
Annales Univ. Sci. Budapest., Sect. Comp. 23 (2004) 213-227

HOMOGENEOUS FINITE–SOURCE RETRIAL QUEUES
WITH SERVER AND SOURCES

SUBJECT TO BREAKDOWNS AND REPAIRS

J. Roszik (Debrecen, Hungary)

Abstract. The aim of this paper is to investigate a retrial queueing system

with a finite number of homogeneous non-reliable sources of calls and a

single non-reliable server, that is the sources and the server are subject to

random breakdowns and repairs. The novelty of the present paper is the

non-reliability of the sources.

The main performance and reliability measures are derived, and the

MOSEL tool is used to formulate the model and to calculate these measures.

Several numerical results are graphically displayed to illustrate the effect

of the non-reliability of the sources and the server on some of the system

measures.

All random variables involved in the model construction are assumed

to be exponentially distributed and independent of each other.

1. Introduction

Retrial queues (or queueing systems with repeated attempts) are charac-
terized by the following feature: a primary request finding all servers busy upon
arrival leaves the service area but after some random time repeats his demand.
This feature plays a special role in many computer and communication systems
and networks as well as in other practical applications. For more detailed
information and results on this type queueing systems, see for example [7],
[10], [11]. We mention that there are possible other rules for the repetition of

Research is partially supported by German-Hungarian Bilateral Inter-
governmental Scientific Cooperation, OMFB-DLR No. 21-2000, Hungarian
Scientific Research Found OTKA T0-34280/2000 and FKFP grant 0191/2001.



214 J. Roszik

demand, e.g. [18], [19] consider the case of constant repetition time (so-called
cyclic-waiting systems), a comparison of classical retrial and cyclic-waiting
systems is given in [20].

Finite-source queueing models with quasi-random input are often used for
performance evaluation of computer and communication systems. A complete
survey can be found on queueing systems without retrials in [22]. The first
paper concerning finite-source retrial queues was published by Kornyshev [15]
in 1969, then there was a rapid growth in a number of papers dealing with
them. For some fundamental results on this topic see [6], [11], [12], [13], [14].

The components of the real systems may be subject to random breakdowns
(see [16], [23]), so it is important to investigate non-reliable queueing systems
(see [1], [3], [21]) as well as non-reliable retrial queues where the sources and
the server may be subject to random breakdowns and repairs. Non-reliable
infinite-source retrial queues were studied, for example in the works [5], [8],
[17], [24] and finite-source retrial queues in [4].

The purpose of this paper is to give the main stationary performance and
reliability measures of the non-reliable model described in the next section, and
to illustrate graphically the effect of changing various parameters on them. The
performance and reliability modeling tool MOSEL (Modeling, Specification and
Evaluation Language), see [9], is used to formulate the model and to obtain
the system performance measures. The analytical results can be graphically
displayed using IGL (Intermediate Graphical Language) which belongs to the
MOSEL tool.

This paper can be regarded as the continuation of the work [4] that
analyzes the homogeneous finite-source retrial queues with reliable sources and
a single server subject to breakdowns and repairs.

The organization of the paper is as follows. Section 2 contains an
accurate description of the model, the derived main performance and reliability
measures, the MOSEL implementation of the model and its short explanation
and validation. Section 3 is devoted to some graphically displayed numerical
results with comments. Finally, the paper ends with a conclusion.

2. The M/M/1//K retrial queueing model with non-reliable server
and sources

Consider a finite-source single server retrial queueing system, where pri-
mary calls are generated by K (1 < K < ∞) sources. The server can be in



Homogeneous finite-source retrial queues with breakdowns and repairs 215

operational (up) or non-operational (down) states, and it can be idle and busy.
Each of the sources can be in four states: generating a primary call (busy),
sending repeated calls, under service and failed. If a source is busy at time t, it
can generate a primary call during interval (t, t+dt) with probability λdt+o(t).
If the server is up and idle at the time of the arrival of a call then the call starts
to be served immediately, the source moves into the under service state and
the server moves into busy state. The service is finished during the interval
(t, t + dt) with probability µdt + o(t) if the server is available.

