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Abstract. A general summability method of two-dimensional Fourier

series is given with the help of an integrable function θ. Under some

conditions on θ we show that if the maximal Marcinkiewicz-Fejér operator

is bounded from a Banach space X to Y, then the maximal Marcinkiewicz-

θ-operator is also bounded. As special cases the trigonometric and Walsh-

Fourier series and the Fourier transforms are considered. It is proved that

the maximal operator of the Marcinkiewicz-θ-means of these Fourier series

is bounded from Hp to Lp (p0 < p ≤ ∞) and is of weak type (1,1), where

p0 < 1 is depending only on the type of the Fourier series. As a consequence

we obtain a generalization of a summability result due to Marcinkievicz

and Zhizhiashvili, more exactly, the Marcinkiewicz-θ-means of a function

f ∈ L1 converge a.e. to the function in question. Some special cases of the

θ-summation are considered, such as the Weierstrass, Picar, Bessel, Riesz,

de La Vallée-Poussin, Rogosinski and Riemann summations.
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1. Introduction

Fine [4] proved that the Fejér means σnf of the Walsh-Fourier series of a
one-dimensional function f ∈ L1 converge a.e. to f as n → ∞. It is known
that the maximal operator of the Fejér means is of weak type (1, 1), i.e.

sup
ρ>0

ρλ(σ∗f > ρ) ≤ C∥f∥1 (f ∈ L1)

(see Schipp [13]) and that σ∗ is bounded from the dyadic H1 Hardy space to
L1 (see Fujii [5]), where σ∗ := sup

n∈N
|σn|. The author [17] verified that σ∗ is also

bounded from Hp to Lp whenever 1/2 < p < ∞. The same results are known
for the trigonometric system (see Zygmund [26], Móricz [8, 9] and Weisz [18]).

One way to generalize these results to the two-dimensional case is the
following. It is known that the diagonal partial sums sn,nf of the double
trigonometric or Walsh-Fourier series of f converge a.e. to f as n→ ∞, when-
ever f ∈ L2 (see Fefferman [3] and Schipp, Wade, Simon, Pál [12]). This result
holds also for all functions from Lp (1 < p < 2) for the trigonometric Fourier
series, however, for Walsh series it is an unknown problem. Marcinkiewicz [7]
has investigated the arithmetic means σnf (in other words, the Marcinkiewicz-
Fejér means) of the sequence (sk,kf). He [7] verified that the means σnf of
the two-dimensional trigonometric Fourier series of a function f ∈ L logL
converge a.e. to f as n → ∞. Later Zhizhiashvili [24, 25] generalized this
result for all f ∈ L1. Recently the author [19, 20, 21] has extended this result
for the trigonometric and Walsh-Fourier series and for Fourier transforms by
proving that the maximal Marcinkiewicz-Fejér operator σ∗ is of weak type
(1, 1). Moreover, we verified that σ∗ is bounded from the Hardy space Hp to
Lp whenever p0 < p ≤ ∞. Note that p0 < 1 is depending only on the type of the
Fourier series. A usual density argument implies that the Marcinkiewicz-Fejér
means σnf converge a.e. to f in all three cases, as n→ ∞ and f ∈ L1.

Butzer and Nessel [2] and recently Bokor, Schipp, Szili and Vértesi [1,
10, 11, 15, 16] considered a general method of summation of one-dimensional
Fourier series, the so called θ-summability, where θ is an integrable function.
Motivated by this idea the Marcinkiewicz-θ-summability for two-dimensional
functions is considered in this paper. We investigate general orthogonal series
and show that if the maximal Marcinkiewicz-Fejér operator σ∗ is bounded from
X to Y, then the maximal Marcinkiewicz-θ-operator σθ

∗ is also bounded, where
X and Y are two complete normed spaces. As special cases the trigonometric
Fourier and Walsh-Fourier series and the Fourier transforms are examined. It
is proved that σθ

∗ with respect to these Fourier series is bounded from Hp
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to Lp (p0 < p ≤ ∞) and is of weak type (1,1), where p0 < 1 is depending
on the type of the Fourier series and different Hardy spaces are considered for
different function systems. As a consequence we obtain that the Marcinkiewicz-
θ-means of the above Fourier series of a function f ∈ L1 converge a.e. to f .
Some special cases of the Marcinkiewicz-θ-summation are considered, such as
the Weierstrass, Picar, Bessel, Riesz, de La Vallée-Poussin, Rogosinski and
Riemann summations.

