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1. Introduction

1.1. Some introductory remarks and comments

Multiplicative functions of modulus less or equal to 1 are of considerable
importance in number theory. In this article, we shall study some properties
of these functions from the viewpoint of a classical analyst. More precisely,
in a first part, we shall consider the space M of the completely multiplicative
functions with values in T , the unit circle. It will be shown that there is
a natural group topology on it, inspired directly from results of probabilistic
number theory, which leads to a precise description of this space and of some of
its properties, and we shall determine its dual group (in the sense of Pontriagin).
Then, in a second part, we shall consider some spaces of arithmetical functions
obtained as a closure of special algebras associated to multiplicative functions
with values in a finite subgroup F of T . It will be shown that these spaces can be
viewed essentially as sums of copies of spaces of limit-periodic sequences (in the
sense of Besicovitch), and that their elements are characterized by a generalized
Fourier series. This second part is also related to a research work of Indlekofer
on uniformly summable functions [1], since it will be shown that the spaces of
uniformly summable functions built via multiplicative functions with values in a
finite subgroup F of T are exactly the spaces of arithmetical functions obtained
as closures of our special algebras associated to multiplicative functions with
values in this finite group. And so, a characterization of such spaces of
uniformly summable functions will be given.

Most of the proofs in the first part will be detailed, while in the second
part, we shall refer sometimes to the analogous statements which correspond
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in the first part: the reason is that there is no special difficulty to transfer some
of the proofs given for completely multiplicative functions of modulus 1 to the
case of ordinary multiplicative functions with values in F ∪ {0}. Moreover,
concerning this second part, it is assumed that the reader has some familiarity
with the classical theory of multiplicative functions, and their relations with
almost periodic functions, as it is presented for instance in the book of W.
Schwarz and J. Spilker [4]. This will allow to shorten some of the proofs.

As a last remark, I would like to mention that by choice, the present work
will ultimately deal with the ordinary mean value, or first Cesaro mean, for
it is a solid tradition in the theory of arithmetical functions. Other choices
exist. And this, not only for the mean value, but also for the choice of dealing
with a finite group: much more general settings can be considered using the
methods developped in the present paper. As written by K.-H. Indlekofer
in [2], a general problem of probabilistic number theory is to find appropriate
probability spaces where large classes of arithmetical functions can be considered
as random variables. Among other things, the present article will provide in
a simple way a quite precise description of such probability spaces where the
class of multiplicative functions with values in a finite subgroup of T can be
considered as random variables.

1.2. Acknowledgements

The question of the description of the spaces of uniformly summable
functions built via multiplicative functions with values in a finite subgroup of T
was initially raised by Pr. E. Saias at the end of a conference of Pr. Indlekofer
in Paris (02/09/2000). Recent discussions with some colleagues working on
arithmetical functions lead me to reconsider this problem. I thank especially
Prs. K.H. Indlekofer, L. Lucht, E. Manstavicius, W. Schwarz.

1.3. Notations and definitions

Z (resp.N , resp.N∗) is the set of the integers (resp. non-negative integers,
resp. positive integers).

P is the set of the prime numbers, and p will denote a generic element of
P .

Q (resp.Q∗
+) is the set of the rational numbers (resp. positive rational

numbers).

C (resp. R) is the set of the complex (resp. real) numbers, and Rd will
denote the group of the real numbers equipped with the discrete topology.

T is the set of the complex numbers of modulus 1, and F a finite subgroup
of T .
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Let f be an arithmetical function, i.e. a function N∗ → C. f is
multiplicative function if f(1) = 1 and f(mn) = f(m)f(n) when gcd(m,n) = 1.
If f(mn) = f(m)f(n) for all m and n, f is called a completely multiplicative
function.

M(C) will denote the set of the C-valued multiplicative functions.

M is the set of the complex-valued completely multiplicative functions of
modulus 1.

If a(n) is a complex (resp. real) sequence indexed by N∗, we denote by
m(a) (resp. m(a)) the limit (resp. the upper limit), when it exists, of the
expression (1/x)

∑
n≤x

a(n) when x tends to infinity.

p being in P and α in N∗, pα | n (resp. pα|/n) means that pα divides n
(resp. pα does not divide n) while pα∥n means that pα divides exactly n, i.e.
pα|n but pα+1|/n.

1.4. Toolbox

We recall some results on M(C) that we shall need later.

Theorem 1. Let h be an element of M(C) such that |h| ≤ 1. Then,

lim sup
x→∞

(1/x)

∣∣∣∣∣∣
∑

1≤n≤x,(n,2)=1

h(n)

∣∣∣∣∣∣ > 0

if and only if there exists τh in R such that∑
p∈P

(
1− Re h(p)p−iτh

)
p−1

converge.

This is the well-known Halász’s Theorem [4]. Another useful result is

Theorem 2. Let h be an element of M(C) such that |h| ≤ 1. Then,

lim
x→+∞

(1/x)
∑

1≤n≤x, (n,2)=1

h(n)

exists and is not zero if and only if∑
p∈P

(1− h(p))p−1

converge.
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More precisely,

lim
x→+∞

x−1
∑

1≤n≤x

h(n) = lim
x→+∞

∏
p≤x

(
1− 1

p

)∑
0≤k

h(pk)p−k.

This result is due to Delange [4].

Another needed result of Delange is the following (Delange Extended
Theorem [4]):

Theorem 3. Let h be an element of M(C) such that |h| ≤ 1. Then, the
condition ∑

p∈P

(1− Re h(p))p−1

converge, implies that

lim
x→+∞

x−1
∑

1≤n≤x

h(n)−
∏
p≤x

(
1− 1

p

)∑
0≤k

hpkp−k

 = 0.

Now, we recall the following result of Ruzsa [3]:

Theorem 4. Let G be an abelian group and f a G-valued additive
arithmetical function. Then, given any a in G, the set of the integers n such
that f(n) = a has a density.

Another useful result for our purpose in the following statement of Weil
[5]:

Theorem 5. Let G be a topological abelian group and g a closed subgroup
of G such that G/g is discrete. Assume that any element a of g has a n-th root
for any n in N∗, i.e. there exists some b such that bn = a (we shall say that g
is divisible). Then, G is isomorphic to (G/g)× g.

And we can recall that the dual group (in the sense of Pontriagin) of the
product of two abelian groups is the product of the dual groups of these groups.

2. The space M

2.1. M as a topological group
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We recall thatM is the set of the complex-valued completely multiplicative
functions of modulus 1.

Proposition 6. M is an abelian group. This is evident.

Proposition 7. On M we define a topology in the following way: for f
and g in M , let c be defined by

c(f, g) =

√∑
p∈P

|f(p)− g(p)|2.p−1

if this quantity is finite, c(f, g) = +∞ if not. Then, the non-negative real-
valued function d defined on M ×M by d(f, g) = c(f, g)(1 + c(f, g))−1 is a
distance on M , invariant by translation.

Proof. First of all d(f, g) is non-negative real-valued and since c(f, g) =
= c(g, f), it is clear that d(f, g) = d(g, f). Moreover, d(f, g) is equal to 0 if
and only if c(f, g) = 0, which gives that for all p in P we have f(p) = g(p), and
since f and g are completely multiplicative, this implies that f = g.

We remark now that if f, g, h are in M , we have

c(hf, hg) =

√∑
p∈P

|h(p)f(p)− h(p)g(p)|2.p−1 =

=

√∑
p∈P

|h(p)(f(p)− g(p))|2.p−1 =

=

√∑
p∈P

|h(p)∥f(p)− g(p)|2.p−1 =

=

√∑
p∈P

|f(p)− g(p)|2.p−1 =

= c(f, g),

since |h(p)| = 1 for all p in P , and this gives the translation invariance. It
remains to check that the triangular inequality holds. We have, if f, g, h are in
M

c(f, h) ≤ c(f, g) + c(g, h),

by the Cauchy inequality.
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Now, we remark that the function x → x(1 + x)−1 is increasing on the
positive axis, and so, if x, y, z are non-negative real numbers such that z ≤ x+y,
we have

z(1 + z)−1 ≤ (x+ y).(1 + (1 + y))−1 ≤

≤ x(1 + x+ y)−1 + y(1 + x+ y)−1 ≤

≤ x(1 + x)−1 + y(1 + y)−1,

and as a consequence, we have

c(f, h).(1 + c(f, h))−1 ≤ c(f, g).(1 + c(f, g))−1 + c(g, h).(1 + c(g, h))−1,

i.e.
d(f, h) ≤ d(f, g) + d(g, h).

