤ a1 − 1 and ζ(bqk) = e2iπb/ℓ

for k ≥ 1 and 0 ≤ b ≤ ak+1. If β is irrational, we have G(ζ) = U, but

G1(ζ) = Uℓ and F(ζ) is topologically conjugate to F(n 7→ e2iπsα(n)/ℓ) and

almost conjugate to (Kα ×Uℓ, Tα), with Tα(x, γ) = (τ(x), γe2iπw(x)/ℓ), where
w(x) = lim

ñ→x
(sα(n+ 1)− sα(n)), but w(u) = 0 if τ(u) = 0ω.

Example 4. It is easy to construct ζ with G(ζ) = U and G1(ζ) = {1}.
But G1(ζ) = {1} means that ζ can be extended to a continuous map on Kα.
Hence F(ζ) is almost conjugate to the translation Rα.

7. Metric properties of F(ζ)

7.1. Metrical isomorphisms

We first look at particular cases.

Example 5. Assume that ζ is not constant and only depends on a finite
number of coordinates, i.e. ζ(Mk) = {1} for k ≥ k0. Theorem 5 says that F(ζ)
is almost topologically conjugate to the translation Rα. We can say a bit more.
Let Hk be the word ζ(0)ζ(1) . . . ζ(qk − 1). Then

(32) ∀k ≥ k0 + 2 , Hk = (Hk−1)
akHk−2.

This recursion formula is exactly that of (17). Thus we can apply the discussion
of Subsection 4.1, which shows that any subword of H = limHk occurs
in H with bounded gaps and that this word has a uniform frequency. By
Theorem IV.12 and Corollary IV.14 of [46], this gives another proof of the
strict ergodicity of F(ζ).
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Example 6. Assume that M0 = {ζ(n) ; n ∈ N} is finite. There exists
ℓ such that ζ(Mk) ⊂ Uℓ for k ≥ k0. We denote H 7→ H · γ the substitution
h0 . . . hm · γ = (h0γ) . . . (hmγ). Then (32) becomes

(33) Hk = (Hk−1)(Hk−1·ζ(qk−1)) · · · (Hk−1·ζ((ak−1)qk−1))(Hk−2·ζ(akqk−1))

for k ≥ k0 + 2. Suitable choices of ζ(εqk) lead to both possibilities for F(ζ):
strict ergodicity, minimal (in any case) but not uniquely ergodic. We will give
a few explicit examples in Section 8.

We have shown that if ζ and ζ1 are α-multiplicative sequences with
n 7→ ζ(n)/ζ1(n) extendable to a continuous map on Kα, then both flows F(ζ)
and F(ζ1) are almost topologically conjugate. This leads to corresponding
isomorphism in the metric sense by introducing invariant Borel measures on
these flows. Let Λ(ζ) be the set of Borel probability measures on Oζ which are
invariant under the shift action. The set Λ(ζ) is convex and will be endowed in
the sequel with the weak topology with respect to which Λ(ζ) is known to be
compact. The set of extremal points of Λ(ζ) is exactly the set of σ-invariant
ergodic measures for the flow F(ζ). The following theorem exhibits the best
result we could expect.

Theorem 8. Let ζ and ζ1 be α-multiplicative sequences. Assume that
neither ∆ζ nor ∆ζ1 is constant, and that there exists a continuous map f0 :
Kα → U such that ζ(n) = ζ1(n)f0(n) for all integers n ≥ 0. Let Q : F(ζ1) →
→ F(ζ) be the almost isomorphism defined in the proof of Theorem 7 by (30)
and (31). Then the map ν 7→ ν◦Q−1 from Λ(ζ1) to Λ(ζ) is an homeomorphism.

Proof. Define

X(ζ) := Oζ \ {ξ ; ∃ k ∈ N, σk∆ξ = ∆ζ or σk∆ζ = ∆ξ}.

From the above study, the restriction Q|X(ζ1)
of Q on X(ζ1) is an homeomor-

phism from X(ζ1) to X(ζ) which commutes with the shifts.

Let us show that ν(X(ζ)) = 1 for any measure ν in Λ(ζ). If it is not the
case, by shift invariance and denombrability, we certainly have ν(∆−1(∆ξ)) >
> 0. The measure ν◦∆−1 is an invariant probability for the flow F(∆ζ) which is
uniquely ergodic (Theorem 3); hence ν◦∆−1({∆ξ}) = 0, giving a contradiction.
A consequence of this result, both applied to ζ and ζ1, is that the map ν 7→
7→ ν ◦ Q−1 is bijective. In order to show its continuity, due to the fact that
the spaces Λ(ζ) and Λ(ζ1) are metrizable, it is enough to prove that for any
continuous map f : Oζ → R, if the sequence (νn)n in Λ(ζ1) weekly converges

to ν, then lim
n
νn ◦Q−1(f) = ν ◦Q−1(f). In fact, Q is continuous at any point

of X(ζ1), thus Q and f ◦ Q are ν-continuous and the expected limit follows
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by a standard argument in the Riemann integration theory. The continuity of
ν 7→ ν ◦Q−1 is proved and by compacity, this map is also an homeomorphism.