2. θ-summability of Fourier series

We consider the unit square [0, 1)2 and the Lebesgue measure λ on it.
We briefly write Lp instead of the real Lp([0, 1)

2, λ) space while the norm (or
quasi-norm) of this space is defined by

∥f∥p :=

 ∫
[0,1)2

|f |p dλ


1/p

(0 < p ≤ ∞).

The space Lp,∞ = Lp,∞([0, 1)2, λ) (0 < p < ∞) consists of all measurable
functions f for which

∥f∥p,∞ := sup
ρ>0

ρλ(|f | > ρ)1/p <∞,

while we set L∞,∞ = L∞. Note that Lp,∞ is a quasi-normed space. It is known
that

Lp ⊂ Lp,∞ and ∥ · ∥p,∞ ≤ ∥ · ∥p

for each 0 < p ≤ ∞.

Let M denote either Z or N. Suppose that ϕn (n ∈ M) is a real or complex
valued uniformly bounded orthonormal system over the unit interval. We
consider the two-dimensional orthonormal system Φ = (ϕn × ϕm;n,m ∈ M).
For a function f ∈ L1 the (n,m)-th Fourier coefficient with respect to Φ is
defined by

f̂(n,m) :=

∫
[0,1)2

fϕn × ϕm dλ.
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Denote by sn,mf := sΦn,mf (n,m ∈ N) the (n,m)-th partial sum of the Fourier
series of f ∈ L1, namely,

sΦn,mf(x) :=
∑

k∈M,|k|≤n

∑
l∈M,|l|≤m

f̂(k, l)ϕk(x1)× ϕl(x2) =

=

1∫
0

1∫
0

f(t)Dn(t1, x1)Dm(t2, x2) dt,

where x = (x1, x2), t = (t1, t2) ∈ [0, 1)2 and the Dirichlet kernels are defined
by

Dn(ti, xi) := DΦ
n (ti, xi) :=

∑
k∈M,|k|≤n

ϕk(ti)ϕk(xi) (n ∈ N, i = 1, 2).

We suppose that |Dn(t, x)| ≤ C(t, x) for all n ∈ N (t, x ∈ [0, 1), t ̸= x), where
C(t, x) is independent of n. It is known that the trigonometric and Walsh
system satisfy this condition.

The Marcinkiewicz-Fejér means σnf := σΦ
n f (n ∈ N) of an integrable

function f are given by

σΦ
n f :=

1

n+ 1

n∑
k=0

sk,kf =

1∫
0

1∫
0

f(t)Kn(t, x) dt,

where

Kn(t, x) := KΦ
n (t, x) :=

1

n+ 1

n∑
k=0

Dk(t1, x1)Dk(t2, x2)

denotes theMarcinkiewicz-Fejér kernels. Themaximal Fejér operator is defined
by

σ∗f := σΦ
∗ f := sup

n∈N
|σnf |.

We are going to introduce the Marcinkiewicz-θ-summability. In what follows
the following conditions are always supposed.

(1)



θ ∈ L1(R) is even and continuous, θ(0) = 1,(
θ

(
k

n+ 1

))
k∈Z

∈ ℓ1, lim
x→∞

θ(x) = 0,

θ is twice continuously differentiable on R except of
finitely many points,

θ′′ ̸= 0 except of finitely many points and finitely many intervals,
the left and right limits lim

x→y±0
xθ′(x) ∈ R does exist at

each point y ∈ R,
lim
x→∞

xθ′(x) = 0.



Marcinkiewicz-θ-summability of double Fourier series 107

Note that the second condition of (1) is satisfied if θ is non-increasing on
(c,∞) for some c ≥ 0 or if it has compact support.

Let

∆1θ

(
k

n+ 1

)
:= θ

(
k

n+ 1

)
− θ

(
k + 1

n+ 1

)
,

∆2θ

(
k

n+ 1

)
:= ∆1θ

(
k

n+ 1

)
−∆1θ

(
k + 1

n+ 1

)
.

