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Abstract. There are many implementation problems in context of
synchronization of parallel systems. We are going to discuss two temporal
logic based approaches of the specification and implementation of synchro-
nization. The first method will have PTPTL based specification that will
be implemented directly. The second method has an MPCTL* temporal
logic specification which an abstract code (an automata) will be synthesized
from, and the automata will be implemented.

1. Introduction

The design and construction of the co-operation and synchronization of
concurrent objects is a difficult task. There are several techniques for specifying
synchronization properties of concurrent processes [8}, [16], [20], [22], etc. The
approaches taken generally fall into one of two categories:

e the first group are procedural mechanisms which combine synchronization
primitives with sequential flow control constructs and data structures;

o the second group are declarative mechanisms where the programmer
simply specifies the sychronization policy desired.

We are going to consider implementation problems of synchronization.
Two different approaches will be discussed. Both of the methods are based
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on temporal logic tools, and the implementation can be generated from the
temporal logic specification.

One of the well known implementation problemns is inheritance anomalies
which may arise while re-using the synchronization code. The first approach
tries to handle the inheritance anomalies by a scheme based on Past-Time
Propositional Temporal Logic (PTPTL). and it gives an implementation for
the synchronization scheme introduced in [6].

Another well known implementation problern arises in most cases of
program synthesis, when the number of the components of the system is
growing. This issue is called state explosion problem. The second approach
handles the state explosion problem, and gives a concrete Java iinplementation
of the synchronization. This approach is a program synthesis based on a
Branching Time Temporal Logic. the Many Processes Computational Tree
Logic (MPCTL*).

2. Implementation based on PTPTL

In the case of the application of different sy¥nchronization schemes, during
the reuse of the code different difficulties may arise, which are called inheritance
anomalies in the literature. Generally. we talk about inheritance anomaly if
some kind of difficulty arises from the re-using of the synchronization code.
We can find several solutions for getting rid of the inheritance anomalies
in [18]. The solutions are based on the fact that the occurrence of the
inheritance anomalies depends on the applied synchronization schemes. Using
only one synchronization scheme, anomalies can occur easily, while changing
the scheines, they can be avoided. The localization of the synchronization code
and scheme to the given object gives an opportunity for this. Thus we can
apply a completely different synchronization scheme in the sub-class than in
the parent class. The distribution of the syuchronization code between the
objects can be done similarly to the inheritance of the methods. The above
purpose can be reached for example with the use of svnchronizers and transition
specifications as synchronization schemes.

2.1. The object model

In our paper, we shall refer to the reflective model of objects of the
kind described below. In the reflective model, [23 everv object consists of
the (recursive) composition of four objects: Meta Object, Container Object,
Processor Object, Mailbox Object:
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o the Meta Object manages the three other objects,

e the Container Object stores the acquaintances of the object,

o the Processor Object can change the state of the object upon receiving an
enabled message from another object,

o the Mailbox Object stores asynchronously received messages (requests for
method-executions) from other objects and synchronizes the object: uses
a policy for choosing the next enabled message.
When the object executes a request, the Processor Object will be blocked,

and no other request can be enabled until the execution has been done.

2.2. Assigning temporal logical atomic formulas to actions

In our model, like in [4], a truth-value for each atomic formula will be
given to every method request and method execution. For a method m1, m1
nieans both the name of the method and an atomic formula having a truth-
vajue that corresponds to the execution state of the method in each time-point.
In addition. we introduce an atomic formula req_m1, which describes whether
there has been a request for the method m7 or not. An atomic formula req_mI
is true while there is a request for method m1 in the Mailbox. A temporal
formula of a method expressing that it can be executed if there is no request
for the method m.# and the previously executed one was the method m4, is the
following

—req-m3 A emd.

Since we want to use temporal expressions for synchronization, we have to
deiine the time-points of the Kripke-structure of the object. Since ounly past-
time temporal operators are used, it is enough to build up a Kripke-structure
up to the present. Taking this into account, the next time-point to the Kripke-
structure of an object is given when a request for executing a method is satisfied.
The period between two executions can be viewed as a container period, during
which the atomic formulas assigned to messages are given a value representing
the next time-point.