To complete Theorem 8 we pay attention to the case G1(ζ) = G(ζ) (see
Theorem 6).

Theorem 9. Assume that ∆ζ is not constant and that G1(ζ) = G(ζ).

Let further U : ξ 7→ (Ξ−1
ζ (∆ξ), ξ0) be the almost isomorphism from F(ζ) to

(Kα×G(ζ), Tζ) and Λ⊔(ζ) be the set of Tζ-invariant Borel probability measures

on Kα × G(ζ) endowed with the weak topology. Then the map ν 7→ ν ◦ U−1

realizes an homeomorphism between Λ(ζ) and Λ⊔(ζ).

Proof. It is not a priori clear that Λ⊔(ζ) is weakly compact. In fact, for

any µ ∈ Λ⊔(ζ), its first projection µ|1 is the unique invariant Borel probability
µα of the odometer. The set of discontinuity points of Tζ being contained in

τ−1(0ω) × G(ζ), it is µ-negligible for any µ ∈ Λ⊔(ζ). Hence Tζ is µ-continue

and from a standard argument, Λ⊔(ζ) is weakly closed. Introducing as above
the set X(ζ), we notice that U|X(ζ)

is an homeomorphism between X(ζ) and

W (ζ) = K•
α ×G(ζ). Now µ(τ−1(0ω)×G(ζ)) = 0 for µ ∈ Λ⊔(ζ), which implies

µ(W (ζ)) = 1 and so yields bijectivity of ν 7→ ν ◦ U−1. The continuity of
ν 7→ ν ◦ U−1 and its inverse is proved as above.

Since F(∆ζ) is uniquely ergodic, constant or almost conjugate to the
translation Rα, it is natural to consider the Anzai skew product Rα⊔Cζ

G(ζ)
given by the transformation

(34)
Aζ : [−α, 1− α)×G(ζ) −→ [−α, 1− α)×G(ζ)

(t, γ) 7−→ (Rα(t), γ Cζ(t))

with Cζ : [−α, 1 − α) → G(ζ) defined by Cζ(t) := ∆ζ (̃ψ(t)). Notice that if
r-lim denotes the right limit on the torus identified to [−α, 1− α), then

(35) Cζ(t) = r− lim
nα→t (mod 1)

ζ(n+ 1)/ζ(n),

except for t = −α (mod 1). The map Cζ , called ζ-cocycle associated to ζ with
respect to the translation Rα, is constant by intervals (having extremities in
Zα+Z) which accumulate to −α and 1−α. In the sequel, we will simplify the
notation Rα⊔Cζ

G(ζ) into Rα⊔ζG(ζ).

Theorem 10. Suppose that ∆ζ is not constant and G1(ζ) = G(ζ). Then

V : ξ 7→ (φ(Ξ−1
ζ (∆ξ)), ξ0) realizes an almost topological isomorphism from

F(ζ) to Rα⊔ζG(ζ) and the related map ν 7→ ν ◦ V −1 is an homeomorphism
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between Λ(ζ) and Λ(ζ) the space of Aζ-invariant Borel probability measures on
[−α, 1− α)×G(ζ).

The proof runs as above; details are left to the reader. Skew products over
an irrational translation on the torus were introduced first by H. Anzai [2]; the
interest to recognize such a structure for F(ζ) is that several criteria are known
to characterize the ergodicity of the product measure λ ⊗ hG(ζ), a fact which
implies the unique ergodicity:

Theorem 11. Assume that ∆ζ is not constant and G1(ζ) = G(ζ). The
flow F(ζ) is uniquely ergodic if and only if the dynamical system

(36) ([−α, 1− α)×G(ζ), Aζ , λ⊗ hG(ζ)),

where Aζ is given by (34) and (35), is ergodic.

Proof. If F(ζ) is uniquely ergodic, Theorem 10 says that the dynamical
system (36) is ergodic. Reciprocally, if this system is ergodic, the underlying
translation Rα being uniquely ergodic, then the skew product is also uniquely
ergodic. In fact, this result follows from H. Furstenberg [23] if Cζ is continuous
(but this is generally not the case here) or from [39], the cocycle Cζ being
λ-continuous. It also derives from a general result ([13] Corollary 1).

The next two subsections give criteria for unique ergodicity of F(ζ).
Firstly, we choose a spectral approach which involves correlation functions
and spectral measures. Secondly, we introduce (metrical) essential values of
K. Schmidt [48] and compare them with the topological essential values.

