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ON TRANSLATIVE AND
QUASI–COMMUTATIVE OPERATIONS

Z. Daróczy (Debrecen, Hungary)

Dedicated to my friend, Imre Kátai,
on the occasion of his 65th birthday

Abstract. We determine all the continuous operations ◦ : R2 → R
that are translative ((x + z) ◦ (y + z) = x ◦ y + z) quasi-commutative

(x ◦ (y ◦ z) = y ◦ (x ◦ z)).

1. Introduction

Let (G,+) be an Abelian group. The operation ◦ : G2 → G is called
translative if

(1) (x+ z) ◦ (y + z) = x ◦ y + z

holds for all x, y, z ∈ G. If f(x) := −x ◦ 0 (x ∈ G) then substituting z := −y
(1) implies

(2) x ◦ y = y − f(x− y)

for all x, y ∈ G, and conversely, if f : G → G is arbitrary then the operation
◦ given by formula (2) is translative. This means that defining a translative

This research has been supported by the Hungarian National Research
Science Foundation OTKA Grant T-043080.

2000 Mathematics Subject Classification: primary 39B12, 39B32; sec-
ondary 39B52.



16 Z. Daróczy

operation is equivalent to defining a function f : G → G. It is an interesting
problem to examine what can be stated about translative operations that have
further properties. The operation ◦ : G2 → G is called quasi-commutative if

(3) x ◦ (y ◦ z) = y ◦ (x ◦ z)

holds for all x, y, z ∈ G. In this case we can ask which are the translative and
quasi-commutative operations on the Abelian group (G,+). From equation (2)
we have

x ◦ (y ◦ z) = y ◦ z − f(x− y ◦ z) = z − f(y − z)− f [x− z + f(y − z)]

for the unknown function f : G→ G, and (3) implies

f(y − z) + f [x− z + f(y − z)] = f(x− z) + f [y − z + f(x− z)]

for all x, y, z ∈ G. This yields the functional equation

(4) f [x+ f(y)] + f(y) = f [y + f(x)] + f(x) (x, y ∈ G)

for the unknown function f : G → G. Conversely, one can easily see that
if f : G → G solves (4) then the operation ◦ given by (2) is translative and
quasi-commutative on the Abelian group (G,+). Let S(G) denote the set of
all the solutions f : G → G of equation (4). The following assertions can be
easily checked:

(i) If f(x) := c (x ∈ G) for some fix c ∈ G then f ∈ S(G).

(ii) If f ∈ S(G) and a ∈ G then with the notation fa(x) := f(x+ a) (x ∈ G),
fa ∈ S(G).

(iii) If f ∈ S(G) then with the notation f∗(x) := −f(−x) (x ∈ G), f∗ ∈ S(G).

In this paper our aim is to determine the continuous translative and quasi-
commutative operations defined on the group (G,+) = (R,+), that is on the
additive group of real numbers. According the remarks above, this is equivalent
to giving the continuous functions: f : R → R satisfying f ∈ S(R). This
problem was first considered (under further additional conditions) by Kampé
de Feriet-Forte [7], whose investigations were motivated by information theory.
Therefore we call the functional equation (4) Kampé de Feriet-Forte equation.

The following result was proved independently and using basically different
methods by C. Baiocchi [2], [3] and Z. Daróczy [4].

Theorem 1. If f ∈ S(R) is continuous and

(5) f(−x) = f(x) + x (x ∈ R)
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holds, then f is either of the following forms

f(x) = ±1

2
{|x| ∓ x} (x ∈ R)

or

f(x) = − 1

A
ln
(
1 + eAx

)
(x ∈ R),

where A ̸= 0 is a constant.

On the basis of the previous results, our aim is to show the following: If
f ∈ S(R) is continuous and not constant then there exists a ∈ R such that
fa(−x) = fa(x) + x (x ∈ R), and we can apply Theorem 1, since fa ∈ S(R) is
continuous.

2. On the Kampé de Feriet-Forte equation on the additive group of

real numbers

Let S(R) denote the set of all the functions f : R → R satisfying the
Kampé de Feriet-Forte equation

(6) f [x+ f(y)] + f(y) = f [y + f(x)] + f(x) (x, y ∈ R).