The server can fail during the interval (t, t+dt) with probability δdt+o(t)
if it is idle, and with probability γdt + o(t) if it is busy. If δ = 0, γ > 0 or
δ = γ > 0 active or independent breakdowns can be discussed, respectively. If
the server fails in busy state, it either continues servicing the interrupted call
after it has been repaired or the interrupted request returns to the orbit. The
repair time of the server is exponentially distributed with a finite mean 1/τ . If
the server is failed two different cases can be treated. Namely, blocked sources
case when all the operations are stopped except from the repair of the server.
In the non-blocked (intelligent) sources case only service is interrupted, but all
the other operations are continued.

If the server is busy (or failed in the non-blocked case) at the time of the
arrival of a call then the source starts generation of a Poisson flow of repeated
calls with rate ν until it finds the server free and up. After service the source
becomes busy and it can generate a new primary call, and the server becomes
idle, so it can serve a new call.

Sources can be non-operational only in busy state. If a source is busy
at time t it can fail during the interval (t, t + dt) with probability ηdt + o(t)
and then it moves to the repairman who follows FIFO discipline for the source
breakdowns and gives preemptive priority to the server failure. The repair time
of the sources is exponentially distributed with a finite mean 1/κ. All the times
involved in the model are assumed to be mutually independent of each other.

2.1. The underlying Markov chain

The system state at time t can be described with the process X(t) =
= {Y (t); C(t); N(t); Z(t)}, where Y (t) = 0 if the server is up, Y (t) = 1 if
the server is failed, C(t) = 0 if the server is idle, C(t) = 1 if the server is
busy, N(t) is the number of sources of repeated calls and Z(t) is the number of
failed sources at time t. Because of the exponentiality of the involved random
variables this process is a Markov chain with a finite state space.

Since the state space of the process {X(t), t ≥ 0} is finite, the process is
ergodic for all values of the rate of generation of primary calls. From now on
we will assume that the system is in the steady state.



216 J. Roszik

We define the stationary probabilities:

P (q; r; j; k) = lim
t→∞

P{Y (t) = q, C(t) = r, N(t) = j, Z(t) = k},

q = 0, 1 r = 0, 1, j = 0, . . . ,K∗, k = 0, . . . ,K − r − j,

where

K∗ =

{
K − 1 for blocked case,

K − r for non-blocked case.

To obtain the performance and reliability measures the tool MOSEL is used to
get the state probabilities in the equilibrium. In this way, by implementing the
model in MOSEL, we get these probabilities more easily and make the model
more practically usable.

Once we have obtained the steady state probabilities the main system
performance measures can be derived in the following way:

• The availability of the server

AS =
1∑

r=0

K∗∑

j=0

K−r−j∑

k=0

P (0, r, j, k).

• The mean number of sources of repeated calls

N = E[N(t)] =
1∑

q=0

1∑
r=0

K∗∑

j=0

K−r−j∑

k=0

jP (q, r, j, k).

• The mean number of calls staying in the orbit or in service

M = E[N(t) + C(t)] = N +
1∑

q=0

K−1∑

j=0

K−1−j∑

k=0

P (q, 1, j, k).

• The mean number of operational sources

NO = K −
1∑

q=0

1∑
r=0

K∗∑

j=0

K−r−j∑

k=1

kP (q, r, j, k).

• The utilization of the server

US =
K−1∑

j=0

K−1−j∑

k=0

P (0, 1, j, k).



Homogeneous finite-source retrial queues with breakdowns and repairs 217

• The utilization of the repairman

UR =
1∑

r=0

K∗∑

j=0

K−r−j∑

k=1

P (0, r, j, k) +
1∑

r=0

K∗∑

j=0

K−r−j∑

k=0

P (1, r, j, k).

• The utilization of the sources

USO =





NO −M

K
AS for blocked case,

NO −M

K
for non-blocked case.

• The overall utilization

UO = US + KUSO + UR.

• The mean rate of generation of primary calls

λ =





λE[K − C(t)−N(t)− Z(t); Y (t) = 0] for blocked case,

λE[K − C(t)−N(t)− Z(t)] for non-blocked case.

• The mean response time
E[T ] = M/λ.

• The mean waiting time
E[W ] = N/λ.