7.2. Unique ergodicity and spectral charge on {0}

In this subsection we extend Theorem 8 of [40] to an α-multiplicative
sequence ζ which gave a necessary and sufficient condition for F(ζ) to be
uniquely ergodic in the case of a q−multiplicative sequence. For this purpose,
we recall some definitions and state three lemmas. For each m = (m0, . . . ,ms)

in Zs+1, set |m| =
s∑

j=0

mj and associate the character χm : x 7→ xm0
0 . . . xms

s on

UN, and the sequence χζ,m : k 7→ χm(σk(ζ)).

Lemma 9. The sequence χζ,m has a spectral Borel measure Λζ,m (on the
torus T := R/Z), i.e.

Λ̂ζ,m(k) =

∫
T

e2ikπtΛζ,m(dt) = lim
N

1

N

∑
n<N

χζ,m(k + n)χζ,m(n).
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Moreover for any ν ∈ Λ(ζ), Λζ,m is also the spectral measure of χm restricted
to F(ζ), i.e.

Λ̂ζ,m(k) =

∫
Oζ

χm(σk(ξ))χm(ξ) ν(dξ).

Proof. By easy computation we obtain

χm(σk(ξ))χm(ξ) = χm(σk−1(∆ξ)) . . . χm(σ(∆ξ))χm(∆ξ)

and so∫
Oζ

χm(σk(ξ))χm(ξ) ν(dξ) =

∫
O∆ζ

χm ◦ σk−1(u) . . . χm ◦ σ(u)χm(u) ν ◦∆−1(du).

The measure ν ◦ ∆−1 is an invariant probability measure on the flow F(∆ζ)
which is uniquely ergodic. Taking ∆ζ as a generic point we obtain the equality∫

Oζ

χm(σk(ξ))χm(ξ) ν(dξ) = lim
N

1

N

∑
n<N

χζ,m(k + n)χζ,m(n) .

That proves the lemma.

It is known that for any ν ∈ Λ(ζ) one has√
Λζ,m({t}) = ||Pt(χm)||2,ν ,

where || · ||2,ν is the quadratic norm of the Hilbert space Hζ,ν := L2(Oζ , ν) and
Pt the orthogonal projection onto the proper subspace of Hζ,ν corresponding

to the possible eigenvalue e2iπt. The next lemma says explicitly the fact when
the flow F(ζ) is uniquely ergodic and t = 0.

Lemma 10. Assume F(ζ) to be uniquely ergodic of unique measure µζ .

Then, for any s ∈ N and for any m ∈ Zs+1 we have

Λζ,m({0})1/2 =
∣∣∣ ∫ χm dµζ

∣∣∣ = lim
N

1

N

∣∣∣ ∑
n<N

χζ,m(n)
∣∣∣.

Lemma 11. We use the above notations and recall that we look at ζ and
∆ζ as elements of UN.
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1. Let be M ∈Mk ∩N and let be an integer N such that N + s ≤ qk. Then∑
n<N

χζ,m(n+M)−
∑
n<N

χζ,m(n) =
(
ζ(M)|m| − 1

) ∑
n<N

χζ,m(n).

2. For any non-negative integer s and any m = (m0,m1, . . . ,ms) ∈ Zs+1,
define m′ = −(m0,m0 +m1, . . . ,m0 +m1 + · · ·+ms−1) ∈ Zs. Then

χζ,m(k) = χ∆ζ,m′(k)ζ(k + s)|m| .

Proof. For any n < N we have

χζ,m(n+M) = ζ(n)m0ζ(M)m0 · · · ζ(n+s)msζ(M)ms = χζ,m(n)ζ(M)m0+···+ms .

The verification of 2. is immediate.

Theorem 12. The flow F(ζ) is uniquely ergodic if and only if for any non-

negative integer s and any m ∈ Zs+1, Λζ,m({0}) = 0 or ζ |m| can be extended
to a continuous function on Kα.

Proof. Assume unique ergodicity of F(ζ) and that Λζ,m({0}) >
> 0. Let (Nj)j be an increasing sequence of positive integers such that

N−1
j

∣∣∣∣ ∑
n<Nj

χζ,m(n)

∣∣∣∣ ≥ κ > 0 for some κ and all j. For any j, let be kj such that

Nj+s ≤ qk(j). Apply Lemma 11 with withN = Nj andM =M(j) ∈Mk(j)∩N.
We get ∣∣∣∣ 1Nj

∑
n<Nj

χζ,m(n+M(j))− 1

Nj

∑
n<Nj

χζ,m(n)

∣∣∣∣ =
=
∣∣∣ζ(M(j))|m| − 1

∣∣∣∣∣∣∣ 1Nj

∑
n<Nj

χζ,m(n)

∣∣∣∣.
Take now the supremum for M(j) ∈ Mk(j) ∩N. For j tending to infinity, the
left-hand side of the equality tends to 0 by unique ergodicity. The right-hand
side is the product of

sup
M(j)∈Mk(j)∩N

∣∣ζ(M(j))|m| − 1
∣∣

with a quantity that does not tend to 0 by Lemma 10. Hence, since the

sequence k 7→ sup
M∈Mk∩N

∣∣ζ(M)|m| − 1
∣∣ is decreasing, it tends to 0 and ζ |m| can

be extended to a continuous function on Kα by Lemma 8.
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It remains to prove the sufficiency. Let s ∈ N and m = (m0, . . . ,ms) ∈ Zs.