The Marcinkiewicz-θ-means of f ∈ L1 are defined by

σθ
nf(x) := σΦ,θ

n f(x) :=
∞∑
k=0

∆1θ

(
k

n+ 1

)
sk,kf(x) =

=

1∫
0

1∫
0

f(t)Kθ
n(t, x) dt,

where the Kθ
n kernels satisfy

Kθ
n(t, x) := KΦ,θ

n (t, x) :=
∞∑
k=0

∆1θ

(
k

n+ 1

)
Dk(t1, x1)Dk(t2, x2)

(n ∈ N, t, x ∈ [0, 1)2), which is well defined by (1). We define the maximal
Marcinkiewicz-θ-operator by

σθ
∗f := σΦ,θ

∗ f := sup
n∈N

|σθ
nf | (f ∈ L1).

If θ(x) := (1− |x|) ∨ 0, then we get the Fejér kernels and means.

We assume that

(2)

1∫
0

1∫
0

|Kn(t, x)| dt ≤ C (n ∈ N, x ∈ [0, 1)2)

which implies
∥σ∗f∥∞ ≤ C∥f∥∞ (f ∈ L∞).

The constants C are absolute constants and the constants Cp are depend-
ing only on p and may denote different constants in different contexts.

Let X and Y be two complete quasi-normed spaces of measurable func-
tions, L∞ be continuously embedded into X and L∞ be dense in X. Suppose
that if 0 ≤ f ≤ g, f, g ∈ Y then ∥f∥Y ≤ ∥g∥Y. If fn, f ∈ Y, fn ≥ 0 (n ∈ N)
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and fn ↗ f a.e. as n → ∞, then assume that ∥f − fn∥Y → 0. Note that the
spaces Lp and Lp,∞ (0 < p ≤ ∞) satisfy these properties.

Theorem 1. Assume that (1) and (2) are satisfied. If σ∗ : X → Y is
bounded, i.e.

(3) ∥σ∗f∥Y ≤ C∥f∥X (f ∈ X ∩ L∞),

then σθ
∗ is also bounded,

(4) ∥σθ
∗f∥Y ≤ C∥f∥X (f ∈ X).

Proof. By Abel rearrangement,

m∑
k=0

∆1θ

(
k

n+ 1

)
Dk(t1, x1)Dk(t2, x2) =

=
m−1∑
k=0

∆2θ

(
k

n+ 1

)
kKk(t, x) + ∆1θ

(
m

n+ 1

)
mKm(t, x).

Observe that for a fixed t and x Km(t, x) is uniformly bounded in m. By
Lagrange’s mean value theorem there exists m < ξ(m) < m+ 1, such that

m∆1θ

(
m

n+ 1

)
= − m

n+ 1
θ′
(
ξ(m)

n+ 1

)
and this converges to zero, if m→ ∞ (cf. (1)). Thus,

(5) Kθ
n(t, x) =

∞∑
k=0

k∆2θ

(
k

n+ 1

)
Kk(t, x).

In [23] we have proved that

(6) sup
n∈N

∞∑
k=0

k

∣∣∣∣∆2θ

(
k

n+ 1

)∣∣∣∣ ≤ C <∞.
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For the sake of the completeness we give the sketch of the proof of (6). If θ′′ ≥ 0
on the interval (i/(n+1), (j+2)/(n+1)), then θ is convex on this interval and

this yields that ∆2θ

(
k

n+ 1

)
≥ 0 for i ≤ k ≤ j. Hence

j∑
k=i

k

∣∣∣∣∆2θ

(
k

n+ 1

)∣∣∣∣ = j∑
k=i

k∆2θ

(
k

n+ 1

)
=

=θ

(
i

n+ 1

)
+ (i− 1)∆1θ

(
i

n+ 1

)
−

− j∆1θ

(
j + 1

n+ 1

)
− θ

(
j + 1

n+ 1

)
.