In what follows we prove the existence of functions f ∈ S(R) nowhere
continuous. For this purpose let A : R → R be an additive function for which
A(1) = 0, A(x) ∈ Q, and A is not constant. Such a function A exists, since we
can choose not zero rational numbers as values of A on the Hamel basis (Hamel
[5], Kuczma [6]). Then f(x) := A(x) (x ∈ R) solves (6), since

f [x+ f(y)] + f(y) = A[x+A(y)] +A(y) = A(x) +A[A(y)] +A(y) =

= A(x) +A(y) +A(y)A(1) = A(x) +A(y),

from which our assertion follows. This solution is obviously nowhere continuous
(and not measurable) (Aczél [1], Kuczma [6]).

Therefore it is natural to assume that f ∈ S(R) is continuous, since finding
the general solutions seems hopeless.

Our aim is to prove the following theorem, from which, applying the
previous results, we obtain all the continuous solutions of equation (6).
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Theorem 2. If f : R → R is a continuous and nonconstant solution of
the Kampé de Feriet-Forte equation (6) then there exists a ∈ R for which

(7) f(−x+ a) = f(x+ a) + x

holds for all x ∈ R.

To prove the theorem we need the following results.

Lemma 1. If f ∈ S(R) is continuous then f is either nonnegative or
nonpositive.

Proof. Supposing the contrary that there exists a continuous f ∈ S(R)
which does not satisfy Lemma 1. Then there are real numbers x1 ̸= x2 such
that f(x1) < 0 and f(x2) > 0. Continuity then implies the existence of a
number x0 between x1 and x2 for which f(x0) = 0. Now substitute x = x0 in
(6), then

(8) f [x0 + f(y)] = 0

holds for all y ∈ R. Since f is continuous, it assumes every value in the interval
[f(x1), f(x2)], that is, by (8),

(9) f(t) = 0 if t ∈ [x0 + f(x1), x0 + f(x2)].

We show by induction that

(10) f(t) = 0 if t ∈ [x0 + nf(x1), x0 + nf(x2)]

for any natural number n. For n = 1 our assertion is true because of (9). Now
suppose that (10) holds for some integer n ≥ 1. Let x = u ∈ [x0+nf(x1), x0+
+nf(x2)] be arbitrary in (6), then the assumptions imply

(11) f [u+ f(y)] = 0

for all y ∈ R. Since f takes every value from the interval [f(x1), f(x2)], with
the notation t = u+ f(y), from (11) we obtain

f(t) = 0 if t ∈ [x0 + (n+ 1)f(x1), x0 + (n+ 1)f(x2)],

that is (10) is true for (n+1). Since x0+nf(x1) → −∞ and x0+nf(x2) → ∞,
(10) implies f(t) = 0 for all t ∈ R, which is a contradiction. This completes
the proof of the Lemma.
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In the following we determine all the nonconstant and continuous functions
f ∈ S(R) satisfying

Nf := {x | x ∈ R, f(x) = 0} ̸= ∅.

Lemma 2. If f ∈ S(R) is nonnegative, nonconstant, continuous and
Nf ̸= ∅, then for any ξ ∈ Nf

f(t) = 0 if t ≥ ξ.

Proof. Since f is not constant, there exists η ∈ R such that f(η) = b > 0.
Continuity then implies [0, b] ⊂ F , where F := {f(x) | x ∈ R}. We prove by
induction that for any natural number n we have

(12) f(ξ + nz) = 0 for all z ∈ [0, b].

Let x = ξ in (6), then
f [ξ + f(y)] = 0

for all y ∈ R, that is with the notation z = f(y),

(13) f(ξ + z) = 0

for all z ∈ F . This implies (13) for all z ∈ [0, b]. With this we have shown
(12) for n = 1. Now suppose that (12) holds for some natural number n ≥ 1.
Substituting ξ + nz (z ∈ [0, b] arbitrary) in (6) we have

f [ξ + nz + f(y)] = 0

for all y ∈ R, that is, with the notation z = f(y),

f [ξ + (n+ 1)z] = 0

holds for all z ∈ [0, b]. With this we have proved (12) for all n ∈ N.

Now take any t > ξ. Then there exists a natural number n for which
t− ξ

n
∈ [0, b], that is t can be written as t = ξ + nz with z ∈ [0, b]. Thus by

(12), f(t) = 0.