Assume first that ζ |m| can be extended to a continuous function on Kα. By
Lemmas 11 and 4, the sequence

n 7→ χζ,m(n)ζ(n+ s)−|m| = χ∆ζ,m′(n)

is constant on each B ∈ Bs−1. Therefore χζ,m can be extended to a continuous

map on ∪
B∈Bs−1

B = Kα\
s
∪

k=1
τ−k(0ω). As in the proof of Theorem 3, the unique

ergodicity of (Kα, τ) ensures that F(χζ,m) is uniquely ergodic, too.

Assume now that Λζ,m({0}) = 0. Following the idea of [40], we introduce,

for n =
∞∑
j=0

ej(n)qj ∈ N,

χ(k)
m (n) = χζ,m(Sk(ň)) ζ

(
ek(n)qk + ek+1(n)qk+1 + · · ·

)|m|

and note that χ
(k)
m (n) = χζ,m(n) if the successive additions n 7→ n+1 7→ · · · 7→

7→ n + s never produce a carry at an index at least k, i.e. if Sk(ň) < qk − s.
Therefrom, and since the smallest return time to a cylinder of length k is qk−1

(see Subsection 4.1), we have∣∣∣∣ ∑
n<N

χζ,m(n+ j)−
∑
n<N

χ(k)
m (n+ j)

∣∣∣∣ ≤
≤ 2#

{
n < N ; χζ,m(n+ j) ̸= χ(k)

m (n+ j)
}
≤

≤ 2s

(
1 +

N

qk−1

)
.

Therefore, Lemma 1 shows that unique ergodicity of F(ζ) would be a conse-
quence of the uniform convergence with respect to j of

1

N

∑
n<N

χ(k)
m (n+ j) =

1

N

qk−1∑
r=0

χζ,m(r)
∑

M∈Mk∩N

j≤r+M<j+N

ζ(M)|m|

for all integers k (or even for k sufficiently large). Let be r = e0(r) + e1(r)q1 +
+ · · ·+ ek−1(r)qk−1. Since (Kα, τ) is uniquely ergodic, the means

1

N
#
{
M ∈Mk ∩N ; j ≤ r +M < j +N

}
=

1

N

∑
n<N

1[e0(r)e1(r)···ek−1(r)](n+ j)
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tend to µα([r0 . . . rk−1]) uniformly in j (this could also be seen as a consequence
of Proposition 5). The trivial upperbound |ζ(M)| ≤ 1 and (14) yield

1

N

∣∣∣∣ ∑
n<N

χ(k)
m (n+ j)

∣∣∣∣≪
≪

∑
r<qk−1

χζ,m(r)
(
|qk−1α|+ |qkα|

)
+

∑
qk−1≤r<qk

χζ,m(r)|qk−1α| ≪

≪ 1

qk−1

∑
r<qk−1

χζ,m(r)
(
qk−1|qkα|

)
+

1

qk

∑
r<qk

χζ,m(r)
(
qk|qk−1α|

)
,

which tends uniformly to 0 by the hypothesis Λζ,m({0}) = 0, and the classical
inequalities

lim sup
1

N

∣∣∣ ∑
n<N

χζ,m(n)
∣∣∣ ≤ Λζ,m({0})1/2

(the sequence χζ,m having a unique spectral measure) and qk||qk−1α|| ≤ 1.

7.3. Unique ergodicity and essential values

In this subsection we apply techniques of [48] to the skew product T (ζ) :=
:= (Kα × G(ζ), Tζ , µα ⊗ hG(ζ)). Recall that Tζ is given by Tζ(x, γ) =(
τx, γ∆ζ (̃x)

)
(of course, the method can be also applied to the dynamical

system (36)).

Let be for a while G a locally compact metrizable abelian group, the group
law being denoted multiplicatively. A measurable map f : Kα → G is viewed
as the so-called τ -cocycle (x, n) 7→ fn(x) defined by

fn(x) =



n−1∏
k=0

f(τkx) if n ≥ 1,(−n∏
k=1

f(τ−kx)

)−1

if n ≤ −1,

1G if n = 0.