We denote by M ′ the subset of M defined by

M ′ = {f ∈M, d(f, 1) < 1}.

Theorem 8. M ′ is a subgroup of M , open, complete and separable for the
topology defined by d. As a consequence, the quotient S = M/M ′ is discrete,
and so, there exists a set of representatives of S such that M = ∪

s∈S
s.M ′, the

union being disjoint.

Corollary 9. M is a complete metric group.

Proof.

1) It is evident that M ′ is open since it is an open ball of center 1 and
radius 1.

2) We prove that M ′ is a subgroup of M .

To do that, it is sufficient to prove that given f and g two elements of M ′,
the product fg is in M ′.

By hypothesis, f and g are in M ′ and so we have d(f, 1) < 1 and d(g, 1) <
< 1. Replacing d(f, 1) by c(f, 1)(1 + c(f, 1))−1, we get that

c(f, 1) < +∞,

i.e.

c(f, 1) =

√∑
p∈P

|f(p)− 1|2.p−1 < +∞,
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and this gives that ∑
p∈P

|f(p)− 1|2.p−1 < +∞.

Remark that the condition f ∈M ′ is equivalent to∑
p∈P

|f(p)− 1|2.p−1 < +∞.

Similarly, we have ∑
p∈P

|g(p)− 1|2.p−1 < +∞,

and since |g(p)− 1| = |g(p)− 1|, we get that g is in M ′.

Now, we remark that g(p)f(p) − 1 can be written as g(p)f(p) − 1 =
= g(p)(f(p)− 1) + g(p)− 1, and so, we get that

|g(p)f(p)− 1| ≤ |g(p)(f(p)− 1) + g(p)− 1| ≤
≤ |g(p)|.|f(p)− 1|+ |g(p)− 1| ≤
≤ |f(p)− 1|+ |g(p)− 1|,

since |g(p)| = 1 and |g(p)− 1| = |g(p)− 1|.
Now, since we have the inequality

(|f(p)− 1|+ |g(p)− 1|)2 ≤ 2
(
|f(p)− 1|2 + |g(p)− 1|2

)
,

we get that
|g(p)f(p)− 1|2 ≤ 2

(
|f(p)− 1|2 + |g(p)− 1|2

)
,

and since the two series∑
p∈P

|f(p)− 1|2.p−1 and
∑
p∈P

|g(p)− 1|2.p−1

converge, the series ∑
p∈P

|g(p)f(p)− 1|2.p−1

is also convergent, and as a consequence, the product fg is in M ′.

3) We prove the separability of M ′.



36 J.-L. Mauclaire

Let f be an element of M ′. f ∈M ′ is equivalent to∑
p∈P

|f(p)− 1|2.p−1 < +∞.

Denoting by V the set of the roots of unity, we can choose for any given ε > 0,
elements vp of V such that |vp − f(p)|2 ≤ ε.2−(p+1). Now, we define an integer
K by the condition

K = min

m ∈ N∗;
∑

p∈P,p>m

|f(p)− 1|2.p−1 < (ε/2)

 .

We get that ∑
p∈P,p<K

|f(p)− vp|2.p−1 ≤
∑

p∈P,p<K

ε.2−(p+1).p−1 ≤ ε/2.

This gives us that the completely multiplicative function vK(n) defined by
vK(p) = vp if p ≤ K, 1 if not, verifies the condition d(f, vK) ≤ ε, and so, since

V K is countable for all K in N∗, the set ∪
K∈N∗

V K defines a countable family

of elements of M ′ dense in M ′ for the topology defined by d.

4) It remains to prove that M ′ is complete.

Let fk be a Cauchy sequence of elements of M ′. Then, for a fixed p in P ,
the sequence fk(p) is a Cauchy sequence and so, f(p) = lim

k→+∞
fk(p) exists and

|f(p)| = 1. To finish the proof, remark that the sequence (1− fk(p))
√
p−1 can

be viewed as the Fourier coefficients of the function Fk(t) with Fourier series∑
p∈P

(
(1− fk(p))

√
p−1
)
exp 2iπpt,

which is in L2([0, 1]). Since Fk is a Cauchy sequence in this space, it has a
limit in it and it is immediate that the Fourier coefficients of this limit are

(1− f(p))
√
p−1, p ∈ P,

which gives that ∑
p∈P

|f(p)− 1|2.p−1 < +∞,

and so, f is in M ′.
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2.2. Dual group of M

We recall that the dual group of a topological group G is the set of the
continuous characters of G, i.e. the set of the group homomorphisms of G with
values in T , continuous for the topology of G.

We first prove the following result.

Proposition 10. The dual group of M ′ is isomorphic to the group Q∗
+ of

the positive rational numbers.

Proof. For all p in P , we define a class Fp of elements fp of M ′ by fp(p),
is in T , fp(q) = 1 for all prime numbers q different of p. It is clear that Fp is a
subgroup ofM ′ and as a set, is exactly the circle T , for the topology defined on
M ′ by the distance d induces on Fp the same topology as the ordinary topology
on the circle T , and so, the group Fp can be viewed as the circle T with the
ordinary topology, and as a consequence, a character X on Fp can be written
as X(fp) = f(p)np(= f(pnp)), where np is an integer. Now, we remark that if
f is in M ′, d(1, f) is smaller than 1 and so, c(1, f) is bounded. This gives us
that the series ∑

p∈P

|f(p)− 1|2.p−1

is convergent, and it is clear that the sequence hk of elements of M ′ defined by

hk(n) =
∏
p≤k

fp(n)

tends to f in M ′. As a consequence, if X is a character of M ′, we must have

X(f) = lim
k→+∞

X(hk) = lim
k→+∞

X

∏
p≤k

fp


by continuity of X, and so, since the finite product

∏
p≤k

fp(n) is in M
′, we must

have
X(f) = lim

k→+∞

∏
p≤k

X(fp)

in M ′. This gives us that a character X is defined by a sequence of integers
{np(X)}p∈P , with the condition that the convergence of the series

∑
p∈P

|f(p)− 1|2.p−1
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will imply that ∏
p≤k

f(p)np(X)

has a limit when k tends to infinity. This leads to the conclusion that only
a finite number of the np(X) are different of 0. For assume that there is a
character X such that an infinite number of the np(X) are different of 0. We
denote by P ′ the set of the primes such that the np(X) are different of 0. Now,
we shall construct an element h of M ′ such that X will be not defined for the
value of the argument h. To do that, we begin by selecting an infinite subset
P ′′ of P ′ such that ∑

p∈P ′′

p−1 < +∞.

We define h as a completely multiplicative function in the following way:

if p is a prime not in P ′′, h(p) has the value 1,

if p is a prime in P ′′, h(p) has the value exp(iπ/np(X)).

By construction, h is in M ′ since for m in N , we have∑
p∈P, p≤m

|h(p)− 1|2.p−1 =
∑

p∈P−P ′′, p≤m

|h(p)− 1|2.p−1+

+
∑

p∈P ′′, p≤m

|h(p)− 1|2.p−1 =

=
∑

p∈P ′′, p≤m

|h(p)− 1|2.p−1,

and this series converges since it is bounded by∑
p∈P ′′, p≤m

2p−1

which converge by definition of P ′′. This gives us that h is in M ′.

Now, we remark that the sequence of functions h′m defined by

h′m(n) =
∏

p∈P, p≤m,pα∥n

h(p)α

is in M ′ since ∑
p∈P, p≤m

|h(p)− 1|2.p−1 < +∞,
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and moreover, that for the metrizable group topology defined on M ′, we have
lim

k→+∞
h′m = h. As a consequence, since the character X is continuous, the

limit, m→ +∞, of X(hm) will exist. But we have

X(h′m) =
∏

p∈P, p≤m

h(p)np(X) =

=
∏

p∈P ′′, p≤m

h(p)np(X) =

=
∏

p∈P ′′, p≤m

(exp(iπ/np(X)))np(X)

and this sequence is oscillating, taking the values 1 and −1 alternatively. So,
there is no limit and as a consequence, we get that for characters X of M ′,
only a finite number of the np(X) are different of 0.

Now, returning to the expression of X(f), which is

X(f) =
∏
p∈P

f(pnp(X)),

to this character X we can associate in a unique way the positive rational
number

α(X) =
∏
p∈P

pnp(X).

It is immediate that the function X 7−→ α(X) is a group isomorphism M̂ ′ →
→ Q∗

+. For let X and X ′ be in M̂ ′. We have for all f in M ′,

X(f) =
∏
p∈P

f(pnp(X)),

X ′(f) =
∏
p∈P

f
(
pnp(X

′)
)
,

where the integers np(X) and np(X
′) are independent of f . Now, since X and

X ′ are in M̂ ′, we have (X.X ′)(f) = X(f).X ′(f).