Lemma 3. If f ∈ S(R) is nonnegative, nonconstant, continuous and
Nf ̸= ∅, then

a := inf Nf > −∞.
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Proof. If a = −∞ choose an arbitrary x ∈ R. Then there exists ξ ∈ Nf

such that ξ < x. By Lemma 2 f(x) = 0, so f is everywhere zero. This
contradicts the assumption that f is nonconstant, which proves the Lemma.

Lemma 4. Let f ∈ S(R) be nonnegative, nonconstant, continuous and
Nf ̸= ∅. With the notation a := inf Nf > −∞, let

(14) g(x) := f(x+ a) (x ∈ R).

Then g : R → R is nonnegative, nonconstant, continuous, and g ∈ S(R) having
the following properties:

g(t) = 0 if t ≥ 0;(i)

g(t) > 0 if t < 0.(ii)

Proof. (14) obviously implies that g is nonnegative, nonconstant, con-
tinuous. On the other hand, g ∈ S(R). Properties (i) and (ii) follow from
Lemmas 2 and 3.

Lemma 5. If g ∈ S(R) is continuous and properties (i) and (ii) of Lemma
4 are fulfilled then

(15) g(t) = −t if t < 0.

Proof. Let x < 0 be fixed and take an arbitrary y ∈ [−g(x), 0]. Then
0 ≤ y + g(x), and since g ∈ S(R), (6) and (i) imply

g[x+ g(y)] + g(y) = g(x).

Hence, with the notation z := x+ g(y), we have

g(z) = g(x)− g(y) = g(x)− (z − x) = −z + g(x) + x

for all z ∈ [x, x + g(−g(x))]. This means that for any x < 0 there exists a
number εx := g(−g(x)) > 0 such that

g(z) = −z + bx

holds in the closed interval [x, x+ εx]. On the other hand, from the continuity
of g necessarily bx = b (b is constant) follows for all x. However, since g(0) = 0,
this yields b = 0, that is g(x) = −x for all x. Moreover, the function g defined
as above satisfies (6).
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On the basis of our previous results we can state the following

Theorem 3. If f : R → R is a nonconstant continuous solution of the
Kampé de Feriet-Forte equation (6) with

Nf := {x | x ∈ R, f(x) = 0} ≠ ∅,

then there exists a number a ∈ R such that either

(16) f(x) =
1

2
{|x− a| − (x− a)}

or

(17) f(x) = −1

2
{|x− a|+ (x− a)}

holds for all x ∈ R. In both cases the existing a ∈ R satisfies (7) for all x ∈ R.

Proof. By Lemma 1, f keeps the sign and we distinguish between two
cases.

(i) If f(x) ≥ 0 for all x ∈ R then, with the notation a = inf Nf > −∞
(Lemma 3), applying Lemmas 4 and 5 we have that the function g defined in
(14) satisfies

g(t) =
1

2
{|t| − t} (t ∈ R).

This gives the solution (16).

(ii) If f(x) ≤ 0 for all x ∈ R define the following function

f∗(x) := −f(−x) (x ∈ R).

Then f∗ ∈ S(R), f∗ is continuous, nonconstant, moreover Nf∗ ̸= ∅. Thus,
with the notation −a := inf Nf∗ > −∞, we have case (i), and we obtain the
solution (17).

At last, an easy computation shows that in both cases there exists a ∈ R
for which (7), that is

f(−x+ a) = f(x+ a) + x (a ∈ R)

holds.

This also means that if f ∈ S(R) is nonconstant, continuous and Nf ̸= ∅,
then Theorem 2 holds, but in addition, with the help of the existing a ∈ R, f
can be completely given in either of the forms (16) or (17).
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In what follows we have to examine the case when f ∈ S(R) is nonconstant,
continuous and Nf ̸= ∅. By Lemma 3, then f is either everywhere positive or
everywhere negative.

Lemma 6. If f ∈ S(R) is positive and continuous, then f is monotone
decreasing.

Proof. Let

(18) gn(x) := nf(x)− x (x ∈ R)

for any natural number n. We show that gn : R → R is injective. If g1(x) =
= g1(y) then f(x) + y = f(y) + x. We have two possible cases, namely, f(x) =
= f(y) and f(x) ̸= f(y). In the first case, x = y and the second case contradicts
(6). Thus g1 : R → R is injective.