2.3. Choosing requests from the Mailbox

In our model, the Meta Object of an object tries to send a request to
the Mailbox to get the next accepted request for a method after every request-
execution or arrival of a new message. [f successful, it has the Processor Object
to execute the request.
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2.4. A synchronization-scheme

Further in this section, a synchronization scheme will be used which is
presented in [6]. The abstraction level of the scheme is rather high, because it
uses temporal logical formulas for synchronization. The scheme is an extension
of the well-known guarded methods, where the constraints of a method are
collected in a set so that they can be expanded when inherited. Using the
scheme, the state modification and the state partitioning anomalies [19] can be
resolved and the history-only sensitiveness anomalies can be radically reduced.

2.5. Past-Time Propositional Temporal Logic (PTPTL)

In the model, PTPTL formulas are used to give constraints for the method-
executions. Past-time operators of PTPTL are similar to those used by [4],
extended with operators atprec, punless. pwhile and after. For a Kripke-
structure K [15] and a time-point . the semantics of the operators can he
defined in the following way:

Ki(a atprev b) =t iff the greatest j < 1 where K;(b) = t. K;(a) = t.
K;(a punless b) = t iff K;(b) — ¢ for some j < i and Ky(a) = {
Vi j<k<iorKjta)=tvk:0<k<u.
K(a pwhile b) = ¢t iff K;(b) = f for some j <iand Ki(a) = Ki(b) =t
Ve j<k<i
Ki(a after b) = t iff VI(;(b) = ¢ (f < 4) there is j < k <7 that Ki(a) = (.

2.6. Recursive expressibility of temporal operators
PTPTL operators are expressed by the equivalencies:

He=aA Pl,
da=caV @ba.
aatprevb= Mb—a)A{ dbv M «atprev b)),
apunlessb= »bV( ba A Da punless b)),
a pwhileb== »bV({ pa A d(a pwhile b)),
aafter b= - PbA( da V (¢ after b)).
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2.7. Synchronization sets

In the model developed, the key structure is a set consisting of the elements
(called synchronization element),

[method_name, tf_set],
where method_name denotes a method of the object and tf.set is a set of PTPTL
formulas. Every object has exactly one synchronization set, by which the
methods of the object can be synchronized.
Definition 1. A set tfset of PTPTL formulas is called true at a time-
point of a Kripke-structure, if cach formula in the set is true.
Taking an object O with a svuchronization set S, a request req_method!
in the Mailbox may be satisfied:
e if there is an element in S the method of which is method1 and its formula
set is true,
i fthere is no element in S the method of which is method1.

2.8. Operations with synchronization sets

In the case of inheritance, the syuchronization set of the descendant objects
can be established by using the following operators on synchronization sets:
Let Sy and S5 be two synchronization sets and A S is a set of method
names and tf_set is a set of PTPTL formulas, then
a) S + S> means the union of sets S; and S,
b) S1+4[M S, tfset] denotes the union of the formula sets of the elements

of 8. that first elements are members of MS. If M S contains all of the
methods of S}, then this mayv be denoted in short. by S;*-+ +¢f_set.

For ecxample, let

Sy = {[methodl, {forrnl. form2}}, [method2, {form3}}},
S + +[{method1}, {form4}] =
={|method1, {fcrm1, form2. form4}]. |method2. {form3}}.

Applving the operator +, the descendant object can revise the synchro-
nization set of the ancestor object by adding constraints to the methods that
are independent of those used in the ancestor object. With the operator ++,
more constraints can be added to the constraints of the ancestor.
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Remark 1. Combining operators + and ++. we can absolutely revise
the constraints inherited from the ancestor. if we use the operator +-+ with set
{False} and establish the new constraints using operator +.

2.9. The History-Only Sensitiveness Anomaly can be eliminated

We would like to create a new class Democ and its descendant DesDemoc
with the same methods and with the same svnchronization, but in addition mj
is enabled if and only if m, and m; were last requested at the same time. The
example can be seen in Figure 1.

Class Democ: ACTOR {
public:

void Democ() {...}
void my{) {...}
void ma() {...}
void m3(} {...}
synchset:

DemocS = {...}

}

Class DesDemoc: Democ {
public:
void DesDemoc() {...}
void ma() {...}
synchset:
DesDemocS =
DemocS++[{ms},
{# reqml A ((req_ml A reg-m?2;} atprev (req-ml V req-m2)}}

Figure 1. Class Democ with some methods and class DesDemoc
2.10. The immplementation framework

In crder to distinguish the synchronization code from the implementation
code, two new synchronization methods are introduced that work “under the
hood”: the first method (called synch_init) to initialize the synchronization
variables, the second (called synch_change) to change the synchronization
variables to the next value (using the rules described below) after the method
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has been executed. In the svnchronization part only these two methods are
permitted to change the values of the synchronization variables. The evaluation
of the formulas is done using the synchronization variables. Synchronization
methods are assigned to each PTPTL formula contained in the synchronization
set of the object, to give the proper value of the formula. The Meta Object can
accept requests by evaluating the formula sets of the requested method. (See
Figure 2.)