Replacing X(f) and X ′(f) by their value, we get that
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(X.X ′)(f) =
∏
p∈P

f
(
pnp(XX′)

)
=

=

∏
p∈P

f
(
pnp(X)

)×

∏
p∈P

f
(
pnp(X

′)
) =

=
∏
p∈P

f
(
pnp(X)+np(X

′)
)
.

Since this holds for all f , we get that

α(XX ′) =
∏
p∈P

pnp(X.X′) =
∏
p∈P

pnp(X)+np(X
′) =

=

∏
p∈P

pnp(X)

×

∏
p∈P

pnp(X
′)

 =

= α(X).α(X ′).

This gives us that X 7−→ α(X) is a group homomorphism. It is an isomorphism
for α(X) = 1 if and only if all the np(X) are equal to 0, i.e. X = 1.

Let h be in M , and assume that

lim sup
x→+∞

(1/x)

∣∣∣∣∣∣
∑

1≤n≤x, (n,2)=1

h(n)

∣∣∣∣∣∣ > 0.

By Halász’s theorem, we know that there exists τh in R such that∑
p∈P

(
1− Re h(p)p−iτh

)
p−1

converge.

We shall denote the space of such functions by M !.

As in the case of M ′, we can prove that M ! is a group, for if f and g are
in M !, then, setting τf − τg = τfg, we get that f.g is in M !.

Now, remark that M ′ is an open subgroup of M !, and so, M !/M ′ is
discrete. In fact, it is immediate that M !/M ′ is isomorphic to Rd, and that we

have M ! ≃ M ′ × Rd. As a consequence, we get that M̂ !, the dual of M !, is

isomorphic to M̂ ′ × R̂d. Now, we have proved above that M̂ ′ is isomorphic to

Q∗
+, the set of the positive rational numbers. And R̂d is well known, since it



Multiplicative functions and vector spaces of arithmetical functions 41

is B(R), the Bohr compactification of the real line. So, up to an isomorphism,

we have determined the dual group of M !: in fact, M̂ ! ≃ Q∗
+ × B(R).

Now, we remark that M ! is an open subgroup of M , since first of all, M !
is a subgroup of M , and second, we have M ! ≃ ∪

r∈Rd

(r,M ′), with M ′ open

in M . As a consequence, M/M ! is discrete. This gives us that if S is a set
of representatives of M/M !, we have M = ∪

σ∈S
σM !, the union being disjoint.

Moreover, we remark thatM ! is divisible, since for a given k in N∗, the element
of M defined by

fk(p) = exp(i arg f(p)/k) if π ≥ arg f(p),

fk(p) = exp(i(arg f(p)− 2π)/k) if π ≤ arg f(p),

with the real parameter τfk = τf/k, is in M ! and so, we have, by the Weil
theorem,M ≃ (M/M !)×M !, which gives us thatM ≃ (M/M !)×M ′×Rd since

M ! ≃M ′ ×Rd. As a consequence, we get that M̂ ≃ (M̂/M !)× M̂ ′ × M̂ ′ × R̂d,

i.e. M̂ ≃ (M̂/M !) × Q∗
+ × B(R), since we have M̂ ! ≃ Q∗

+ × B(R). So, to
conclude, we have the following result:

Theorem 11. The dual group M̂ of M can be written as M̂ ≃ K×Q∗
+ ×

×B(R), where K is a compact group, dual of the discrete group (M̂/M !), B(R)
is the Bohr compactification of the real line, and Q∗

+ is the multiplicative group
of the positive rational numbers.

3. Multiplicative functions with values in a finite subgroup of T and

related sets of functions

Let F be a finite subgroup of T of order Ω. F will denote the set of the
multiplicative functions with values in F ∪ {0}, and Fc the set of the elements
of M such that for all p, f(p) belongs to F . Moreover, we shall denote by F ′

c

the group M ′ ∩ Fc.

3.1. Completely multiplicative functions with values in a finite

subgroup of T

Theorem 12. F ′
c is an open subgroup of Fc, complete and metrizable;

and as a consequence, the quotient U = Fc/F
′
c is discrete, and so, there exists
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a set of representative of U such that Fc = ∪
s∈U

s.F ′
c, the union being disjoint.

Moreover, Fc is a complete metric group.

The dual group of F ′
c is Q∗

+/Q
∗Ω
+ , where Q∗Ω

+ is the group of the rationals
which are an exact Ω-power of elements of Q∗

+.

Proof. It is immediate that Fc is a subgroup of M , and so, it is metrical
for the distance induced by the distance d on M . F ′

c, as a subgroup of Fc, is
open since

F ′
c = {f ∈ Fc | d(1, f) < 1}.

This implies that there exists a set of representative of U such that Fc =
= ∪

s∈U
s.F ′

c, the union being disjoint.

Now, F ′
c is complete for if fk is a Cauchy sequence in F ′

c, hence in M ′, it
has a limit f inM ′, and since fΩk = 1, we must have fΩ = 1, which means that
f is in F ′

c.

The determination of the dual group of F ′
c can be done as in the case of

the dual group of M ′: as above, for all p in P , we define a class Fp of elements
fp of F ′

c by fp(p) is in F , fp(q) = 1 for all prime numbers q different of p. Fp

can be identified to the group F with the discrete topology, and so, a character
X on Fp can be written as X(fp) = f(p)np , where np is an integer mod Ω.
Now, since the sequence hk of elements of F ′

c defined by

hk(n) =
∏
p≤k

fp(n)

tends to f in F ′
c, if X is a character of F ′

c, we must have

X(f) = lim
k→+∞

X(hk) = lim
k→+∞

X

∏
p≤k

fp


by continuity of X, i.e.

X(f) = lim
k→+∞

∏
p≤k

X(fp)

in F ′
c. So, a character X is defined by a sequence of integers {np(X)modΩ}p∈P ,

with the condition that the convergence of the series∑
p∈P

|f(p)− 1)|2.p−1
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will imply that ∏
p≤k

f(p)np(X)

has a limit when k tends to infinity, and the same kind of argument as in the
case of M ′ will give that only a finite number of the np(X) are different of 0.

3.2. Multiplicative functions with values in F ∪ {0}

We shall now consider the set F of the multiplicative functions with values
in F ∪ {0}.

3.2.1. Existence of a mean value

First of all, we give a result on the existence of the mean value of any
element of F . We shall prove that

Proposition 13. If f is in F , it has an arithmetical mean value m(f).

Proof. 1) If f is in Fc, we have

(1/x)
∑
n≤x

f(n) =
∑
a∈F

(1/x)a
∑

n≤x, f(n)=a

1

 ,

and by Ruzsa theorem,

lim
x→+∞

(1/x)
∑

n≤x, f(n)=a

1

exists.

So, m(f) exists.

Now, remark that by Halász theorem, there is no possibility to have∑
Re (1− f(p)p−it)p−1 < +∞

with t ̸= 0. For if one has∑
Re (1− f(p)p−it)p−1 < +∞,

then,

2Re
(
1− (f(p)p−it)Ω

)
=
∣∣1− (f(p)p−it)Ω

∣∣2 ≤
∣∣1− f(p)p−it

∣∣2 .Ω2 =

= Ω2.
∑

2Re
(
1− f(p)p−it

)
,
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and as a consequence, since f(p)Ω = 1, we shall have∑
Re
(
1− p−itΩ

)
p−1 < +∞,

and this is not possible if t ̸= 0.

2) If f is in F , we define fc in Fc by fc(p) = f(p) if f(p) ̸= 0,= 1 if not.
We remark that we have f(n) = fc(n).f

′(n), where f ′ is in F and is defined

by f ′(pk) = fc(p)
k.f(pk). Remark that f ′(p) = 1 or 0 and |f ′(n)| = |f(n)|.

We have two cases.

First case:
∑

(1−f ′(p))p−1 is not finite. In this case, since |f ′(p)| = |f(p)|,
Delange theorem gives that m(|f |) exists and is equal to 0.

