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Abstract. In several papers of Lakatos (see e.g. [3, 4]) a new queueing

discipline was introduced and investigated, as follows: If the channel is

busy or at least one customer is on the orbit then an arriving customer is

admitted to the service channel with a delay of the magnitude kT , where

T is a constant whereas k is minimal under the condition that the FIFO

(FCFS) queueing discipline is still kept. Unlike this, the usual retrial queue

is such that ”first returned from the orbit - first served” discipline holds.

The paper solves the following problem: which of the two disciplines

would be preferable, should one assume that the cycle length T is small?

The comparison is made on the basis of a cost function σ measuring the

cost associated with the delay of a customer during time x. The paper

proves if σ(x) is a strictly increasing convex function, then the Lakatos

type discipline leads to a smaller mean cost per customer than the usual

retrial one, the cycle length T being small enough.

Queueing systems in which demands arriving into the system, when all
the service channels are busy and there are no free waiting places, can come
back for the service after a period of time, are named retrial queueing systems.
Demands which come back for later service are said to be in the orbit. For
the last two decades the retrial queueing systems theory has been significantly
developed, see [1, 2].

The general retrial queueing system is described, for instance, in [1]. As
a rule, the retrial queueing system model provides for the following service
discipline: when a channel becomes free, the first demand to find the free
channel is taken into service, irrespective of it arrives from the orbit or from
the primary input flow.
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A special type of retrial systems was considered by the Hungarian math-
ematician Laszlo Lakatos. This is the so-called cyclic-waiting time queueing
system. For the first time, such a model of a single-channel queueing system
with constant orbit time, without losses, without waiting places and with an
unlimited orbit capacity was considered by Lakatos [3]. This model arose
as part of an aircraft landing process, and in connection with testing of a
simulation model. The Lakatos model is characterized by the demands being
serviced in tum, i.e. the system has FCFS (first come, first served) service
discipline. For the cyclic-waiting time system this means that when all the
service channels are busy, the demand is rejected and goes into the orbit. The
demands arriving after it cannot be serviced before it. Thus, the service is
carried out in tum, in the order of the actual arrival times of the demands.

Some modifications, generalizations and limitations of Lakatos-type retrial
queueing systems were investigated in Ukraine, for instance, see [5, 6].

Note that the sphere of applications of retrial queueing systems is wide
enough: computer networks (local and global), telephone systems, computer
systems, aircraft landing systems, customer service systems and so on.

Three queueing systems with Poissonian input flow are being considered
in this work:

1) QT : an M/G/1 queueing system with service time distribution function
BT (x) = B(x− T ), T ≥ 0;

2) RT : the mentioned above M/G/1 retrial queue with constant orbit time
which is equal to T , and service time distribution function B(x);

3) LT : the mentioned above M/G/1 Lakatos-type queueing system with
constant orbit time which is equal to T , and service time distribution
function B(x).

Let λ be the parameter of input flow. Denote tn - the arrival time of the
n-th demand, n ≥ 0; Xn = tn − tn−1 = n-th inter-arrival time, n ≥ 1; Sn - the
service time of the n-th demand. Then

B(x) = P{Sn ≤ x}, n ≥ 0.

Denote by τ =
∞∫
0

xdB(x) - the mean service time; β(s) =
∞∫
0

e−sxdB(x) - the

Laplace-Stieltjes transform of service time distribution function.

Let σ(x) be a financial loss function, i.e. this is the loss which is associated
with a demand during the time period x ≥ 0. Suppose σ(0) = 0, σ(x) is an
increasing, strictly convex function for x ≥ 0, i.e.

2σ(x) < σ(x− h) + σ(x + h)
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for h > 0, x ≥ h.

Let Wn denote the waiting time of the n-th demand (from the moment
of arrival until the start of its service). Note that the busy period for retrial
queues in this paper is the period of time when at least one demand is being
serviced or in the orbit. Let N denote the number of demands serviced within
the busy period.

Denote
N = E{N},

σN = σ(W0) + . . . + σ(WN−1),

σN = E{σN},

σ = lim
n→∞

1
n

E{σ(W0) + . . . + σ(Wn−1)}.

Note that all the quantities being introduced are marked with the system
symbol when it is necessary, for instance σN [QT ] refers to the QT queueing
system.