Following [48] (see also the eighth chapter of [1]), γ ∈ G is an essential value
of f with respect to τ if for any Borel set B of Kα with µα(B) > 0 and any
neighborhood V of γ in G, one has

(37) µα

( ∪
n∈Z

(
B ∩ τ−nB ∩ {x ∈ Kα ; fn(x) ∈ V }

) )
> 0 .
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Moreover, f is said to have an essential value at infinity if (37) holds for any V
such that A\V is compact. This notion at infinity is irrelevant if A is compact.
Notice that in case G = G(ζ), the corresponding products ∆ζ ñ are well defined
and continuous at each point of K•

α. A measurable map f0 : Kα → G is
a τ -coboundary with transfer function ℑ:Kα → G if ℑ is measurable and
f0(x) = ℑ(τx)/ℑ(x) for µα-almost every x ∈ Kα. Of course, these definitions
can be given for any standard ergodic dynamical system (X,T,B, µ) which
takes the place of the odometer. Let be E(f) the set of essential values of f
and let us recall the following facts (see [48] and [1]):

• The set E(f) is a closed subgroup of G.

• Multiplying f by a τ -coboundary does not affect the set of essential values.

• For any character χ : G→ U, χ(E(f)) ⊂ E(χ ◦ f).
• The cocycle f is a coboundary if and only if f has not an essential value

at infinity and E(f) = {1}.
• There is a (measurable) coboundary f0 such that the cocycle f.f0 is E(f)-

valued.

As a consequence of the general result of K. Schmidt asserting that the
skew product (X × G,T f ,B(X × G), µ ⊗ hG) with T f (x, g) = (Tx, gf(x)) is
ergodic if and only if E(f) = G, one has

Theorem 13. The dynamical system T (ζ) := (Kα×G(ζ), Tζ , µα⊗hG(ζ))

is ergodic if and only if E(∆ζ) = G(ζ) (in that case, µα ⊗ hG(ζ) is the unique

Tζ-invariant measure ([13] Corollary 1)).

Definition given by (37) is difficult to handle with in practice. It is possible
to exhibit essential values only by taking care of cylinders instead of Borel sets.

Lemma 12. Let V(γ) denote the set of neighborhoods of γ ∈ G(ζ). If

(38) ∀V ∈ V(ξ), ∃κ > 0, ∀n ∈ N, ∀C ∈ σ(π0, π1, . . . , πn), ∃m ∈ Z ,

µα

(
C ∩ τ−m(C) ∩ {x ∈ Kα ; ∆ζ tildem(x) ∈ V }

)
≥ κµα(C)

holds, then ξ ∈ E(∆ζ).

Proof. Indeed, let B be a Borel set. For any ε > 0, there exists n ∈ N
and C ∈ σ(π0, π1, . . . , πn) such that µα(B∆C) ≤ ε. Writing

C∩τ−mC = [(C∩B)∩τ−m(C∩B)]∪ [(C \B)∩τ−m(C∩B)]∪ [C∩τ−m(C \B)]

yields µα(C ∩ τ−mC) ≤ µα(B ∩ τ−mB) + 2ε, hence

µα

(
B ∩ τ−m(B) ∩ {x ∈ Kα ; ∆ζm(x) ∈ V }

)
≥ κµα(C)− 2ε > 0
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provided that ε is small enough and that C satisfies (38) for m, and ξ is an
essential value of ∆ζ.

Notice that if ζ can be extended to a continuous function f on Kα, then
∆ζ is trivially a coboundary (with ℑ = f) and E(∆ζ) = {1} ̸= G(ζ), provided
that ζ is not constant. Therefore, (Kα⊔G(ζ), Tζ) is not uniquely ergodic,
but contains the uniquely ergodic components Fγ := {(x, f(x)γ), x ∈ Kα},
each of them being finitary isomorphic to the odometer itself which is finitary
isomorphic to F(ζ) (see Theorem 5).

Proposition 8. For any α-multiplicative sequence ζ, any essential value
is a topological essential value: E(∆ζ) ⊂ G1(ζ).

Proof. Choose γ ∈ E(∆ζ), V a closed neigborhood of γ and B = Mk in
(37). There is an integer nk ∈ Z such that µα(B ∩ τ−nkB ∩ {∆ζ ñk

∈ V }) > 0.
But ∆ζ ñk

is constant on cylinder sets and B∩τ−nkB is a finite union of cylinder
sets. Therefore, B ∩ τ−nkB contains a cylinder set Ck on which ∆ζ ñk

take a
constant value in V and so, there is an integer mk in Ck, hence in Mk, such
that ∆ζ ñk

(mk) ∈ V . But ∆ζ ñk
(mk) = ζ(mk + nk)/ζ(mk) by definition and

k 7→Mk converges to G1(ζ) with respect to the Hausdorff distance. Therefore,
by a compacity argument, there exists J ⊂ N such that the limits

lim
k∈J

ζ(mk) = u, lim
k∈J

ζ(mk + nk) = v

exist with u and v in G1(ζ) and vu−1 = lim
k∈J

ζ(mk + nk)/ζ(mk) ∈ V , proving

that γ is an essential topological value.