To establish how many synchronization variables we need and how the
variables correlate with each other. a graph (called temporal graph) will be
created. The methods and variables referring to the state of the object are in
the Processor Object togetlier with the synchronization and evaluation methods
and extra variables to evaluate temporal formulas.
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/ﬁﬂch. setoftheobject: \
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Figure 2. The implementation framework
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2.11. Classification of PTPTL operators

The PTPTL operators can be separated into three groups are the following:

recursively expressible operators: B, ¢, atprev, punless, pwhile, after,
operators using only the previous time-point: @, b,

w o

non-temporal operators: =, A, V. —, +=.

Using the previously given identities, graph primitives can be created to
build up the temporal graph of a formula. In the graph, different levels can
be distinguished that refer to different time-points. Each node represcnts a
PTPTL formula.

2.12. Graph primitives for building up temporal graphs

In the temporal graph, edges and nodes are used to decompose formulas
into sub-formulas in the previous- and preserit time-points. There are two kinds
of edges in the graph primitives defined below:

1. previous time-point edge is a directed edge poititing to a node labelled by
a sub-formula representing the previous time-point,

2. component edge is denoted by a dotted line pointing to a node labelled by
a sub-formula evaluated in the same time-point as the ancestor.

The nodes can be rounded boxes for “weak”. boxes for “strong” and dashed
boxes for “undefined” nodes. The “weak” nodes are used in formulas derived
from the sub-formulas bounded by the weak previous temporal operator at
the ancestor node. The “strong” nodes are used in formulas derived from the
sub-formulas bounded by the previous temporal operator at the ancestor node.
The “undefined” may be categorised at the creation of the temporal graph
with respect to the node it is derived from. These distinctions of nodes are
important in giving initial values to temporal variables.

Concerning the recursive expressibility of temporal operator equivalencies.
graph primitives can be defined for each type of temporal operators as it can
be seen in Figure 3.

The graph primitives for non-temporal operators can be seen in the Figure
4.

These graph primitives are used to calculate the value of the formula of
the given type. For example graph d. means that the formula a pwhile b can be
evaluated if the previous values of the formulas b, « and @ pwhile b are given,
that is stored in three variables. If the previous value of b, « and a pwhile b are
stored in variables v1, v2 and v3 respectively, then ¢ pwhile b == =v1v (v2 Av3)
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F=Mlo: F=¢a: F=a ofprevb
pr B R
.0@ o b G [ atprevo |
fevallF):=v1 atevalia) fe_v_éf(%}.lvmé\}&f(;j feVal(F): =v] A(v2W3)
v1:=tevallF) vl:=tevai(F) v3:=teval(F)
a. b. c.
F=a pwhile b; F=a punless b:
IR QD
abuiet] (apuies b
teval(F): =—v1v(v2av3) teval(F): =v1v(v2av3)
v3:=teval(F) v3: =teval(F)
d. e
F=a after b:
1(-b) v2 v3( * F=@a: F=ba:
2 gﬂ a
(aafterb] L L
teval(F): =v] Alv2wv3) |99 a]
v3:=teval(F) teval(F):=vl  teval(F)=v1
f. g h.

Figure 3. The graph primitives

and v3 is set to the value of « pwhile b, storing the value of this formula for
the evaluation at the next time-point. An evaluating function (called teval) is
defined for each graph primitive to get the correct values of the formulas. After
evaluation, the proper variables are also set. In addition to the rules described
ahove, one more rule has to be defined for function teval:
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___F=awb ___F=anb F=—q:
viial  v2ib! viial  v2ib viial
RO A v o A
favb| {anb | T al

teval(F): =teval(a)Vteval(o) tevql(F):=fevcl[o]/\fevo|(b] teval(F):=—tevai(q)

i. - k.