Applying again Lagrange’s mean value theorem we have

(i− 1)

∣∣∣∣∆1θ

(
i

n+ 1

)∣∣∣∣ = i− 1

n+ 1

∣∣∣∣θ′( ξ(i)

n+ 1

)∣∣∣∣ = i− 1

ξ(i)

∣∣∣∣ ξ(i)n+ 1
θ′
(
ξ(i)

n+ 1

)∣∣∣∣ ≤ C,

where i < ξ(i) < i+ 1. Here we used the fact that the function x 7→ |xθ′(x)| is
bounded, which follows from (1).

If θ′′ = 0 at an isolated point u or if θ′′ is not twice continuously
differentiable at u, u ∈ (k/(n + 1), (k + 1)/(n + 1)), then the boundedness

of k

∣∣∣∣∆2θ

(
k

n+ 1

)∣∣∣∣ can be seen in the same way. Since there are only finitely

many intervals and isolated points satisfying the above properties, we have
shown (6).

It follows from (2), (5) and (6) that

σθ
nf(x) =

1∫
0

f(t)Kθ
n(t, x) dt =

∞∑
k=0

1∫
0

k∆2θ

(
k

n+ 1

)
f(t)Kk(t, x) dt

for all f ∈ L∞. Thus σθ
∗f ≤ Cσ∗f (f ∈ L∞) and so

∥σθ
∗f∥Y ≤ C∥f∥X (f ∈ X ∩ L∞).

By a usual density argument we finish the proof of the theorem.
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3. Some summability methods

In this section we consider some summability methods as special cases of
the Marcinkiewicz-θ-summation. Of course, there are a lot of other summability
methods which could be considered as special cases. It is easy to see that (1)
is satisfied all in the next examples. The elementary computations are left to
the reader.

Example 1. Marcinkiewicz-Weierstrass summation. Let θ1(x) =

= e−|x|γ for some 0 < γ < ∞. Note that if γ = 1 then we obtain the
Marcinkiewicz-Abel means

Example 2. Marcinkiewicz-Picar and Marcinkiewicz-Bessel sum-
mations. Let θ2(x) = (1 + |x|γ)−α for some 0 < α, γ <∞ such that αγ > 1.

Example 3. For some 1 < α <∞ let

θ3(x) :=

 1 if |x| ≤ 1,

|x|−α if |x| > 1.

Example 4. For some 1 < α <∞ let

θ4(x) :=


1 if x = 0,

1− e−|x|α

|x|α
if |x| > 0.

Example 5. Marcinkiewicz-Riesz summation. Let

θ5(x) :=

 (1− |x|γ)α if |x| ≤ 1,

0 if |x| > 1

for some 1 ≤ α <∞ and 0 < γ <∞. The means are called Marcinkiewicz-Fejér
means if α = γ = 1.

Example 6. Marcinkiewicz-de La Vallée-Poussin summation. Let

θ6(x) =


1 if |x| ≤ 1/2,

−2|x|+ 2 if 1/2 < |x| ≤ 1,

0 if |x| > 1.
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Example 7. Marcinkiewicz-Jackson-de La Vallée-Poussin sum-
mation. Let

θ7(x) =


1− 3x2/2 + 3|x|3/4 if |x| ≤ 1,

(2− |x|)3/4 if 1 < |x| ≤ 2,

0 if |x| > 2.

Example 8. The summation method of cardinal B-splines. For
m ≥ 2 let

Mm(x) :=
1

(m− 1)!

l∑
k=0

(−1)k
(
m

k

)
(x− k)m−1

(x ∈ [l, l + 1), l = 0, 1, . . . ,m− 1) and

θ8(x) =
Mm(m/2 +mx/2)

Mm(m/2)
.

Note that θ8 is even and θ8(x) = 0 for |x| ≥ 1 (see also Schipp and Bokor [10]).

Example 9. This example generalizes Examples 6, 7, 8. Let 0 = α0 <
< α1 < . . . < αm and β0, . . . , βm (m ∈ N) be real numbers, β0 = 1, βm = 0.
Suppose that θ9 is even, θ9(αj) = βj (j = 0, 1, . . . ,m), θ9(x) = 0 for x ≥ αm,
θ9 is a polynomial on the interval [αj−1, αj ] (j = 1, . . . ,m).

