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ON A PROBLEM OF KÁTAI AND SUBBARAO

E. Wirsing (Ulm, Germany)

Dedicated to Professor I. Kátai on his 65. birthday

Abstract. Two conjectures of Kátai and Subbarao concerning unimodular

completely multiplicative functions f for which the sequence f(n+1)/f(n)
has finitely many limit points are related and partly proved in the more

general setting of (restrictedly) multiplicative functions mapping into a

locally compact Abelian group. En passant a theorem on integer valued

additive functions with bounded differences is given.

1. Introduction

For arithmetic functions f let the quotient operator Q be defined by

Qf(n) := f(n+ 1)

f(n)
.

Let us further use the following notations:

M(G), CM(G) : the sets of multiplicative/completely multiplicative

functions F : N → G, where G is any multiplicative

Abelian group,

µk : the group of k− th roots of unity in C,

T : the group {z ∈ C : |z| = 1},
f(N)′ : the set of limit points of the sequence

(
f(n)

)
n∈N,

⟨S⟩ : the group generated by a set S.
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In [7], see also [8], it was proved that a function f ∈ M(T) with the
property

Qf(n) → 1

is necessarily of the form f(n) = niτ with some τ ∈ R.

It is well-known that the functions χτ (n) = niτ are the characters of R∗
+,

i.e. the continuous homomorphisms of R∗
+ into T. The role that these functions

play in our context is made clearer by a generalization of the above result that
was given first by Daróczy and Kátai [1] for certain locally compact Abelian
groups and then by Mauclaire [4] for all of them. They show:

Theorem DKM. If G is a locally compact Abelian group, if f ∈M(G) and
Qf(n) → 1 as n→ ∞, then f can be extended to a continuous homomorphism
χ : R∗

+ → G.
Kátai and Subbarao in their paper [2] consider more generally functions f

for which the set Qf(N)′ of limit points of Qf(n) is finite, being more resrictive
on the other hand by asking the functions to be completely multiplicative. They
formulate three conjectures, of which we are concerned with numbers 1 and 3
here.

Conjecture KS1. If f ∈ CM(T) and Qf(N)′ is finite with exactly k
elements, then f(n) = niτF (n) where τ ∈ R and F k(n) = 1 for all n.

One might add, because it easily follows, that Qf(N)′ = F (N) = µk: The
finite homomorphic image F (N) is a group, so it is µℓ with some ℓ | k, therefore
Qf(N)′ = QF (N)′ ⊂ µℓ so that k ≤ ℓ. It follows k = ℓ.

In [2] the authors prove this conjecture for k ≤ 3 and in a further paper
[3] partly for k = 4.

Conjecture KS3. If F ∈ CM(µk) and k is minimal then QF (N)′ = µk,
in other words: Qf(n) attains every ζ ∈ µk infinitely often.

This is actually the special case of Conjecture KS1, where the range of f
is finite: Let an f ∈ CM(T) be given that has finite image, f(N) = µk, say,
and assume that Qf(N)′ has ℓ elements. Then Conjecture KS1 would give
f(n) = niτF (n) with F (N) = µℓ. Obviously τ = 0, thus f = F , ℓ = k, and
Qf(N)′ = µk.

2. Results

We shall present two results which are related to these conjectures plus
one that is auxiliary here but looks interesting apart from that.
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Theorem 1. If F ∈ M(G) where G is any Abelian group, and the set
QF (N) is finite, then F (N) too is finite.

The theorem obviously implies that if F is completely multiplicative then
F (N) is a finite subgroup of G.

Theorem 2. Let f : N → G be multiplicative with values in a locally
compact Abelian group G. Assume that the sequence

(
Qf(n)

)
has only finitely

many limit points and that the set Qf(N) is relatively compact. Then f = χF ,
where χ is the restriction to N of a continuous homomorphism from R∗

+ to G,
the function F is multiplicative and has a finite image F (N) ⊂ ⟨Qf(N)′⟩.

Moreover, if f is completely multiplicative then F too is completely multi-
plicative and F (N) = ⟨Qf(N)′⟩ is a finite subgroup of G.

Note that the second part is an easy consequence of the body of the
theorem: If f ∈ CM(G) then so is F = χ−1f , and F (N) is a group.
Qχ(n) = χ(1 + 1/n) → χ(1) = 1, hence Qf(N)′ = QF (N)′ ⊂ QF (N) ⊂ F (N),
thus ⟨Qf(N)′⟩ ⊂ F (N).

In contrast to the completely multiplicative case, the group generated by
Qf(N)′ need not be finite, not even for G = T, if f is only multiplicative: Just
look at the function defined by f(n) = 1 for odd and f(n) = ω for even n,
where ω is any non-torsion element of T.

As far as G = T is concerned Theorem 2 is a weakened form of Conjecture
KS1, which for f ∈ CM(G) claims just this with F (N) = Qf(N)′.