Theorem 14. The flow F(ζ) is uniquely ergodic if and only if E(∆ζ) =
= G1(ζ).

Proof. We distinguish several cases. If ∆ζ is constant, equal to θ, then
G1(ζ) = U(θ) = G(ζ) and we know that F(ζ) is isomorphic to the translation
z 7→ zθ on U(θ), which is uniquely ergodic.

Now we assume that ∆ζ is not constant, but ζ = ζ1ζ0 with ∆ζ1 constant,
equal to θ, and ζ0 extendable to a continuous map f0 on Kα. By Theorem
7 part (ii), and Theorem 5, F(ζ) is almost conjugate to the direct product
(Kα × U(θ), (x, γ) 7→ (τx, γθ)). On the other hand, ∆ζ˜ = ∆ζ1˜∆ζ0˜ with
∆ζ0˜ = f0 ◦ τ/f0 implying E(∆ζ) = E(∆ζ1) = U(θ). Theorem 13 asserts that
(Kα × U(θ), (x, γ) 7→ (τx, γθ), µα ⊗ hU(θ)) is ergodic, hence uniquely ergodic

and so is F(ζ) (notice that this proof includes the case θ = 1).

Finally, assume that ζ = ζ1ζ0 with ∆ζ and ∆ζ1 not constant, and ζ0
extendable to a continuous function on Kα. Then by Theorem 7 part (iv), and
Theorem 13, the flow F(ζ) is ergodic if and only if E(∆ζ1) = G1(ζ). Since
E(∆ζ) = E(∆ζ1), the result follows.
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8. Applications

8.1. ζ(N) finite and α with bounded partial quotients

If ζ takes finitely many values, the compact sets ζ(Mk) and ζ(Mk) are
equal, there exists k0 for which

ζ(Mk0) = G1(ζ) ,

and we derive the factorization ζ = ζ1ζ0 of Theorem 7 with G(ζ1) = G1(ζ) and
f0 only dependent of the first k0-digits.

Theorem 15. Assume that α = [0; a1, a2, a3, . . .] has bounded partial
quotients aj. Let ζ be an α-multiplicative sequence taking finitely many values
and such that G(ζ) = G1(ζ) and ∆ζ is not constant. Then E(∆ζ) = G1(ζ), or
equivalently, F(ζ) is uniquely ergodic, finitary isomorphic to the skew product
T (ζ).

Proof. We may assume that ζ is not extendable to a continuous map on
Kα, otherwise by the assumption G1(ζ) = {1} = G(ζ), ζ must be trivial and
so ∆ζ = 1. The flow F(∆ζ) is finitary conjugate to the odometer and it is
enough to prove that T (ζ) is ergodic, hence to prove that E(∆ζ) = G1(ζ). For
any C ∈ σ(π0, . . . , πn) and any integer ℓ ≥ 2 let us show that

(39) mb(n, ℓ) := µα{x ∈ C ; xn+ℓ−1xn+ℓxn+ℓ+1 = 000} ≥ κµα(C)

where κ is a positive constant only dependent of A := max
n

an. Using the

Markov chain structure studied in Theorem 2 and the inequality

µα(πm = 0|πm−1 = a′) ≥ ||qmα||+ ||qm+1α||
||qm−1α||+ ||qmα||

one gets

mb(n, ℓ) ≥ µα(C)
+1∏

j=−1

||qn+ℓ+jα||+ ||qn+ℓ+j+1α||
||qn+ℓ−1+jα||+ ||qn+ℓ+jα||

=

= µα(C)
||qn+ℓ+1α||+ ||qn+ℓ+2α||
||qn+ℓ−2α||+ ||qn+ℓ−1α||

.
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Taking into account the classical inequalities 1
qm+1

> ||qmα|| > 1
2qm+1

and
qm

qm+1
> 1

A+1 , we obtain

||qn+ℓ+1α||+ ||qn+ℓ+2α||
||qn+ℓ−2α||+ ||qn+ℓ−1α||

≥ 1

2

1

(A+ 1)4

and inequality (39) finally holds with κ = 1
2(1+A)3 .