Now suppose that gn : R → R is injective for some natural number n ≥ 1
and let gn+1(x) = gn+1(y). Then (6) implies

gn[x+ f(y)]− gn[y + f(x)] =

= nf [x+ f(y)]− x− f(y)− nf [y + f(x)] + y + f(x) =

= n{f [x+ f(y)] + f(y)− f [y + f(x)]− f(x)}+
+ (n+ 1)f(x)− x− (n+ 1)f(y) + y =

= gn+1(x)− gn+1(y) = 0.

Since gn is injective, we have x + f(y) = y + f(x), that is g1(x) = g1(y),
from which x = y follows. Thus we have proved by induction that gn is injective
for all n ∈ N.

On the other hand,

f(x) =
gn(x) + x

n
> 0

yields
gn(x) > −x (x ∈ R),

from which we obtain
lim
x→∞

gn(x) = ∞.

Since gn : R → R is continuous and injective, the above assertion implies that
gn is strictly monotone decreasing. If x < y then

f(x)− f(y) =
1

n
[gn(x)− gn(y)] +

1

n
(x− y) >

1

n
(x− y)
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for all n ∈ N, and taking the limit n→ ∞, we have

f(x) ≥ f(y),

that is f is monotone decreasing.

Lemma 7. If f ∈ S(R) is positive, nonconstant and continuous, then

(19) lim
x→∞

f(x) = 0 lim
x→−∞

f(x) = ∞,

and f is strictly monotone decreasing.

Proof. By Lemma 6, the limits

lim
x→∞

f(x) = α lim
x→−∞

f(x) = β

exist in the extended set of real numbers, and 0 ≤ α ≤ β ≤ ∞, because f is
not constant. If α > 0 or β < ∞ then taking the limit y → ∞ (or y → −∞)
in (6) we obtain f(x+ α) = f(x) (or f(x+ β) = f(x)) for all (x ∈ R), that is
f periodic with positive period. Then, by Lemma 6, f is constant, which is a
contradiction. Thus (19) is true.

Now suppose that there exist x < y with f(x) = f(y), i.e. f is not strictly
monotone decreasing (but because of Lemma 6, monotone decreasing). Then
by 0 < y − x and (19), there exists (t ∈ R) for which

y − x = f(t).

We show that

(20) f [x+ nf(t)] = f(y)

for any natural number n. For n = 1 (20) obviously holds. If (20) holds for
some n ≥ 1 then, by (6),

f [x+ (n+ 1)f(t)] = f [x+ nf(t) + f(t)] =

= f [t+ f(x+ nf(t))] + f(x+ nf(t))− f(t) =

= f [t+ f(y)] + f(y)− f(t) = f [t+ f(x)] + f(x)− f(t) =

= f [x+ f(t)] = f(y).

Now taking the limit n→ ∞, we have

f(y) = 0,
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which is a contradiction.

Lemma 8. If f ∈ S(R) is positive, nonconstant and continuous, then
there exists the finite limit

(21) lim
x→−∞

[f(x) + x].

Proof. By Lemma 7, there exists the inverse function f−1 : R+ → R,
which is continuous and strictly monotone decreasing. From (6) we have for
all t > 0 and (x ∈ R)

(22) f(x+ t) + t− f(x) = f [f−1(t) + f(x)],

whence, by (19),
lim

x→−∞
[f(x+ t) + t− f(x)] = 0.

The substitution t = 1 gives

(23) lim
x→−∞

[f(x+ 1) + 1− f(x)] = 0.

(23) implies that there exists a real number K such that

2 > f(x+ 1)− f(x) + 1 if x < K.

In equation (22) replace t by {2 − [f(x + 1) − f(x) + 1]}, which is positive if
x < K, and replace x by {f(x+ 1) + x}. Then, by (6),

f{f−1[2− (f(x+ 1)− f(x) + 1)] + f [f(x+ 1) + x]} =

= f [2− (f(x+ 1)− f(x) + 1) + f(x+ 1) + x]+

+ 2− (f(x+ 1)− f(x) + 1)− f [f(x+ 1) + x] =

= f [1 + x+ f(x)] + f(x) + 1− f(x+ 1)− f [x+ f(x+ 1)] =

= f [x+ f(x+ 1)] + f(x+ 1) + 1− f(x+ 1)− f [x+ f(x+ 1)] = 1

holds for all x < K. From this last equation we have

(24) f(x+ 1) + x+ 1 = 1 + f−1[f−1(1)− f−1(2− (f(x+ 1)− f(x) + 1))]

for all x < K. Applying (23), equation (24) implies

lim
x→−∞

[f(x) + x] = 1 + f−1[f−1(1)− f−1(2)],
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which proves the Lemma.