Example 10. Marcinkiewicz-Rogosinski summation. Let

θ10(x) =

 cosπx/2 if |x| ≤ 1 + 2j,

0 if |x| > 1 + 2j
(j ∈ N).

This summation was originally defined for j = 0.

Example 11. Marcinkiewicz-Riemann summation. For α > 1 let

θ11(x) =


(
sinπx

πx

)α

if |x| ≤ j,

0 if |x| > j

(j ∈ N, j ̸= 0).
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4. Orthonormal systems

In this section we consider the trigonometric and Walsh system and the
Fourier transforms.

For the trigonometric system

T := (exp(2πın·), n ∈ Z) (ı :=
√
−1),

the inequality (2) is proved in Zhizhiashvili [24, 25] or Weisz [20].

To define the Walsh system let

r(x) :=

 1 if x ∈ [0, 12 ),

−1 if x ∈ [12 , 1)

extended to R by periodicity of period 1. The Rademacher system (rn, n ∈ N)
is defined by

rn(x) := r(2nx) (x ∈ [0, 1), n ∈ N).

The Walsh functions are given by

wn(x) :=
∞∏
k=0

rk(x)
nk (x ∈ [0, 1), n ∈ N),

where n =
∞∑
k=0

nk2
k (0 ≤ nk < 2). Let

W := (wn, n ∈ N).

Condition (2) is proved in Weisz [21]. It is known that in these examples we
can write Dn(t, x) = Dn(x− t).

4.1. Fourier transforms

The Fourier transform of a function f ∈ L1(R) is defined by

f̂(t, u) =
1

2π

∫
R

∫
R

f(x, y)e−ıtx−ıuy dx dy (t, u ∈ R).
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This definition can be extended to f ∈ Lp(R) (1 ≤ p ≤ 2) (see e.g. Butzer and

Nessel [2]). It is known that if f ∈ Lp(R) (1 ≤ p ≤ 2) and f̂ ∈ L1(R) then

f(x, y) =
1

2π

∫
R

∫
R

f̂(t, u)eıxteıyu dt du (x, y ∈ R).

This motivates the definition of the Dirichlet integral st,uf := sFt,uf (t, u > 0):

sFt,uf(x, y) :=
1

2π

t∫
−t

u∫
−u

f̂(v, w)eıxv+ıyw dv dw =

=
1

2π

∫
R

∫
R

f(v, w)Dt(x− v)Du(y − w) dv dw,

where

Dt(x) := DF
t (x) :=

1√
2π

t∫
−t

eıxu du =
2√
2π

sinxt

x

is the Dirichlet kernel. Then |DF
t (x)| ≤ C/x (t > 0, x ̸= 0).

The Marcinkiewicz-θ-means σθ
T f := σF,θ

T f (T > 0) of f ∈ Lp(R) (1 ≤ p ≤
≤ 2) are defined by

σF,θ
T f(x, y) :=

−1

T

∞∫
0

θ′
(
t

T

)
st,tf(x, y) dt =

=
1

2π

∫
R

∫
R

f(v, w)Kθ
T (x− v, y − w) dv dw,

where

Kθ
T (x, y) := KF,θ

T (x, y) :=
−1

T

∞∫
0

θ′
(
t

T

)
Dt(x)Dt(y) dt.

The definition of the θ-means can be extended to tempered distributions as
follows:

σF,θ
T f := f ∗Kθ

T (T > 0),

where ∗ denotes the convolution. One can show that σF,θ
T f is well defined for

all tempered distributions f ∈ HF
p (0 < p ≤ ∞) and for all functions f ∈ Lp
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(1 ≤ p ≤ ∞) (cf. Stein [14]). Note that the Hardy spaces HF
p are defined in

the next section.

The maximal Marcinkiewicz-θ-operator is defined by

σθ
∗f := σF,θ

∗ f := sup
T>0

|σF,θ
T f |.

If θ(x) := (1 − |x|) ∨ 0, then we get the Fejér means and operator and in this
case we leave the θ in the notation. Note that (2) is shown in Weisz [19].

Theorem 2. If (1) holds and if

∥σ∗f∥Y ≤ C∥f∥X (f ∈ X ∩ L∞),

then
∥σθ

∗f∥Y ≤ C∥f∥X (f ∈ X),

where X and Y is defined in Theorem 1.