Second case:
∑

(1 − f ′(p))p−1 is finite. We remark that
∑

(1 − f(p))p−1

can be written as∑
(1− f(p))p−1 =

∑
f(p)̸=0

(1− f(p))p−1 +
∑

f(p)=0

(1− f(p))p−1,

and since we have ∑
f(p)̸=0

(1− f(p))p−1 =
∑

(1− fc(p))p
−1

for fc(p) = 1 if f(p) = 0, and∑
f(p)=0

(1− f(p))p−1 =
∑

(1− f ′(p))p−1

for 1− f ′(p) = 0 if f(p) ̸= 0, we get that∑
(1− f(p))p−1 =

∑
(1− fc(p))p

−1 +
∑

(1− f ′(p))p−1,

and this gives us that∑
(1− f(p))p−1 =

∑
(1− fc(p))p

−1 + an absolutely convergent series.

Now, if
∑

(1 − fc(p))p
−1 converges,

∑
(1 − f(p))p−1 converges, too, and

so, f has a mean value by Delange theorem. Since there is not t ̸= 0 such that∑
Re(1− fc(p)p

−it)p−1 < +∞,
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the same holds for f , and so, if
∑

(1− fc(p))p−1 is not convergent, m(f) exists
and is equal to 0.

3.2.2. Distance on F

We define a real-valued function δ(f, g) on F × F by δ(f, g) = γ(f, g)(1 +
+γ(f, g))−1, where

γ(f, g) =

√ ∑
p∈P, k>0

|f(pk)− g(pk)|2.p−k.

We have the following statement.

Proposition 14. δ is a distance on F and F is a complete metric group.

Proof. Use the same argument as in the study of the distance d on M .

3.2.3. Relation between the distance and the mean value on F

The following result will explicit the relation between the distance δ and
the mean value m.

Proposition 15. The set of the f in F such that δ(1, f) < 1 (resp.
δ(1, f) = 1) and the set of the f in F such that

lim
x→+∞

(1/x)
∑

n≤x, 2|/n

f(n) ̸= 0

(resp. lim
x→+∞

(1/x)
∑

n≤x, 2|/n
f(n) = 0) are the same.

Proof. We recall that δ(f, g) = γ(f, g)(1 + γ(f, g))−1, where

γ(f, g) =

√ ∑
p∈P, k>0

|f(pk)− g(pk)|2.p−k.

If δ(1, f) < 1, this means that

γ(f, 1) =

√ ∑
p∈P, k>0

|f(pk)− 1|2.p−k

is a finite quantity, and by the extended theorem of Delange, we get that

lim
x→+∞

x−1
∑

1≤n≤x, 2|/n

f(n)−
∏

p≤x, p̸=2

(
1− 1

p

)∑
0≤k

f(pk)p−1

 = 0.
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But the theorem on the existence of the mean value gives that

lim
x→+∞

x−1
∑

1≤n≤x, 2|/n

f(n)

exists, and so, we get that the sequence

∏
p≤x, p̸=2

(
1− 1

p

)∑
0≤k

f(pk)p−1

is convergent and its limit exists and is not 0 since all the terms are different
of 0.

Now, if δ(f, 1) = 1, we get that∑
p∈P, k>0

|f(pk)− 1|2.p−k

is not finite, and since

lim
x→+∞

x−1
∑

1≤n≤x, 2|/n

f(n)

exists, we get that this limit must be 0, which is also the limit of the product

∏
p≤x, p ̸=2

(
1− 1

p

)∑
0≤k

f(pk)p−1.

3.2.4. A decomposition of F

We shall denote by F ′ (resp.K) the set of the f in F such that δ(1, f) < 1
(resp. m(|f |) = 0).

Remark 1. F ′ is a semigroup and F ′
c is a subsemigroup of F ′.

(This is a simple consequence of the Cauchy inequality.)

We have the following result.

Theorem 16. There exists a set of representatives U of the quotient group

Fc/F
′
c such that F = K ∪

(
∪

s∈U
s.F ′

)
, the union being disjoint.

Proof. If m(|f |) = 0, by definition, f is in K. So, we assume now that
m(|f |) ̸= 0.
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Let f be an element of F . We associate to f two elements of F in the
following way:

f1 is in Fc and is defined by f1(p) = f(p) if f(p) ̸= 0,= 1 if not.

f2 is in F ′ and is defined by f2(p
k) = f1(pk).f(p

k).

f2 is in F ′ because f2(p) = |f(p)| and since m(|f |) ̸= 0, we have∑
(1− |f(p)|)p−1 < +∞.

We have clearly the identity f = f1f2, for

f(pk) = (f(p)k)×
(
f(p)kf(pk)

)
= f1(p

k)× f1(pk).f(p
k).

Now, since f1 is in Fc, there exist unique elements s in U and f ′ in F ′
c

such that f1 = s.f ′. Hence we get that f = s.f ′.f2, s ∈ U, f ′ ∈ F ′
c, f2 ∈ F ′,

and since F ′
c is a subsemigroup of F ′, we get that f can be written as f = s.h,

with s ∈ U, h ∈ F ′. Moreover, this decomposition is unique, due to the way in
which it is obtained. It suffices to remark that if we have f = sh = s′h′, we get
that h = ss′h′. But h and h′ are in F ′, and so, we get that |f |ss′ is in F ′, which
implies that ss′ is in F ′

c (the role of the p such that f(p) = 0 here is secondary
for

∑
f(p)=0

p−1 converge), and so, that ss′ = 1 which gives that h = h′.

3.3. Algebras generated by F

3.3.1. Introduction

Many properties of multiplicative functions which satisfy some growth
condition (existence of the mean value of the function and of its modulus,
existence of a distribution function etc.) are closely related to some spaces of
limit periodic functions. More precisely, we denote by cq(n) the q-Ramanujan
sum, which can be written as

cq(n) =
∑

(h,q)=1

exp 2iπ(hn/q),

and for λ ≥ 1, by Bλ
inv the space of functions f such that for any ε > 0, there

exists a finite set {a1, a2, . . . , al} of complex numbers such that

lim sup
x→+∞

(1/x)
∑

1≤n≤x

∣∣∣∣∣∣f(n)−
 ∑

1≤j≤l

ajcj(n)

∣∣∣∣∣∣
λ

≤ ε.
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Then, for instance, elements of F ′ belong to Bλ
inv for all λ ≥ 1. But the

classical Möbius function, or the Liouville function, are not in this kind of space
Bλ

inv. (For more details, see [4].)

The next part of the present article will provide a description of some
spaces of arithmetical functions associated to F and related to the Bλ

inv, λ ≥ 1.

3.3.2. Algebra of sets or algebra functions?

We recall our notations: F is a finite subgroup of T of order Ω and F is
the set of the multiplicative functions with values in F ∪ {0}. We prove the
following essential result:

Theorem 17. For a given f in F and a in F ∪{0}, we denote by S(f, a)
the set of the n in N∗ such that f(n) = a.

Then we have: the Boole algebra B(F) generated by the family {S(f, a); f ∈
∈ F, a ∈ F ∪ {0}} admits as a finitely additive measure the mean value m,
and the complex algebra generated by the characteristic functions of the family
{S(f, a); f ∈ F, a ∈ F∪{0}} is identical to the complex algebra A(F ) generated
by the elements of F .

Proof. Given f in F and a in F , we remark that the characteristic
function IS(f,a) of S(f, a) can be written as

IS(f,a)(n) = (Ω−1).
∑

0≤k≤Ω−1

(f(n).a)k.

As a consequence, we have

(1/x)
∑
n≤x

IS(f,a)
(n) = (1/x)

∑
n≤x

(Ω−1).
∑

0≤k≤Ω−1

(f(n).a)k

 =

= (Ω−1).
∑

0≤k≤Ω−1

ak.

(1/x)
∑
n≤x

f(n)k

 ,

and since fk is in F , it has a mean value, and so, we have m(IS(f,a)) exists and
is equal to

(Ω−1).
∑

0≤k≤Ω−1

ak.m(fk).

If a = 0, then, since |f | = 1 or 0, we have IS(f,a)(n) = 1 − |f(n)|, and so,

m(IS(f,0)) = 1−m(|f |).
To prove that the Boole algebraB(F ) generated by the family {S(f, a); f ∈

∈ F, a ∈ F ∪ {0}} admits the finitely additive measure m, it is necessary to
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prove that given some W in B(F), the quantity m(IW ) exists. Now, such
a W is obtained by finite union and intersection or complementarization of
sets S(f, a). Recalling that the characteristic function of a finite union can be
expressed as a linear form with integral coefficients of characteristic functions
of finite intersections, we shall concentrate on this last case only.

First, we recall that the characteristic function IS(f,a) of S(f, a) can be
written as

IS(f,a)(n) = (Ω−1).
∑

0≤k≤Ω−1

(f(n).a)k

if a ̸= 0, = (1− |f(n)|) if a = 0.