Figure 4. The graph primitives for non-temporal operators

If F'is a PTPTL formula then, tevali F') = F iff F is a formula containing
no temporal operator.

2.13. Creating the temporal graph

Let F be the formula that the temporal graph will be created for.

Definition 2. FEazpansion for a node meens thal a rule from a.-k. s
chosen with respect to the type of the PTPTL formula of the node and the node
is replaced by the primitive graph of the rule. The type of the “undefined” new
node is inherited from the node ezpanded. During the expansion, the ecaluation
rules are also prescribed.

The algorithm will build the temporal graph with these steps:

1. let F be the root node of the graph.

2. expand iteratively all the leave-nodes without a star until no leave-node
contains temporal operators.
Definition 3. In the temporal graph of F'. @ node is said to be in the past

if it can be reached from formula F {ouching at least one previous tirne-point
edge.

2.14. Using temporal graphs

In the temporal graph, new variabies are assigned to each node in the
past that store values of the formulas of the nodes. FEach node represents
a sub-formula of formula F derived by the rules above. Each leave-node
either represents sub-formulas of F containing only previous or weak previous
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temporal operators or is a * node (see Figure 5). We can see at an expansion
that three new variables are introduced for the node representing a binary and
one new variable for unary PTPTL formula. At the worst, when every temporal
operator in the expression is binary, the number of new variables is three times
larger than the number of temporal expressions.

v2 vaN

Figure 5. Looking at the root node as a starting point, the variables v5, v8
store the values of the temporal sub-formulas of the root only weak or strong
previous operators

2.15. Initialization

When an object is created. the synch_init method is called to set the
required variables. The initial value of a variable is true, if its node is “weak”,
and false, if its node is “strong”, and undefined if its node is “undefined”.

2.16. Changing the values of variables after a method has been
executed in the object

In the above case the synch_change method is called. The new value of
a variable can be specified by the rules created by the temporal graph. If a
variable is assigned to a node, the value of the formula of the node is passed to
the variable. The order of changing the values of the variables is specified by
the order of the creation of the nodes of the temporal graph.
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2.17. Evaluating the temporal formula

A PTPTL formula can be easily evaluated at the present without changing
the synchronization variables. In our model, a temporal formula can change its
present value, because requests for methods can change the values of atomic
formulas belonging to them (see Figure 6). But this change is not confusing.
since most of the temporal operators are affected by the past time-points and
the values of atomic formulas at the past time-points are unambiguous. We can
view it as a trving period of a time-point, where we can test how the formulas
are changed by atomic formulas. When one of our requests is satisfied. we view
it as a new time-point to which the values set during the period belong.

req_ml
/ Test of fomruias
\ : /
I \\ \ Tmng perbd
Kripke-structure of an object feq_m2 New time-point created

B
LT
LI T T Y
req_mi
teq_m2

Figure 6. Assigning atomic formulas to a new time point
2.18. Creating a temporal graph for a formula - an example

Consider the formula and let us build its temporal graph, as it can be seen
in Figure 7.

Creating the object containing this forinula in its synchronization the new
variables must be initialized the following way: let variables v1, v2, v3, v4,
v5, v6, v7 be true and variable v8 e false. After executing a method in the
object. the groups (1), (2). (3) (see Figure 7) are executed in the given order,
for refreshing variables. Refreshing the temporal variables we can evaluate the

formula.

Definition 4. The depth of a temporal graph is the mazimum number of
temporal edges contained in a path from the root.
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vl * v2:ibvc| V3 .Opwhﬂe%)
Forr7\3

. I(@a pwhile b] unless (bvc)) .—H (@a pwhile b) un/ess (bvc] H

—— T~

Form1 Form2
teval(Form1):=v1 ateval(Form?2) tevallForm2): =v2v(v3av4)

v1:=teval(Form1) v4:=teval[Form2)

teval(Form1): =v1a(v2v(v3av4))
| ve:=fevallp)=b (3)

| v5:=tevallb)=b
. vé:=tevalForm4)=v8 (2)

Tevol(bvc] .t)vc
v3: —Yech(FormS)——.v5v(v6/\w) m
P vdi=v3 ;

Figure 7. The temporal graph of formula B {(e« pwhile b) unless (b V c))
prescribing the synchronization variables and evaluating the tevel function

2.19. The correctness of the algorithm

All we have to prove is that the teval function gets a correct prescription
for each node, and all the variables store the correct values referring to the
formulas they belong to. The proof can be carried out by structural induction
by the depth of the temporal graph.
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3. Implementation based on MPCTL* specification

Synchronization code and real computation code can be separated in the
case of most parallel programs. If so, the synchronization part of the program
can be specified separately and the synchronization code can be generated from
the specification. Other synchronization techniques an be seen for instance in
[25] and [30].