From the well-known theory [9] for all the systems which are being
considered

(1) σ =
σN

N
, N < ∞.

The aim of this paper is to prove the following theorem.

Theorem 1. For α > 0 let

(2) σ(x) ≤ ceαx, x ≥ 0

and

(3) λ(β(−α)− 1) < α.

Then there exists a T0 > 0, such that

(4) σ[LT ] < σ[RT ] < ∞

for 0 < T < T0.

Proof. Consider the structure of the first busy period for the QT system
[0, Z[QT ]] and for the LT system [0, Z[LT ]] (see Fig. 1), having assumed that
for both cases tk and Sk are the same.
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Having applied a well-known formula for the M/G/1 queueing system we get

(8) N [QT ] =
1

1− λ(τ + T )
, N [Q0] =

1
1− λτ

.

Formulas (7) and (8) imply

Lemma 1. For ρ = λτ < 1

(9) lim sup
T→0

σ[LT ] ≤ lim sup
T→0

σ[QT ].

We will use the following well-known lemma from the theory of Laplace-Stieltjes
transforms.

Lemma 2. Let (FT (x), T ≥ 0) be a family of distributions on R+;

GT (s) =

∞∫

0

e−sxdFT (x), T ≥ 0,

and let σ(x) be a monotonic function satisfying the condition

(10) |σ(x)| ≤ ceαx, x > 0.

If for any A > 0

(11) GT (−α + it) → G0(−α + it), T → 0,

uniformly in |t| ≤ A, then

(12)

∞∫

0

σ(x)dFT (x) →
∞∫

0

σ(x)dF0(x), T → 0.

Denote by FT (x) the distribution function of stationary virtual waiting time.
Then

(13) σ[QT ] =

∞∫

0

σ(x)dFT (x)

if the RHS of (13) is limited for a given T ≥ 0.
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The formula (10) implies

(14) σ[QT ] ≤ c

∞∫

0

eαxdFT (x) = cGT (−α).

From the Pollaczek-Khinchin formula

(15) GT (s) =
1− ρ

1− λ

s
(1− βT (s))

,

where

(16) βT (s) = β(s)e−sT .

Condition (3) implies that the denominator in (15) is separated from zero, and
moreover (11) holds. Lemma 2 implies

(17) σ[QT ] → σ[Q0], T → 0,

then from (3) and (9)

(18) lim sup
T→0

σ[LT ] ≤ σ[Q0].

Consider the first busy period in the RT queueing system. It consists of some
number N = N [RT ] of service times S0, . . . , SN−1 and of intervals between
them, each of them no longer than T . Denote by D0, D1, D2 the numbers
of demands arrived during the service times S0, S1, S2 and define an event
Γd1d2d3n to be one in which

(i) Di = di, i = 0, 1, 2;
(ii) N = n;
(iii) no more demands arrived during the service intervals.

Thus

(19)
∑

d0,d1,d2,n

PRT
{Γd1d2d3n} ≤ 1,

here and further the symbol RT means that this refers to the system RT . Thus

(20) σN [RT ] ≥
∑

d0,d1,d2,n

ERT
{σN : Γd1d2d3n} .
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uniformly in any interval 0 < δ ≤ S0 < ∞. Formulas (26), (27) imply

(28)

E{σ(S0 − t2) + σ(S0 + S1 − t1)− σ(S0 − t1)− σ(S0 + S1 − t2)} ≥

≥ λ2

4
e−2λT

∞∫

0

x2e−λxdB(x)




∞∫

0

e−λxdB(x)




2

+ o(1),

when T → 0. Together with (24) and (27) this implies

(29) lim inf
T→0

σN [RT ] > σN [Q0].

It is evident that N [RT ] ≤ N [QT ]; then (29) implies

lim inf
T→0

σ[RT ] = lim inf
T→0

σN [RT ]
N [RT ]

>
σN [Q0]
N [Q0]

N [Q0]
N [RT ]

≥ σ[Q0]
N [Q0]
N [QT ]

,

or

(30) lim inf
T→0

σ[RT ] > σ[Q0]
1− λ(τ + T )

1− λτ
.

Then (18) and (30) imply (4).
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