This can be shortened in the following form.

IS(f,a)(n) = |f(n)|

(Ω−1).
∑

0≤k≤Ω−1

(f(n).a)k

+ (1− |f(n)|).

So, a set written as S(f, a) ∩ S(f ′, a′) has a characteristic function given by

IS(f,a)(n).IS(f ′,a′)(n) =

=

|f(n)|

(Ω−1).
∑

0≤k≤Ω−1

(f(n).a)k

+ (1− |f(n)|)

×

×

|f ′(n)|

(Ω−1).
∑

0≤l≤Ω−1

(f ′(n).a′)l

+ (1− |f ′(n)|)

 ,

which can be written as a linear form of products of the functions |f(n)|, |f ′(n)|,
f(n)k, (f ′(n))l, 0 ≤ k ≤ Ω−1, 0 ≤ l ≤ Ω−1, and we remark that such products
are in F .

This can be generalized immediately to any finite intersection of elements
of the family {S(f, a); f ∈ F, a ∈ F ∪ {0}}. So, the characteristic function IW
of a finite intersectionW of elements of the family {S(f, a); f ∈ F, a ∈ F∪{0}}
can be written as a linear form of elements of F with complex coefficients. As
a consequence, it has a mean value, since all the elements of F have a mean
value, and this clearly defines a finitely additive measure on B(F). Moreover,
this implies also that IW belongs to the complex algebra generated by F .

Now, to prove that the complex algebra generated by the characteristic
functions of the family {S(f, a); f ∈ F, a ∈ F ∪{0}} is identical to the complex
algebra generated by F , it is sufficient to prove that if f is an element of F , it
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can be expressed as a complex linear form of characteristic functions of elements
of B(F). But this is evident, since we have

f(n) =
∑
a∈F

a.IS(f,0)(n) + IS(f,0)(n).

3.3.3. The algebra A(F )

We denote by A(F ) (resp. K(F )) the complex algebra generated by F
(resp. K).

Remark 2. K(F ) is an ideal of A(F ).

Proof. If a is in K(F ), then we have

a =
∑

finite

λifi,

where m(|fi|) = 0 for all i. An element h in A(F ) can be written as

h =
∑

finite

µihi.

The product a.h is a finite linear form of products fihj , and since

|fihj | ≤ 1.|fi|,

we get that a.h is in K(F ).

Now, we prove the following result.

Theorem 18. 1) The function ⟨a, b⟩ defined on A(F )2 by the relation

⟨a, b⟩ = m(a.b) is a bilinear form.

2) a 7−→
√
m(|a|2) is a norm on A(F )−K(F ).

3) The family of arithmetical functions {s.cq; s ∈ Fc/F
′
c, q ∈ N∗} is dense

in A(F ) for the topology induced by the bilinear form ⟨., .⟩.
Proof. 1) The first assertion is a simple consequence of the fact that A(F )

is an algebra in which any element has a mean value.

2) We assume that there exists some element h in A(F )−K(F ) such that
m(|h|2) = 0. We have

h(n) =
∑

finite

λff(n),
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where f(n) is in F−K. But we know that there is a decomposition of F given by

F = K ∪
(

∪
s∈U

s.F ′
)
, where U is a set of representatives of the quotient group

Fc/F
′
c. This gives us that each f can be written as f = sff

′, sf ∈ U, f ′ ∈ F ′,
and so we have

h(n) =
∑

finite

λff(n) =
∑

finite

λfsf (n)f
′(n).

Now, since m(|h|2) = 0, we get that

m


∣∣∣∣∣∣
∑

finite

λfsf (n)f
′(n)

∣∣∣∣∣∣
2
 = 0,

and this can be written as∑
finite

λfλgm(sf (n)sg(n)f
′(n)g′(n)) = 0.

Due to the definition of U , we havem(sf (n)sg(n)f
′(n)g′(n)) = 0 if sf ̸= sg.

This remark leads to rewrite the equation with the following method: first,
select the functions s which appear in the formula giving h. Then, we write
the functions f ′ which are associated to s. This allows to give to h a different
form which is

h(n) =
∑

s∈finite

s(n).

 ∑
finite

λs,f ′f ′(n)

 .

Now, due to the remark above, we get that

0 = m(|h|2) = m


∣∣∣∣∣∣
∑

s∈finite

s(n).

 ∑
finite

λs,f ′f ′(n)

∣∣∣∣∣∣
2
 =

=
∑

s∈finite

m


∣∣∣∣∣∣s(n).

 ∑
finite

λs,f ′f ′(n)

∣∣∣∣∣∣
2
 =

=
∑

s∈finite

m


∣∣∣∣∣∣
 ∑

finite

λs,f ′f ′(n)

∣∣∣∣∣∣
2
 .
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It remains to prove that if

m


∣∣∣∣∣∣
 ∑

finite

λs,f ′f ′(n)

∣∣∣∣∣∣
2
 = 0,

then  ∑
finite

λs,f ′f ′(n)

 = 0

for all n in N∗.

To do that, we remark that given y a positive integer, if f ′ is in F ′, for all
l ≤ y, denoting by Ny the product

∏
p≤y

p, we have the identity

lim
x→+∞

 ∑
n≤x, (n,Ny)=1

1

−1

×
∑

n≤x, (n,Ny)=1

f ′(ln) =

= lim
x→+∞

x.∏
p≤y

(1− p−1)

−1

×
∑

n≤x, (n,Ny)=1

f ′(ln) =

= f ′(l).
∏
p≥y

(1− p−1
)∑
0≤k

f ′(pk)p−k

 ,

and we recall that

lim
y→+∞

∏
p≥y

(1− p−1
)∑
0≤k

f ′(pk)p−k

 = 1.

By the Cauchy inequality, we get that∣∣∣∣∣∣
∑

n≤x, (n,Ny)=1

 ∑
finite

λs,f ′f ′(ln)

∣∣∣∣∣∣
2

≤

≤

 ∑
n≤x, (n,Ny)=1

∣∣∣∣∣∣
∑

finite

λs,f ′f ′(ln)

∣∣∣∣∣∣
2
 .

 ∑
n≤x, (n,Ny)=1

1

 ≤

≤

∑
n≤x

∣∣∣∣∣∣
∑

finite

λs,f ′f ′(n)

∣∣∣∣∣∣
2
 .

 ∑
n≤x, (n,Ny)=1

1

 ,
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and so we have∣∣∣∣∣∣∣ lim
x→+∞

x.∏
p≤y

(1− p−1)

−1

×

 ∑
n≤x, (n,Ny)=1

 ∑
finite

λs,f ′f ′(n)

∣∣∣∣∣∣
2

≤

≤ lim
x→+∞


x.∏

p≤y

(1− p−1)

−1

.

∑
n≤x

∣∣∣∣∣∣
∑

finite

λs,f ′f ′(n)

∣∣∣∣∣∣
2

×

×


x.∏

p≤y

(1− p−1)

−1

.

 ∑
n≤x, (n,Ny)=1

1

 ≤

≤

∏
p≤y

(1− p−1)

−1

.m


∣∣∣∣∣∣
∑

finite

λs,f ′f ′(n)

∣∣∣∣∣∣
2
 = 0,

since

m


∣∣∣∣∣∣
∑

finite

λs,f ′f ′(n)

∣∣∣∣∣∣
2
 = 0.

Now, by the remarks above, we know that

lim
x→+∞

(1/x)
∑

n≤x, (n,Ny)=1

 ∑
finite

λs,f ′f ′(ln)

 =

=
∑

finite

λs,f ′f ′(l)
∏
p≥y

(1− p−1
)∑
0≤k

f ′(pk)p−k

 ,

and from

lim
y→+∞

∏
p≥y

(1− p−1
)∑
0≤k

f ′(pk)p−1

 = 1,

we get that ∑
finite

λs,f ′f ′(l) = 0,

and so, the only h in A(F )−K(F ) such that m(|h|2) = 0 is 0.

3) It is sufficient to prove the following result.



54 J.-L. Mauclaire

Lemma 19. The elements of the system cq are in A(F ′), the algebra
generated by F ′.

Completing the proof of the assertion 3) then turns to be a simple
consequence of the well known fact that any element of F ′ is in B2

inv [4], and
of the decomposition theorem for the space F .

It is known [4] that

cq(n) =
∑

d|q,d|n

dµ(q/d),

where µ is the Möbius function.

We write it as
cq(n) =

∑
d|q

dµ(q/d)Id(n),

where Id(n) = 1 if d|n,= 0 if d|/n.
Now, we remark that

Id(n) =
∏

pα∥d,α>0

Ipα(n).