The synthesized system of K similar objects is 8 mechanically constructed
correct solution of a precise problem specification given by MPCTL* (Many-
Process CTL*) formulas. K is an arbitrary large natural number and an
MPCTL* formula consists of a spatial modality followed by a CTL* state
formula over uniformly indexed family of atomic propositions.

The method used in this paper applies the technique suggested by P.C.
Attie and E.A. Emerson in [34}. and it inherits an important advantage of
their method, namely how to deal with an arbitrary number of similar objects
without incurring the exponential overhead due to the state explosion problem.

To use the method developed by P.C. Attie end E.A. Emerson in [34], we
had to solve the problem of handling the shared variables of the similar objects.
The details can be found in [36].

3.1. The task

We show the method through an examnple of a simulation program of a
surgery.

Given a surgery, which is accepting patients. Patients can be infectious
or non infectious. The doctor suggests that the patients, who think they are
infectious, should not stay in the waiting-room if there is some other person
in the room, and if there is an infectious patient in the waiting-room then
the other patients should stay outside in the bright spring sunshine until the
infectious patient in the waiting-room leaves. For the sake of simplicity we do
not consider that patients can stay in the surgery, too. we only consider the
synchronization of the the patients in the waiting-room.

3.2. The solution

According to the method described in [36]. a new class (SharedObject)
should be introduced for the synchronization, which class takes part in the
synchronization of two objects. Moreover, all classes implement an interface
(SynthesisObject). which defines the methods needed for the synchronization.
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According to the above, the class diagram of the system can be designed like
in [36].

There will be particular number {defined by the method) of SyntesisObject
type objects in the class SharedObject. The exact description of SharedObject
can be found in [36]. The overriding of get and set methods is necessary,
because the states of the infectious patients should be distinguished from the
states of non infectious patients.

®jel(i)(7} — X =] ®
i v Sjv C; — skip)

N;
®jeiiy(N; v (T A x; = i) — skip)
®je i (true — skip)
®c yiy(true — skip)
®c1iy(N;v (T A x;j= i) v S;— skip)
je sif(Tj = x;j:=] @
v §jv Cj — skip),
N;

Figure 8. Final synchronization skeleton of Infectious (above) and Sick (below)

3.2.1. The temporal logic specification

Tt is clear from the description of the example, that every patient (which
is represented by object F;) can be in one of the following states: N; (normal),
T; (trying) and S; (surgery). However, the .S state of the infectious patients
should be distinguished from the S state of the non infectious patients (so let
it be C). because the presence of an infectious patient precludes the possibility
of the presence of any other patient.

Using the set of states means that the states of entity P; (a sick or an
infectious) are in set {N, T, S, C} {the appropriate atomic propositions are N;,
1;.5; and C;).
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An interconnection relation I is introduced rto store the process pairs
needed to be synchronized. I(i,j) iff processes ¢ and j are interconnected
(see [34]).

The temporal logic formulas, which define the restrictions that the system
should satisfy. The formulas can be given like for example in [36] (information
about temporal logic can be found in |26], [27], [29]. [33], [34] and [35]).

3.2.2. Synthesis of the synchronization skeleton

The synthesis of the synchronization code is processed by an object-
oriented extension ([36]) of P.C. Attie’s and E.A. Emerson’s method ([34]),
after building the synchronization skeleton of a pair-system by E.A. Emerson’s
and E.M. Clarke’s method ([33]). so the abstract syuchronization code of the
full system is generated. Object-oriented technigues can be found in [31] and
[33].

The synchronization skeleton generated by the method related to systeins
consisting of objects is shown in Figure ¥ {see [36]). Notation X; means that
object 7 is in state X, namely ((SynthesisObject)objs.get(i)).getState() ==
X.

3.2.3. Implementation

Let us consider the problem of writing and reading 1. The methods used
for reading and writing I can be given, too; these methods are practically static
methods of class SharedObject.