Let Γ be the set of γ ∈ G1(ζ), γ ̸= 1, such that the equality ζ(rmqm) = γ
holds for infinitely many integers m with 1 ≤ rm ≤ am+1. This set generates
G1(ζ). For a given γ ∈ Γ, choose a sequence of couples of integers (nk, ek) with
nk < nk+1, 1 ≤ ek ≤ ank+1 and ζ(ekqnk

) = γ. For each C ∈ σ(π0, . . . , πn) take
k and ℓ verifying ℓ ≥ 2, n + ℓ = nk. Any x ∈ C with xnk−1xnk

xnk+1 = 000
verifies x ∈ τ−ekqnkC and ∆ζ ẽkqnk

(x) = ζ(ekqnk
) = γ. The hypothesis of

Lemma 12 is fulfilled, hence γ ∈ E(ζ).

Theorem 15 can be slightly improved using the same method to obtain the
next theorem, whose proof is left to the reader.

Theorem 16. Assume that α has bounded partial quotients, ∆ζ is not
constant and G(ζ) = G1(ζ). Furthermore suppose that there is a finite subset
B of U such that for all n ≥ 1,

ζ({eqn ; 0 < e ≤ an+1}) ⊂ B.

Then, F(ζ) is uniquely ergodic, finitary isomorphic to the skew product T (ζ).

8.2. Cases with unbounded partial quotients

The hypothesis on α in Theorem 15 is essential. The next example builds
ζ with E(∆ζ) = {1} but G(ζ) = G1(ζ) = {−1, 1} in case α has unbounded
partial quotients. The construction can be modified to get for G(ζ) = G1(ζ)
any closed subgroup of U.

Example 7. Let α = [0; a1, a2, a3, . . .] with unbounded partial quotients
and let (nk)k≥0 be an increasing sequence of integers such that nk+1 ≥ nk +3,

n0 ≥ 2, ank
≥ 2 and the series

∑
k≥0

1
ank+1

converges. Define the α-multiplicative

sequence ζ by ζ(ank+1qnk
) = −1 and ζ(eqm) = 1 otherwise. By construction

G1(ζ) = {−1, 1} = G(ζ). The Borel set

E := {x ∈ K•
α ; ∃ k = k(x) ≥ 0,∀ r ≥ k, xnr ̸= anr+1}
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being τ -invariant, µα(E) = 0 or 1. The event E contains E∞ :=
∩
k

E(k), where

E(k) := {x ∈ K•
α ; ∀ r ≤ k, xnr ̸= anr+1}. Set E(k)(a) = {x ∈ E(k);xnk−2 =

= a}. The Markov chain (πn)n (Theorem 2) allows to write

µα(E
(k)) = µα(E

(k−1))−

−
ank−1∑
a′=0

µα(E
(k−1)(a′))µα(πnk−1 = 0|πnk−2 = a′)µα(πnk

= ank+1|πnk−1 = 0) ≥

≥ µα(E
(k−1))(1− µα(πnk

= ank+1|πnk−1 = 0)).

Notice that

µα(πnk
= ank+1|πnk−1 = 0) =

||qnk
α||

||qnk−1α||+ ||qnk
α||

=

=
||qnk

α||
(ank+1 + 1)||qnk

α||+ ||qnk+1α||
≤

≤ 1

ank+1 + 1
,

leading to

µα(E
(k)) ≥ µα(E

(k−1))
(
1− 1

ank+1 + 1

)
≥ µα(E

(0))

k∏
r=0

(
1− 1

anr+1 + 1

)
.

The choice of the ank
implies that the infinite product

∏
r≥0

(
1 − 1

anr+1+1

)
converges to a strictly positive number ρ while lim

k
µα(E

(k)) = µα(E
∞).

Consequently, µα(E) ≥ ρµα(E
(0)) > 0. Thus µα(E) = 1; then, with the

notation of Lemma 8, ζ̃(x) := lim
n
ζ(Sn(x)) exists for µα-almost every x.

Since those x verify also the relation ∆ζ (̃x) = ζ̃(τx)/ζ̃(x), the map ∆ζ˜ is
a coboundary, hence E(∆ζ) = {1}.

The automorphism (x, γ) 7→ (x, γζ̃(x)) identifies F(ζ) with the union of
two copies of T (1) := (Kα × {1}, T1, µα ⊗ h{1}), T1(x, 1) = (τx, 1), which is

uniquely ergodic. The flow F(ζ) furnishes a simple example of minimal flow
which admits exactly two ergodic measures.

Example 8. In the above construction we replace ζ(ank+1qnk
) = −1 by

ζ(ank+1qnk
) = θ, (θ fixed);
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then G1(ζ) = U(θ) and by the same arguments given in Example 7, we still
have E(ζ) = {1}.

Notice that if U(θ) = Uℓ, the flow F(ζ) is made of ℓ copies of T (1)
(metrically isomorphic to the α-odometer). If U(θ) = U, the flow F(ζ) is
metrically isomorphic to an uncountable union of copies of T (1).