One might well generalize Conjecture KS3 and formulate

Conj (G) If F : N → G is a surjective homomorphism then QF (N)′ = G.
With this notation Conjecture KS3 amounts to Conj(µk) for all k, and

if we assume Conj(G) for all finite Abelian groups we could in the completely
multiplicative case of Theorem 2 replace ⟨Qf(N)′⟩ with Qf(N)′: Simply apply

Conj
(
F (N)

)
and remember Qf(N)′ = QF (N)′.

In particular we mention

Theorem 3. Conjecture KS3 implies Conjecture KS1.

So the two are really equivalent.

The proof of Theorem 2 proceeds in two steps of which the first is
formulated in the lemma below. For this lemma ideas are used that are present
already in the proofs of the theorems from [7,8].

The second step in the proof of Theorem 2 consists in Theorem 1 and this
in turn depends on



72 E. Wirsing

Theorem 4. Let g : N → Z be additive and assume that

∆g(n) := g(n+ 1)− g(n) ≪ logα n, where 0 ≤ α < 1.

Then g(n) ≪ logα n.

If g : N → Z is completely additive and ∆(n) = o(logn) then g is the null
function. In either case a one-sided condition suffices.

This is a corollary, apparently not mentioned so far, of the theorems on
real valued additive functions in [6] (1979). Actually we need only the case
α = 0, i.e. with the assumption ∆g(n) ≪ 1 here, but state the theorem in full
because we think it interesting in itself and the proof is hardly more work for
the full than for the weak version. The difference is that we have to quote the
more elaborated [6] while otherwise [5] from 1968 would suffice.

3. Proofs

3.1. Proof of Theorem 4

In [6] it is shown that a completely additive function g : N → R with
∆g(n) = o(log n) (one-side suffices) is of the form g(n) = τ log n with some
τ ∈ R. Clearly if g is integer valued then τ = 0.

For an additive function g : N → R with the (one-sided) condition
∆g(n) ≪ logα n the paper gives g(n) = τ logn + ρ(n) with ρ(n) ≪ logα n
(two-sided). If we assume τ ̸= 0 then without loss of generality τ = 1.

With the real parameter x tending to infinity consider the intervals Ix :=
:= (x, y] where y = xelog

α x. Note that log y ∼ log x. The function logn+ ρ(n)
varies on Ix only by O(logα x) and, since its values are integers, can take only
O(logα x) different values. By the Prime Number Theorem and Dirichlet’s
principle there are 2k primes pj ∈ Ix for which g takes the same value g(pr) = a,

say, and where k ≫ y/(log y · logα x) ≫ y/ log2 y. Let the pj be numbered in

ascending order. At n1 :=
k∏

j=1

pj as well as at n2 :=
2k∏

j=k+1

pj the function g

takes the value ka. Thus
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(1)

|ρ(n2)− ρ(n1)| = log n2 − log n1 =

=

k∑
j=1

log
pj+k

pj
≥

≥
k∑

j=1

log

(
1 +

k

y

)
≫

≫ k2

y
≫

≫ y

log4 y
.

On the other hand logn1 < log n2 ≤ k log y ≪ y, so by assumption r(ni) ≪
≪ logα n2 ≪ yα, |r(n2)− r(n1)| ≪ yα. This, because of α < 1, contradicts (1)
and thereby proves τ = 0.

3.2. Proof of Theorem 1

The subgroup ⟨F (N)⟩ of G generated by F (N) is also generated by QF (N)
and thus, by assumption, is a finitely generated Abelian group, which by the
well-known main theorem on such groups is a direct product

⟨F (N)⟩ = T × Z1 × . . .× Zs, ℓ ∈ N, s ∈ N0,

of a finite group T and infinite cyclic groups Zj = {znj : n ∈ Z} with zj ∈ G that

are multiplicatively independent. The direct decomposition of ⟨F (N)⟩ implies
a corresponding decomposition of the multiplcative function F mapping into it

(2) F (n) = F0(n)z
γ1(n)
1 . . . zγs(n)

s ,

where F0 : N → T is multiplicative and the γj : N → Z, 1 ≤ j ≤ s, are additive.
Furthermore for each n ∈ N

QF (n) = QF0(n)
∏
j

z
∆γj(n)
j

is the unique decomposition of one of the finitely many elements of QF (N),
which shows that the ∆γj(n) can take only finitely many different values. By
the case α = 0 of Theorem 4 the γj are bounded, and now (2) shows that F (N)
is finite.
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3.3. Proof of Theorem 2

Some further notations that will be used:

G0 :=⟨Qf(N)′⟩,

A :={q, q−1 : q ∈ Qf(N)′},

Mk :=k − fold elementwise product with itself,

for a subset M of a group,

Na :={n ∈ N : (n, a) = 1},

(n, a∞) :=
∏
p|a

pνp(n) if n =
∏
p

pνp(n),

n|a∞ :⇔ if p|n then p|a.