Now we can formulate the following result.

Theorem 4. If f ∈ S(R) is positive, nonconstant and continuous, then
there exists a ∈ R such that

f(−x+ a) = f(x+ a) + x (x ∈ R)

holds.

Proof. Let
g(x) := f(x) + x (x ∈ R).

Then equation (6) implies that

f [x+ f(y)] + f(y) = g[x+ g(y)− y]− x− g(y) + g(y)− y = g[x− y+ g(y)]− x

is symmetric in x, y, that is

g[x− y + g(y)]− x = g[y − x+ g(x)]− y.

In this equation put t = x− y, then

(25) g[t+ g(y)] = t+ g[−t+ g(y + t)]

holds for all t, y ∈ R. By Lemma 8, there exists the finite limit

lim
y→−∞

g(y) = lim
y→−∞

[f(y) + y] =: a.

Take y → −∞ in (25), then we have

g(t+ a) = t+ g(−t+ a)

for all t ∈ R, which implies the assertion of the Theorem.

Analogously we obtain the following

Theorem 5. If f ∈ S(R) is negative, nonconstant and continuous, then
there exists a∗ ∈ R such that (7), that is

f(−x+ a∗) = f(x+ a∗) + x (x ∈ R)

holds.

Proof. In this case let

f∗(x) := −f(−x) (x ∈ R),
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then f∗ ∈ S(R) is positive, nonconstant and continuous. Thus, by Theorem 4,
there exists a ∈ R such that

f∗(−x+ a) = f∗(x+ a) + x (x ∈ R).

From this we have

f(−x− a) = f(x− a) + x (x ∈ R),

that is with the notation a∗ := −a, the assertion of the Theorem follows.

With the help of the previous results we can easily prove Theorem 2.

Proof (of Theorem 2). If f ∈ S(R) is nonconstant and continuous,
then there are two possibilities: either Nf ̸= ∅ or Nf = ∅. In the first case
Theorem 3 implies the assertion. In the second case f is everywhere positive
or everywhere negative, and the assertion of Theorem 2 follows from Theorems
4 and 5.

3. Continuous, translative and quasi-commutative operations on the

additive group of real numbers

On the basis of the above and previous results we can state the following
theorem.

Theorem 6. If ◦ : R2 → R is a continuous, translative and quasi-
commutative operation then it is one of the following operations:

x ◦ y = y + c (x, y ∈ R) and a ∈ R is constant;(i)

x ◦ y = min{x− a, y} (x, y ∈ R) and a ∈ R is constant;(ii)

x ◦ y = max{x− a, y} (x, y ∈ R) and a ∈ R is constant;(iii)

x ◦ y =
1

A
ln
(
eA(x−a) + eAy

)
(x, y ∈ R) and a ∈ R,(iv)

A ̸= 0 are constant.

Proof. Under these conditions f(x) := −x ◦ 0 (x ∈ R is continuous and
f ∈ S(R), moreover

(26) x ◦ y = y − f(x− y) (x, y ∈ R).

There are the following possible cases:
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(1) f(x) = −c (x ∈ R) for some constant c ∈ R. Then (26) implies the
solution (i);

(2) If f is not constant, then according to Theorem 3, suppose that Nf ̸= ∅.
Then the solutions (16) and (17) give the solutions (ii) and (iii) for some
constant a ∈ R.

(3) If f is not constant and Nf ̸= ∅, then, by Theorem 2, there exists a ∈ R
such that (7) holds, that is the function fa(x) := f(x+a) (x ∈ R) satisfies

fa(−x) = fa(x) + x (x ∈ R).

On the other hand, fa ∈ S(R) and fa is continuous, thus by Theorem 1,
there exists A ̸= 0 for which

fa(x) = − 1

A
ln(1 + eAx) (x ∈ R).

From this the solutions (iv) follow.
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