Of course, the case is not enabled when [ is being changed by an object and
1 is being read by an other object at the same time. This means that an object
can not evaluate transition conditions while an other object is changing 1.
Furthermore, writing I has to have priority against reading I. To implement
these restrictions let us introduce a counter named readCount to count the
objects reading I, and a counter named write Counl to count the objects writing
or going to write I as well as counter readWait to count the objects which
are waiting for I to read. Moreover, let us introduce two semaphores named
readSem and writeSem. Let us consider the possible cases:

e If an object wants to read I and write Count is zero then readCount should
be incremented by one and the object is allowed to read f.

o If an object has finished reading I then readCount should be decremented
by one and if readCount is zero but writeCount is positive then the first
object sleeping on writeSem should be awaken.

e If an object is going to read I but writeCount is positive then read Wazt
should be incremented by one and the object is put to sleep on semaphore
readSem.
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e If an object is going to write I and readCount is zero and write Count is zero
then writeCount should be incremented by one and the object is allowed
to write /.

o [f an object has finished writing / then write Count should be decremented
by one and the following cases are possible:

- 1f writeCount is positive then the first object that is sleeping on
semaphore writeSem should be awaken.

- If writeCount is zero but read Wait is positive then the first object is
sleeping on semaphore readSem should be awaken.

e If an object is going to write I but readCount is positive or write Count is
positive then writeCount should be incremented by one and the object is
put to sleep on semaphore writeSem.

The changes of the counters and condition evaluations must work in mutual
exclusive mode so these operations must be protected by a semaphore named
mutex. Before every mentioned operation mutex should be let down and mutez
should be lifted up before an object is put to sleep. According to this, we must
not lifted up mutex when an object wakes up another object hut we must lift
up the semaphore if no another object will be awaken. Furthermore, read Wai
should be decremented by one before a reader object is awaken.

Let us deal with the evaluation of conditions, namely method setState
in the following. To produce method setState, the abstract program of the
synchronization, which is a finite deterministic automata, is given by the
algorithm. Then we make the condition checker part on the basis of the
conditions in the automata and if a given condition is fulfilled then we execute
the action part associated with the condition. The automata may be given by
a list of the transitions. Only one transition can be generated by the synthesis
between two states, o a transition may be built from the following elements:
start state, end state, condition (in Polish form expression in order to simplify
the evaluation). the list of the operations on the shared variables.

We have to solve the problem of synchronization of the condition evaluation
and the execution of the actions belouging to the conditions. Method setState
uses the values of the shared variables and may change the variables, too, in case
the transition is enabled. That is why the shared variables shouid be changed
by at most one object simultancously. Let us notice that this restriction is not
enough, because if an object A has evaluated the condition of a transition and
finds out that the transition is enabled then object B changes the values of the
shared variables before A would do the transition and so the system may be in
inconsistent state. That is why we have to assure that an object can not start
evaluating a condition while another object is trying to process a transition
fnamely, the object has started the evaluation and has not done the action).



96 B. Ugron, L. Kozma, Sz. Hajdara and L. Blum

Some level of exclusion has to he provided in order to evaluate the
conditions, namely, no two objects can be in their condition evaluating phase
at the same time.

To solve this issue, let us introduce a token for every connection of every
object. Then if an object is going to change its state - so it is going to evaluate
a condition — it must ask the tokens of all the objects connected to it. Hence,
every element in I has a token attribute and a captur<Token and a release Token
method. The token is a reference to a SynthesisObject type object, and its value
shows which object owns the token. Value null indicates that the token is not
owned by any object. The return value of captureToken may be true or false.
Value true indicates that the token is successfully got, and false indicates that
the token is reserved. Method capture Token works in mutual exclusive mode.

Possibility of deadlock arises in progress of obtaining tokens. Deadlock
can be avoided if an object drops all tokens that it owns if it tried to get
a token from an object that is already waiting for a token, and the object
restarts obtaining token some time later after dropping. It is clear that this
implementation may lead to livelock: let. us suppose that objects «. b and ¢ are
going to obtain tokens from each other. Let a get the token from b, b from c
and c from a. Then let a ask the token from ¢. It is not possible, so a drops all
the tokens it owns. Then let ¢ try to get the token from b. It fails, so ¢ drops
its tokens, too. Then only b has any token. Then let a get token from b, and ¢
from a. then start this process again with a simple modification so that ¢ will
be the only object that owns any tokens. And so on.