8.3. The sum-of-digits function

Recall the definition sα(x) =
∑
k≥0

ek(n) and fix z ∈ U. We study the

structure of the flow associated to the α-multiplicative sequence ζz defined by

ζz(n) = zsα(n).

Proposition 9. With the above notations, ∆ζz is constant if and only if
z is a root of unity such that

za1−1 = z & ∀ k ≥ 2, zak = z.

In that case F(ζz) is topologically isomorphic to the translation x 7→ xz on the
group of unity generated by z.

Proof. The possible values of the difference map are (see Section 5)

∆ζz̃(x) =



z if x0 ̸= a1 − 1;

z/z(a1−1)+...+a2r+1 if x ∈ [Q2rjk] with 0 ≤ j ≤ a∗2r+1 − 1
and k ≤ a2r+2 (r ≥ 0);

z/za2+...+a2r+2 if x ∈ [Q2r+1jk] with 0 ≤ j ≤ a∗2r+2 − 1
and k ≤ a2r+3 (r ≥ 0).

The proposition follows and ∆ζz takes the constant value z.

Theorem 17. Assume that ∆ζz is not constant. Then the group of
essential values coincides with the group of topological essential values which
is the closed group U(z) generated by z. As a consequence, F(ζz) is strictly
ergodic and finitary isomorphic to the skew product T (ζz).

Proof. If α has bounded partial quotients, apply Theorem 16 to conclude.
Otherwise, we may assume am ≥ 5 for infinitely many m. We use Lemma 12.
For n ∈ N and any C ∈ σ(π0, π1, . . . , πn), m ≥ n + 3, 0 ≤ a ≤ am+1, set
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Cm(a) = C ∩ {x ∈ Kα ; xm = a} and notice that C = ∪
b∈Sm−1

([b] ∩ C). With

C ′
m = ∪

0<a<am+1−1
Cm(a), one gets

µα(C
′
m|C) = 1− µα(πm = 0|C)− µα(πm = am+1|C) ≥

≥ 1− ||qmα||+ ||qm+1α||
||qm−1α||+ ||qmα||

− ||qmα||+ ||qm+1α||
||qm−1α||

≥

≥ 1− 4

am+1
.

Therefore, for infinitely many m ≥ n+ 2 one has both am ≥ 5 and

µα(C
′) ≥ 1

5
µα(C) ,

and by construction (∆ζz )̃ qm(x) = z for any x ∈ C ′, giving

µα

(
C ∩ τ−qm(C) ∩ {x ∈ Kα ; ∆ζ ,̃ qm(x) = z}

)
≥ 1

5
µα(C).

This proves that z is an essential value and finally G(ζz) = G1(ζz) = E(∆ζz) =
= U(z).

We show on this typical example how to retrieve a result of J. Coquet [12]
on the distribution of the sum-of-digits.

Corollary 5. For any z ∈ U, the sequence n 7→ zsα(n) is well distributed
in the group U(z).

In fact, the case ∆ζz constant is obvious. Otherwise F(ζz) is uniquely
ergodic and finitary isomorphic to the skew product T (ζz) so that by Lemma
1, for any non trivial character χ of U(z),

N 7→ 1

N

∑
n<N

χ((σn+jζz)0)

converges uniformly in j to
∫

U(z)

χ(g)hU(z)(dg) (= 0), when N tends to infinity.

Since χ((σn+jζz)0) = χ(zsα(n+j)), the corollary follows.

Remark 8. If we replace U(z) by any compact monothetic group G
generated by z, the conclusion of Theorem 17 is still true and the sequence
n 7→ zsα(n) is well distributed in the group G again.
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Remark 9. Replace U(z) by Z in the above study and let ∆sα be the
additive difference of sα, which is extended to Kα by

∆sα̃ (x) = lim
ň→x

(sα(n+ 1)− sα(n)) (∈ Z)

if τ(x) ̸= 0ω and ∆sα(x) = 0 otherwise. Now, consider the cylindric flow
Z(sα) := (Kα × Z, Tsα , hα ⊗ hZ) defined by

Tsα(x, n) = (τx, n+∆sα̃ (x)).

A similar proof of that of the above theorem shows that 1 is an essential value
of ∆sα̃ , hence E(∆sα̃ ) = Z and Z(sα) is ergodic.
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topologiques et combinatoires des échelles de numération, Dedicated to
the memory of Anzelm Iwanik, Colloq. Math., 84/85 (2000), part 2, 285-
306.

[4] Barat G., Downarowicz T. et Liardet P., Dynamiques associées à
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[12] Coquet J., Répartition de la somme des chiffres associée à une fraction
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Théorie des nombres - C.N.R.S.
CMI, Château Gombert
39 Rue Joliot-Curie
13453 Marseille, Cedex 13
France
barat@cmi.univ-mrs.fr

P. Liardet
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