But the function Jpα(n), α > 0, defined by Jpα(n) = 1− Ipα(n) is in F ′ since
it takes the values 1 or 0 and m(Jpα) = 1 −m(Ipα) = 1 − p−α > 0, and it is
easy to check that we have

Jpα(nn′) = Jpα(n)Jpα(n′)

when (n, n′) = 1.

As a consequence, since Ipα = 1 − Jpα is in A(F ′) −K(F ), Id is also in
A(F ′)−K(F ) and the same for cq.

Remark 3. Assertion 2) in the above theorem implies that any element
f in A(F ) can be written in a unique way f = h + g, where h ∈ K(F ), g ∈
∈ A(F )−K(F ). As a consequence, since K(F ) is an ideal, we get that for any
k in N∗, we have fk = hk + gk, where hk ∈ K(F ) and gk is the k-th power of
g.

As a corollary of the above theorem, we have

Corollary 20. The system
{
φ(q)−1/2(s.cq); s ∈ Fc/F

′
c, q ∈ N∗}, where

φ is the Euler function, is an orthonormal system in A(F ).

Proof. This can be obtained by a direct computation.
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3.3.4. λ-closures of A(F )

Some notations and definitions. Let λ be a real number greater or

equal to 1. For an algebra H of arithmetical functions, we shall denote by H
λ

the set of the sequences h(n), n ∈ N∗, satisfying the condition: for any ε > 0,
there exists some f in H such that

lim sup
x→+∞

(1/x)
∑
n≤x

|f(n)− h(n)|λ ≤ ε.

This space will be called the λ-closure of H.

Similarly, we shall denote by Dλ the set of the sequences h(n), n ∈ N∗,
satisfying the condition

lim sup
x→+∞

(1/x)
∑
n≤x

|h(n)|λ = 0.

Remark 4. To simplify the notations, the exponent λ will be dropped in
the formulas when there will be no need to specify it.

We recall that a distribution function σ is a non-decreasing function R→
→ [0, 1] such that

lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

We say that a sequence a(n) has a limit distribution σa if there exists a
distribution function σ such that for any continuity point t of σ the relation

lim
x→+∞

(1/x)
∑

n≤x, a(n)<t

1 = σ(t)

holds.

Some results and properties of A
λ
(F ). We shall now give some

properties of these spaces as consequences of the results given above on A(F ).

First, we recall that a function f : N∗ → C is a (Lλ)-uniformly summable
function if for all ε > 0, there exists a finite linear form

fε =
∑
b∈B

αbIb,

where αb is in C, and Ib(n) is the characteristic function of b in {S(f, a); f ∈
∈ F, a ∈ F ∪ {0}}, such that

lim sup
x→+∞

(1/x)
∑
n≤x

|fε(n)− f(n)|λ ≤ ε.
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([1] p. 204).

The relationship with the spaces of (Lλ)-uniformly summable functions is
given by the following result.

Theorem 21. The space of (Lλ)–uniformly summable functions built on
the Boole algebra B(F) generated by the family {S(f, a); f ∈ F, a ∈ F ∪ {0}}
equipped with the finitely additive measure m is identical to A

λ
(F ).

Proof. Assume that f : N∗ → C is a (Lλ)–uniformly summable function.
For any ε > 0, there exists a finite linear form

fε =
∑
b∈B

αbIb,

where αb is in C, and Ib(n) is the characteristic function of b in {S(f, a); f ∈
∈ F, a ∈ F ∪ {0}}, such that

lim sup
x→+∞

(1/x)
∑
n≤x

|fε(n)− f(n)|λ ≤ ε.

Such a fε is in B(F), and since we have identically A(F ) = B(F), this
gives the conclusion. We have also the following result.

Theorem 22. A
λ
(F ) is identical to the λ-closure of the space ⊕

s∈U
s.Bλ

inv,

where ⊕
s∈U

s.Bλ
inv is the complex vector space of finite linear forms

∑
αs,fs.f ,

with αs,f in C, s is in U , and f is in Bλ
inv.

Proof. This is a simple adaptation in the present case of the transitivity
principle for closure of spaces, i.e. if K ⊂ L ⊂M , then K ⊂ L ⊂M .

We recall that the λ-closure of the vector space generated by the system
cq of the Ramanujan sums is Bλ

inv, the cq are in A(F ′) and any element of

F ′ is in Bλ
inv [4]. So, we have Bλ

inv = A
λ
(F ′). This gives us that for s in U ,

s.Bλ
inv = s.A

λ
(F ′). But it is clear that sA

λ
(F ′) = A

λ
(s.F ′), and so, we get

that the λ-completion of the set of the finite linear forms
∑
αs,fs.f , where αs,f

are complex numbers, s is in a finite and fixed subset S of U , and f is in F ′,

is ⊕
s∈S

s.Bλ
inv. And this gives us that A

λ
(F ) is identical to the λ-closure of the

space ⊕
s∈U

s.Bλ
inv.
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Existence of a limit distribution

Theorem 23. Any real-valued element f of A
λ
(F ) has a limit distribu-

tion.

Proof. We shall give a more general proof of this result.

Let H be a complex algebra of arithmetical functions such that if f is any
element of H,

lim
x→+∞

(1/x)
∑

1≤n≤x

f(n)

exists.

We shall denote by H the set of arithmetical functions h such that for any
ε > 0 there exists an element f in H such that

lim sup
x→+∞

(1/x)
∑

1≤n≤x

|h(n)− f(n)| < ε.

H has the following property.

Theorem 24. For any real element h of H, the sequence h(n) has a
distribution law σh.

Proof. 1) We shall denote by νl, l ∈ N∗, the sequence of probability laws

defined on H by

νl(h) = (1/l)
∑

1≤n≤l

h(n).

Now, we shall prove that any real element of H has a distribution law.

Let f be a real-valued element of H. Since H is an algebra, for all m in
N , fm is in H. So, for all m in N ,

lim
x→+∞

(1/x)
∑

1≤n≤x

f(n)m

exists.

This means that for all m in N , lim
l→+∞

νl(f
m) exists, and as a consequence,

by the ”moments theorem”, f has a distribution law.

2) Now, let h be a given real element of H. We shall prove that

lim
x→+∞

(1/x)
∑

1≤n≤x

exp ith(n)
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exists for all real t and is a continuous function, which will give us the conclusion
by a classical result of P. Lévy.

For any k in N∗, there exists some real-valued fk in H such that

lim sup
x→+∞

(1/x)
∑

1≤n≤x

|fk(n)− h(n)| ≤ (1/k2).

We remark that

lim sup
x→+∞

(1/x)
∑

1≤n≤x, |fk(n)−h(n)|>1/k

(1/k) ≤

≤ lim sup
x→+∞

(1/x)
∑

1≤n≤x, fk(n)−h(n)|>1/k

|fk(n)− h(n)| ≤

≤ lim sup
x→+∞

(1/x)
∑

1≤n≤x

|fk(n)− h(n)| ≤ (1/k2).

Hence we get that

(1/k) lim sup
x→+∞

(1/x)
∑

1≤n≤x, |fk(n)−h(n)|>1/k

1 ≤ (1/k2),

i.e.
lim sup
x→+∞

(1/x)
∑

1≤n≤x, |fk(n)−h(n)|>1/k

1 ≤ 1/k.

Now, we remark that, if t is any real number and k is large enough,

(1/x)
∑

1≤n≤x

| exp itfk(n)− exp ith(n)| =

= (1/x)
∑

1≤n≤x

| exp it(fk(n)− h(n))− 1| =

=

(1/x)
∑

1≤n≤x, |fk(n)−h(n)|>1

| exp it(fk(n)− h(n))− 1|

+

+

(1/x)
∑

1≤n≤x, |fk(n)−h(n)|≤1/k

| exp it(fk(n)− h(n))− 1|

 ≤

≤

(1/x)
∑

1≤n≤x, |fk(n)−h(n)|>1/k

2

+

+

(1/x)
∑

1≤n≤x, |fk(n)−h(n)|≤1/k

|t|.|fk(n)− h(n)|

 ,
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and this gives that

lim sup
x→+∞

(1/x)
∑

1≤n≤x

| exp itfk(n)− exp ith(n)| ≤

≤
(
2 lim sup

x→+∞
(1/x)

∑
1≤n≤x,|fk(n)−h(n)|>1/k

1

+

+ |t|. lim sup
x→+∞

(1/x)
∑

1≤n≤x

|fk(n)− h(n)| ≤ (2/k) + (|t|/k2).