We mention a method to avoid the possibility of livelock. The method is
the introduction of a binary semaphore that is let down by every object for the
time while it is trying to obtain tokens If an object can not get a token then
it releases all tokens it got and lifts up the semaphore. The implementation
of this semaphore practically should be placed in SynthesisObject. because the
obtaining of tokens is associated with /. In this case only one object is able to
obtain tokens at the same time, so livelock can not take place.

According to the above, taking the abstract code produced by the synthesis
into consideration, the algorithm will generate the following concrete code for
the class Sick (for lack of space only the method SeiState is considered here;
the complete source code can be downloaded from

http://sleet.web.elte.hu/files/surgery.zip):

public class Sick implements SynthesisObject {

public void setState(int value) throws Exception {
boolean succeed = false;
SynthesisObjectPair sop;
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SynthesisObject so;
if ( 1 (((state == N) && (value == T)) ||
((state == T) && (value == S)) ||
((state == S) && (value == N))) )
throw new Exception("Invalid state transition");
while ( !succeed ) {
succeed = true;
while ( !'captureToken() )
Thread.sleep(1);
try
if ( (state == N) && (value == T) ) {
for ( int i = 0; i < SharedObject.getICount(); i++ ) {
sop = SharedObject.getI(i);
if ( sop.belongToObject(this) ) {
so = sop.getOtherObject(this);
if ( !(so.getState() == T) &&
! ((so.getState() == N) ||
(so.get3tate() == 3) ||
(so.getState() == C)) )
succeed = false;
}
}

if ( succeed )
for ( int i = 0; i <SharedObject.getICount();

i++ ) {

sop = SharedObject.getI(i);

if ( sop.belongToObject(this) ) {
so = sop.getOtherObject(this);
if ( so.getState() == T )

sop.getSharedObject () .setV_1(s0);

}

if ( (state == T) && (value == 8) ) {
for ( int i = 0; i < SharedObject.getICount(); i++ ) {
sop = SharedObject.getI(i);
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if ( sop.belongToObject(this) ) «
so = sop.getOtherObject(this);
if ( '((so.getState() == N) ||
((so.getState() == T) &
(sop.getSharedObject () .getV_1() == this)) ||
(so.getState() == 3)) )

succeed = false;

}
}
}

if ( (state == S) && (value == N) ) ; // nop

}

finally {
releaseToken();

}

if ( !succeed )
Thread.sleep(10);

}

state = value;

4. Conclusion and future work

We gave two methods that can be used to specifv and implement the
synchronization of a system. In both of the cases the synchronization was dis-
tinguished from the real computational code. In every case the synchronization
code can be generated.

In the case of the first method, using PTPTL to specify synchronization.
an algorithm is given to evaluate the synchronization formulas. With the
algorithm the most inheritance anomalies can he solved.

In the future we should be able to decide whether a synclironization
definition contains a contradiction. The svnchronization set can be expressed
by one large PTPTL formula. Extending PTPTL with future-time temporal
operators |4], [14], we can label a formuila expressing that for every time-point
there will be a combination of messages satis{ving the synchronization criteria.
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We can find arbitrary Kripke-structures satisfying the synchronization criteria
by using the tableau method for full propositional temporal logic [14].

In the second case, using MPCTL* to svnchronize many similar objects, a
method was given, which the full svnchronization code can be produced with.

It is clear from the foregoing, that the described method can be applied
only for a subset of the object oriented systems, for generating the synchro-
nization code, so in thesa cases it is unnecessary to code the synchronization
by hand.

The state explosion problem is successfully avoided, although, the gener-
ated code becomes more difficult and less effective with the increasing number
of classes.

Considering that the synchronization skeleton of individual objects may
contain states which can never be taken, the deadlock checker algorithm (the
algorithn is detailed in |35]) may result that deadlock is possible, nevertheless
deadlock freedom would be set out in the original system. Consequently,
deadlock checking possibilities and extra work needed to manage the above
issue should be considered.

The implementation of classes SharedObjecl, Semaphore and SynthesisOb-
jeclPair can be applied directly in any system synthesized by the method
described above. The implementation of the descendants of SynthesisObject
should he generated., the implementation of the generator program is in
progress.

[t may be possible to extend PTPTL with spatial operators, so we can
generate the sychronization code of a system specified in PTPTL, with the
second method. It seems. it would be a powerful tool.
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