To prepare the application of Theorem 1 a function F ∈ CM(G) is
constructed for which QF (n) attains rather than approaches the elements of
Qf(N)′.

Lemma. Let f ∈ CM(G) where G is a topological Abelian group. Assume

that the sequence
(
Qf(n)

)
has only finitely many limit points and that the set

Qf(N) is relatively compact. Then there is a factorization f = hF of f into
two functions h ∈ CM(G) and F ∈ M(G0) such that Qh(n) → 1 as n → ∞,
and QF (N) is finite.

Proof. Because of the relative compactness of Qf(N) and the finiteness
of the number of limit points one can split N into finitely many classes on
which Qf(n) converges to one of the elements of Qf(N)′. Therefore there are
functions q : N → Qf(N)′ such that

Qf(n) ∼ q(n) as n→ ∞.

We fix any of them and form

g(n) :=
∏
m<n

q(m).

Due to the initial ambiguity in defining q(n) the function g(n) is given uniquely
for large n and up to a constant factor only. Therefore we study g(an)/g(n)
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as n tends to infinity. Let a ∈ N be fixed and |n′ − n| be bounded as n → ∞,
n < n′ ≤ n+ a, say. Then

g(an′)

g(n′)

g(n)

g(an)
=

∏
n≤m<n′

q(m)−1
∏

an≤m<an′

q(m) ∼(3)

∼
∏

n≤m<n′

(
Qf(m)

)−1 ∏
an≤m<an′

Qf(m) =(4)

=
f(n)

f(n)′
f(an′)

f(an)
.(5)

For a first application consider consecutive elements n, n′ of Na. Then the
right hand side of (5) is 1. But, as (3) shows, the left hand side is an element

of the finite set B := Aa2+a ⊂ G0. So the asymptotic equation turns into an
actual equation for large n and the quotients stabilize:

(6)
g(an)

g(n)
=: F (a) ∈ G0 for n ≥ na, (n, a) = 1.

For n ̸= Na the behavior of g(an)/g(n) can be linked to that with a coprime
n′. Let n′ > n be minimal in Na (which is ≤ n+ a) and inspect equations (3)
to (5). If n ≥ na then the left hand side becomes

F (a)
g(n)

g(an)
∈ B.

If, for the moment, we fix any d|a∞ and let n tend to ∞ through the numbers
n = dn1, (n1, a) = 1, then the right hand side of (5) is constant

= f(a)
f(n)

f(an)
= f(a)

f(d)

f(ad)
,

and we obtain (whatever d)

f(a)
f(n)

f(an)
∈ B

for all n ∈ N.

There are neighborhoods U and V of 1 such that

(x, y ∈ B, x ̸= y) ⇒ xy−1 ̸∈ U ,
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Va(a+1) ⊂ U .

The bound na (it is crucial for our proof that it does not depend on d!) can be
taken so large that

QF (m)

q(m)
∈ V for m ≥ na.

Since this applies to all such quotients involved in passing from (3) to (4) and
since their number does not exceed a(a+ 1) we find

F (a)
g(n)

g(an)

(
f(a)

f(n)

f(an)

)−1

∈ Va(a+1) ⊂ U for n ≥ na.

This, by the choice of U , implies equality

(7)
g(an)

g(n)
=
F (a)f(an)

f(a)f(n)
for n ≥ na.

Now we let n = bk with arbitrary b and (k, ab) = 1 tend to infinity, apply (6),
and find

F (ab)

F (b)
=
F (a)f(ab)

f(a)f(b)
,

which says that h := f/F is completely multiplicative. With this knowledge
(7) simplifies and gives

g(an)

g(n)
=
F (an)

f(n)
for n ≥ na

or, if we write F/g := v,

(8) v(b) = v(ab) for b ≥ na.

In particular this implies that if b ≥ n2 then v(b) = v(2b). Now also 2b ≥ n2
etc., hence v(2b) = v(4b) etc., v(b) = v(2kb) for all k. Furthermore for all large
k (as soon as 2k ≥ nb) another application of (8) gives v(b) = v(2k). Since this
is independent of b we have:

The function v = F/g is constant from some point (= n2) on.

From this point on QF (n) = Qg(n) = q(n) ∈ Qf(N)′, thus QF (N) is
finite. The multiplicativity of F follows from F = fh−1.
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Finally

Qh(n) = Qf(n)
QF (n)

=
Qf(n)
q(n)

for n ≥ n2,

→ 1 as n→ ∞.

For Theorem 2 it is assumed that G is locally compact. So by Theorem
DKM the function h of the lemma can be extended to a continuous homomor-
phism χ of R∗

+ into G. By Theorem 1 the function F of the lemma maps to a
finite set. This ends the proof of Theorem 2.
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[1] Daróczy Z. and Kátai I., On additive arithmetical functions with values
in topological groups I., Publ. Math. Debrecen, 33 (1986), 287-291.
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