This gives us that

lim sup
x→+∞

∣∣∣∣∣∣
(1/x)

∑
1≤n≤x

(exp itfk(n))−

(1/x)
∑

1≤n≤x

exp ith(n)

∣∣∣∣∣∣ ≤
≤ lim sup

x→+∞
(1/x)

∑
1≤n≤x

| exp itfk(n)− exp ith(n)| ≤ (2/k) + (|t|/k2).

Now, since fk is in H, it has a distribution law and so,

lim
x→+∞

(1/x)
∑

1≤n≤x

exp itfk(n)

exists and is continuous.

Hence we get that on any closed segment of the real line

lim
x→+∞

(1/x)
∑

1≤n≤x

exp ith(n)

exists and as a uniform limit of a sequence of continuous functions, it is
continuous.

Corollary 25. 1) For all λ ≥ 1 and f in A(F ), m(f) and m(|f |λ) exists.
2) If h is in Aλ(F ), m(h) and m(|h|λ) exists.
Proof. 1) Since f is in A(F ), f takes only a finite number of values and

can be written as
f =

∑
finite

v.Iv,f ,
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where Iv,f (n) is the characteristic function of the n in N∗ such that f(n) = v.
Our theorem gives that m(Iv,f ) exists, hence m(f) also, and since

|f |λ =
∑

finite

|v|λ.Iv,f ,

we have the conclusion.

2) is a simple consequence of 1) and of Hölder inequality.

A consequence of the existence of the limit distribution. We can give
the following complement to the above result.

Theorem 26. Let h be a real-valued element of A
λ
(F ) and σh its

distribution function. Then, if t is a continuity point of σh, the sequence It,h(n)

defined by It,h(n) = 1 if h(n) < t, = 0 if h(n) ≥ t, belongs to A(F ).

Proof. 1) First, we prove the following result.

Lemma 27. The theorem is true for f a given real-valued element of
A(F ), and more precisely, in this case, It,f is in A(F ).

Proof. f(n) can be written as

f(n) =
∑

finite

as,fss(n)fs(n),

where s is in U and fs is in F ′. This implies that V (F ), the set of the values of
f , is finite since s.fs takes a finite number of values. More precisely, we have

V (f) ⊂

 ∑
finite

as,fsXs,fs ; Xs,fs ∈ F ∪ {0}

 .

Hence we get that if v is a value of f , then there exists a finite family S of
distinct systems S(v) of values Xs,fs,v of Xs,fs such that∑

finite

as,fsXs,fs,v = v.

This gives us that

{n; f(n) = v} =
∪

S(v)∈S

 ∩
Xs,fs∈S(v)

{n; s(n)fs(n) = Xs,fs}

 ,



Multiplicative functions and vector spaces of arithmetical functions 61

and this is a partition. As a consequence, we get that

If=v(n) =
∑

S(v)∈S

 ∏
Xs,fs∈S(v)

Is.fs=Xs,fs
(n)

 ,

where If=v(n) = 1 if f(n) = v, 0 if not, and similarly, Is.fs=Xs,fs
(n) = 1 if

s(n)fs(n) = Xs,fs , 0 if not.

But we know that Is.fs=Xs,fs
(n) is in A(F ), and so, If=v(n) is also in

A(F ), and this gives us the result.

2) To finish the proof, it will be sufficient to show that the function It,h(n)

defined by It,h(n) = 1 if h(n) < t,= 0 if h(n) ≥ t, belongs to A(F ).

Let ε > 0 and f be an element of A(F ) such that m(|f − h|) ≤ ε. Denote
by It,f (n) the function defined by It,f (n) = 1 if f(n) < t,= 0 if f(n) ≥ t.

We have

m(|It,h − It,f |) = lim sup
x→+∞

(1/x)
∑
n≤x

|It,h(n)− It,h(n)| ≤

≤ lim sup
x→+∞

(1/x)
∑

n≤x, It,h(n)̸=It,f (n)

1 ≤

≤ lim sup
x→+∞

(1/x)
∑

n≤x, It,h(n)=1, It,f (n)=0

1+

+ lim sup
x→+∞

(1/x)
∑

n≤x, It,h(n)=0, It,f (n)=1

1.

Now, the set of the n such that It,h(n) = 0, It,f (n) = 1 is contained in

{n ∈ N∗; f(n) ≤ t, t+ ε′ ≤ h(n)} ∪ {n ∈ N∗; f(n) ≤ t, t ≤ h(n) ≤ t+ ε′} ,

where ε′ is chosen to satisfy the condition

lim
ε→0

ε′ = lim
ε→0

ε/ε′ = 0.

Since

{n ∈ N∗; f(n) ≤ t, t ≤ h(n) ≤ t+ ε′} ⊂ {n ∈ N∗; , t ≤ h(n) ≤ t+ ε′} ,

the upper density of {n ∈ N∗; f(n) ≤ t, t ≤ h(n) ≤ t + ε′} is bounded by
σh(t+ ε′)− σh(t).
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Now, we have the inclusion

{n ∈ N∗; f(n) ≤ t, t+ ε′ ≤ h(n)} ⊂ {n ∈ N∗; ε′ ≤ |f(n)− h(n)|} ,

and sincem(|f−h|) ≤ ε, we get that the upper density of {n ∈ N∗; ε′ ≤ |f(n)−
−h(n)|} is bounded by ε/ε′.

This gives us that

lim sup
x→+∞

(1/x)
∑

n≤x,It,h(n)=0, It,f (n)=1

1 ≤ σh(t+ ε′)− σh(t) + ε/ε′.

In a similar way, we remark that the set of the n such that It,h(n) = 1, It,f (n) =
= 0 is contained in

{n ∈ N∗; t− ε′ ≤ h(n) ≤ t} ∪ {n ∈ N∗; f(n) ≥ t, h(n) ≤ t− ε′} ,

and the upper density of this union is bounded by σh(t)− σh(t− ε′) + ε/ε′.

This gives us that

lim sup
x→+∞

(1/x)
∑

n≤x, It,h(n)=1, It,f (n)=0

1 ≤ σh(t)− σh(t− ε′) + ε/ε′.

Hence we have

m(|It,h − It,f |) ≤ (σh(t+ ε′)− σh(t) + ε/ε′) + (σh(t)− σh(t− ε′) + ε/ε′) =

= σh(t+ ε′)− σh(t− ε′) + 2ε/ε′,

and so, t being a continuity point of σ and due to the choice of ε′, we have

lim
ε→0

m(|It,h − It,f |) = 0,

and since It,f is in A(F ), this implies that It,h is in A(f).

The next result is related to the Fourier series of an element of A(F ). We
have

Theorem 28. An element h fo A
λ
(F ) admits a generalized Fourier series

h(n) ∼
∑

ĥs,qs(n)cq(n)

and this series characterizes the class of h in A
λ
(F )/Dλ.
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Proof. I) We prove the existence of the Fourier series of an element of

A
λ
(F ).

Let f be in A
λ
(F ). Then, given any k in N∗, there exists an element ak

of ⊕
s∈U

s.Bλ
inv, (the vector space of finite linear forms

∑
αs,fs.f , where αs,f are

complex numbers, s is in U , and f is in F ′) such that
(
m(|f − ak|λ)

)1/λ
<

< k−1. The existence of the Fourier coefficients for f is a simple consequence
of this approximation, for the sequence {ak}k∈N∗ is a Cauchy sequence and
so, m(ak.scq) is a Cauchy sequence and so it has a limit which is also equal to

m(f.scq), expression that we shall denote by f̂s,c.

II) It remains to prove that the Fourier series characterize the classes in

A
λ
(F )/Dλ.

It is sufficient to prove that if h is in A
λ
(F ) and have a Fourier series

identically equal to zero, h is in Dλ.

To simplify the notations, the proof will be given only for λ = 1. The
same patterns will work immediately for any λ ≥ 1, thanks to the Hölder and
Minkovski inequalities.

a) First, we prove

Lemma 29. Let H be a complex algebra of arithmetical functions such
that if g is in H, g is also in H.

1) If f is in H and ∥f∥∞ = sup |f(n)| is finite, then the function n →
→ |f(n)| is a uniform limit of elements of H.

2) If h is in H, |h| is also in H.