Proof. Let (a, b) ⊂ (0,∞) be an interval such that θ′′
(
t

T

)
exists for all

t ∈ (a, b). Integrating by parts we obtain

− 1

T

b∫
a

θ′
(
t

T

)
Dt(x)Dt(y)dt =

= −
[
θ′
(
t

T

)
t

T
Kt(x, y)

]b
a

+
1

T 2

b∫
a

θ′′
(
t

T

)
tKt(x, y)dt =

= C1Kb(x, y) + C2Ka(x, y) +
1

T 2

b∫
a

θ′′
(
t

T

)
tKt(x, y)dt,

which implies

σθ
∗f ≤ Cσ∗f + σ∗f

1

T 2

∞∫
0

t

∣∣∣∣θ′′( t

T

)∣∣∣∣ dt,
because θ′′ exists except of finitely many points. Since

1

T 2

b∫
a

tθ′′
(
t

T

)
dt =

[
t

T
θ′
(
t

T

)]b
a

− 1

T

b∫
a

θ′
(
t

T

)
dt,
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which is bounded by (1), we conclude

1

T 2

∞∫
0

t

∣∣∣∣θ′′( t

T

)∣∣∣∣ dt ≤ C.

This finishes the proof of the theorem.

5. Hardy spaces

First we define the Poisson kernels PG
t for all function systems G ∈

∈ {T ,W,F}. Set

P T
t (x, y) :=

∞∑
j1=−∞

∞∑
j2=−∞

e−t(|j1|+|j2|)e2πı(j1x+j2y) (x, y ∈ R, t > 0),

PF
t (x, y) :=

ct

(t2 + x2 + y2)3/2
(x, y ∈ R, t > 0),

PW
t (x, y) := 22n1[0,2−n)×[0,2−n)(x, y) if n ≤ t < n+ 1 (x, y ∈ R).

For a tempered distribution f the non-tangential maximal function is
defined by

fG∗ (x, y) := sup
t>0

|(f ∗ PG
t )(x, y)| (x, y ∈ R),

where G ∈ {T ,W,F}.
The Hardy space HG

p (R2) (0 < p < ∞) consists of all tempered distribu-
tions f for which

∥f∥HG
p (R2) := ∥fG∗ ∥p <∞.

Now let HF
p := HF

p (R2) and

HG
p := HG

p ([0, 1)
2) := {f ∈ HG

p (R2) : supp f ⊂ [0, 1)2},

where G ∈ {T ,W}. Define HG
∞ := L∞.

Note that HW
p is the dyadic Hardy space. It is known (see Stein [14],

Weisz [22]) that the space Hp is equivalent to Lp if 1 < p ≤ ∞.
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Theorem 3. If G ∈ {T ,W,F} and (1) is satisfied then

∥σG,θ
∗ f∥p ≤ Cp∥f∥HG

p
(f ∈ HG

p )

for all p0 < p ≤ ∞, where p0 = 8/9 for the trigonometric Fourier series and for
the Fourier transforms and p0 = 2/3 for the Walsh-Fourier series. Moreover,

sup
ρ>0

ρλ(σG,θ
∗ f > ρ) ≤ C∥f∥1 (f ∈ L1).

This theorem for the Marcinkiewicz-Fejér operators was proved by the
author [19, 20, 21]. Theorem 3 follows from these results and from Theorems
1 and 2. It is unknown whether the constant p0 is sharp in the inequalities.

A usual density argument of Marcinkiewicz and Zygmund [6] implies

Corollary 1. If (1) is satisfied and if f ∈ L1 then

σG,θ
n f → f a.e. as n→ ∞,

where G ∈ {T ,W}. Moreover

σF,θ
T f → f a.e. as T → ∞.

This Corollary for the trigonometric Fourier series is due to Zhizhiashvili
[24, 25].

Similar results can also be proved for the conjugate θ-means and for the
Hardy-Lorentz spaces (cf. Weisz [22]).
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séries doubles de Fourier, Ann. Scuola Norm. Sup. Pisa, 8 (1939), 149-
160.
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