Proof. 1) Let f be an element of H such that ∥f∥∞ is finite. We remark

that f and f are in H and so, |f |2 is in H. Denoting by C the upper bound of
|f(n)|, we remark that the modulus of the function g defined by g(n) = f(n)/C

is in [−1,+1]. We have |g| = (1 − (1 − |g|2))1/2, and since 1 − |g|2 is in [0, 1]

and the Taylor series of the function z → (1− z)1/2 is uniformly convergent on
[−1,+1], |g| is a uniform limit of polynomials in |g|2, which all are in H since
|g|2 is in H, and the uniformity of the limit gives immediately the conclusion.

2) This is an immediate consequence of 1) and the inequality that

m(∥f | − |h∥) ≤ m(|f − h|).

b) Now, we prove that given h in A(F ), we have

lim
L→+∞

lim sup
x→+∞

(1/x)
∑

n≤x, |f(n)|≥L

|h(n)| = 0.
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This is the original definition of a uniformly summable function [1]. For
sake of completeness, I give the proof of this statement.

Let h be inA(F ). Then |h| is inA(F ) and for all k inN∗, there exists a non-
negative ak in A(F ) such that m(∥h| − ak|) ≤ 1/k. But ∥ak∥∞ is bounded,
say by Lk. This gives us that if |f(n)| ≥ 2Lk, then 2(|f(n)| − ak(n)) ≥ |f(n)|.
Hence we get that ∑

n≤x, |f(n)|≥2Lk

|f(n)| ≤ 2
∑
n≤x

|f(n)− ak(n)| ≤ 2/k,

and so, for any L ≥ 2Lk, we have

lim sup
x→+∞

∑
n≤x, |f(n)|≥L

|f(n)| ≤ 2k,

and this ends the proof.

c) We can prove now that if the Fourier series of h is identical to 0, then
h is in D.

i) Assume that h is not in D. Then there exists some constant c > 0 such
that m(|h|) ≥ 2c > 0. Now, for η > 0, we have

0 < 2c ≤ m(|h|) ≤ m(|h| ≤ η) +m(|h| ≥ η).

Since h has a distribution function, we can find some sequence of ηk > 0
such that ηk and −ηk are continuity points of σh and m(|h| ≤ ηk) ≤ 1/k.

This choice implies that 2c− (1/k) ≤ m(|h| ≥ ηk), and as a consequence,
at least one of the following inequalities holds: either m(h ≥ ηk) ≥ c− k−1 or
m(−h ≥ ηk) ≥ c− k−1.

We shall assume that it is the first one.

We denote by hk the function defined by hk(n) = h(n) if h(n) ≥ ηk,= 0 if
not, Ik(n) the characteristic function of the n in N∗ such that hk(n) > 0.

Remark that hk(n) = h(n).Ik(n).

ii) We prove that for any k in N∗, there exists a non-negative element fk
of A(F ) such that ∥fk∥∞ ≤ 1 and m(|Ik − fk|) ≤ (1/k).

Proof. By density of A(F ), there exists some f ′k in A(F ) such that

m(|Ik − f ′k|) ≤ (1/k)
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for Ik is in A(F ). since f ′k is in A(F ), we can write f ′k as

f ′k =
∑

finite

v.Iv,f ′
k
,

where all the Iv,f ′
k
(n), the characteristic functions of the n in N∗ such that

f ′k(n) = v, are in A(F ).

Since
|f ′k| =

∑
finite

|v|.Iv,f ′
k

is in A(F ) and |1− |f ′k|| is also in A(F ), the function fk = inf(1, |f ′k|) is also in
A(F ) since we have

fk = 1− (1/2) ((1− |f ′k|) + |1− |f ′k||) .

This function fk satisfies the conditions given in the conclusion since we have

m(|Ik − fk|) ≤ m (|Ik − |f ′k||) ≤ m (|Ik − f ′k|) .

iii) To finish the proof, we recall that c − k−1 ≤ m(hk), and this can be
written as c− k−1 ≤ m(h.Ik).

If J is any real parameter, the functions hJ+ (resp. hJ−) are defined by
hJ+(n) = |h(n)| if |h(n)| > J, 0 if not (resp. hJ−(n) = |h(n)| if |h(n)| ≤ J, 0
if not).

We have

(1/x)
∑
n≤x

h(n).Ik(n) = (1/x)
∑
n≤x

h(n).Ik(n)− fk(n) + (1/x)
∑
n≤x

h(n).fk(n),

and so

lim sup
x→+∞

(1/x)
∑
n≤x

h(n).Ik(n) ≤

≤ lim sup
x→+∞

∣∣∣∣∣∣(1/x)
∑
n≤x

h(n).(Ik(n)− fk(n))

∣∣∣∣∣∣+ lim sup
x→+∞

∣∣∣∣∣∣(1/x)
∑
n≤x

h(n).fk(n)

∣∣∣∣∣∣ .
iii-1) We prove that the second term in the right member of this inequality

is equal to zero.
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We remark that since fk is in A(F ), it can be written as

fk =
∑

finite

as,f ′s.f ′,

where s is in U and f ′ in F ′. Now, for y > 0 and f ′ in F ′, we define Py by

Py(n) =
∏

pα∥n, pα≤y

f ′(pα).

Since it is a periodical multiplicative function, Py is in the algebra
generated by cq, q ∈ N∗ (see [4]). Moreover, it is known that

lim
y→+∞

m(|f ′ − Py|) = 0

(see [4]). Now, we have m(hfk) = m(h(fk − Py)) +m(hPy). By hypothesis,
m(hPy) = 0. So, we have to prove that m(h(fk − Py)) = 0. We have

m(h(fk − Py)) = m(hJ−(fk − Py)) +m(hJ+(fk − Py)).

But |hJ−(fk−Py)| ≤ J |fk−Py|, and so, |m(hJ−(fk−Py))| ≤ Jm(|fk−Py|).
And |m(hJ+(fk − Py))| ≤ 2.m(|hj+|). So, since we can choose y such that
m(|fk − Py|) = o(J), J → +∞, we have the conclusion.

iii-2) We finish the proof. We have

m(|h.(Ik − fk)|) = lim sup
x→+∞

(1/x)
∑
n≤x

|h(n).(Ik(n)− fk(n))|.

We write |h(n).(Ik(n)− fk(n))| as (hJ−(n) + hJ+(n)).|(Ik(n)− fk(n))|, where
J is a real parameter.

Now, we have

|hJ+(n).(Ik(n)− fk(n))| ≤ (1 + ∥fk∥∞)hJ+(n)

and as a consequence of the uniform summability of h and of the inequality
∥fk∥∞ ≤ 1, we get that

m(|hJ+.(Ik − fk|)) = o(1), J → +∞.

Now, we remark that |hJ−(n).(Ik(n)− fk(n))| ≤ J.|Ik(n)− fk(n)|, and so
we have

m(|hJ−.(Ik − fk|)) ≤ J.m(|(Ik − fk|)) ≤ J/k.
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This leads us to the inequality

c− k−1 ≤ lim sup
x→+∞

(1/x)
∑
n≤x

h(n).Ik(n) ≤ J/k + o(1), J → +∞.

Putting J =
√
k, this gives us that c− k−1 ≤ 1/

√
k + o(1), k → +∞, and so,

since c > 0, we have a contradiction. Hence we deduce that if an element h of
A(F ) has a Fourier series identically equal to zero, it belongs to D.

Complement: the special case of A
2
(F ). In the case of A

2
(F ), we have

the following precise result.

Theorem 30. A
2
(F )/D2 is isomorphic to the Hilbert space sum of the

⊕
s∈U

s.B2
inv′ s ∈ U.

Proof. Let f be in A
2
(F ). Then, given any k in N∗, there exists an

element ak of ⊕
s∈U

s.B2
inv, (the vector space of finite linear forms

∑
αs,fs.f ,

where αs,f are complex numbers, s is in U , and f is in B2
inv) such that(

m(|f − ak|2)
)1/2

< k−1. We remark that the sequence {ak}k∈N∗ is a Cauchy
sequence and that to each of the ak, one can associate a finite set Sk of elements
sj(k) of U . So, the family {ak}k∈N∗ belongs to Ha, the countable sum of the

Hilbert spaces sjB
2
inv, sj ∈ Sa = ∪

k∈N∗
Sk which is a Hilbert space of sequences

(by the Marcinkievic theorem) with its norm induced by m(| . . . |2)1/2. As a
consequence, the limit, say a, of the ak exists in Ha and is characterized by its
Fourier series

a ∼
∑

s∈Sa,q∈N∗

âs,qs(n)cq(n),

where the coefficients satisfy the relation∑
s∈Sa, q∈N∗

|âs,q|2φ(q) < +∞.

It is now straightforward that a and f are in the same class of A
2
(F )/D2 and

this ends the proof of the theorem.
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