• The blocking probability of a primary call

B =

=





λE[K − C(t)−N(t)− Z(t); Y (t) = 0; C(t) = 1]
λ

for blocked case,

λE[K − C(t)−N(t)− Z(t); C(t) = 1]
λ

for non-blocked case.

2.2. The MOSEL implementation

This section demonstrates how this queueing system can be modeled and
the main performance measures can be calculated by the MOSEL (Model-
ing, Specification and Evaluation Language) tool. The technical details of



218 J. Roszik

programming can be seen in [9]. The following MOSEL program belongs to
the type of model where the service is continued after the server’s breakdown
and repair, and operations are blocked during the server is not operational.
It does not contain the picture section, which is needed to generate various
graphical representations of the measures. The figures in the next section
were automatically generated by the tool with the corresponding picture part.
The following terminology is used in the MOSEL program: the server and the
sources are referred as a CPU and terminals.

/* retrialnr-hom-cont.msl begins */

/*------------------------Definitions-------------------------*/

]define NT 5

/*=============== No changes required below ==================*/

VAR double prgen;

VAR double prretr;

VAR double prrun;

VAR double cpubreak idle;

VAR double cpubreak busy;

VAR double cpurepair;

VAR double termbreak;

VAR double termrepair;

enum cpu states {cpu busy, cpu idle};
enum cpu updown {cpu up, cpu down};
/*---------------- Node definitions ------------------------*/

NODE busy terminals[NT] = NT;

NODE retrying terminals[NT] = 0;

NODE waiting terminals[1] = 0;

NODE failed terminals[NT] = 0;

NODE cpu state[cpu states] = cpu idle;

NODE cpu[cpu updown] = cpu up;

/*------------------ Transitions ----------------------------*/

IF cpu==cpu up FROM cpu idle, busy terminals{
TO cpu busy, waiting terminals W prgen*busy terminals;

TOM cpu idle, failed terminals W termbreak*busy terminals;

}
IF cpu==cpu up AND cpu state==cpu busy FROM busy terminals{



Homogeneous finite-source retrial queues with breakdowns and repairs 219

TO retrying terminals W prgen*busy terminals;

TO failed terminals W termbreak*busy terminals;

}
IF cpu==cpu up FROM cpu idle, retrying terminals

TO cpu busy, waiting terminals W prretr*retrying terminals;

IF cpu==cpu up FROM cpu busy, waiting terminals

TO cpu idle, busy terminals W prrun;

IF cpu state==cpu idle FROM cpu up TO cpu down W cpubreak idle;

IF cpu state==cpu busy FROM cpu up TO cpu down W cpubreak busy;

FROM cpu down TO cpu up W cpurepair;

IF cpu==cpu up FROM failed terminals

TO busy terminals W termrepair;

/*------------------------- Results ------------------------*/

RESULT>> if (cpu==cpu up AND cpu state==cpu busy) cpuutil += PROB;

RESULT>> if (cpu==cpu up) goodcpu += PROB;

RESULT>> if (cpu==cpu up) busyterm += (PROB*busy terminals);

RESULT>> termutil = busyterm / NT;

RESULT>> if (cpu==cpu up) retravg += (PROB*retrying terminals);

RESULT>> if (failed terminals>0)

failedtermavg += (PROB*failed terminals);

RESULT>> goodterminals = NT - failedtermavg;

RESULT>> if (cpu==cpu down OR failed terminals>0)

repairutil += PROB;

RESULT>> if (waiting terminals>0) waitall +=

(PROB*waiting terminals);

RESULT>> if (retrying terminals>0)

retrall += (PROB*retrying terminals);

RESULT>> resptime =

(retrall + waitall) / NT / (prgen * termutil);

RESULT>> overallutil = cpuutil + busyterm + repairutil;

/* retrialnr-hom-cont.msl ended */

The declaration part defines the number of terminals (NT), this is the
only program code line, that must be modified when modeling larger systems.
We define the five parameters for the terminals: prgen denotes the rate of
primary call generation, prretr references to the rate of repeated call generation,
prrun denotes the service rate, and termbreak and termrepair denote the failure



220 J. Roszik

and repair rates. The cpubreak idle, cpubreak busy and cpurepair variables
denote the failure rate in the two CPU states and the repair rate for the CPU.
The value of the terminal and CPU parameters must be given when the program
is running. The CPU has two states: idle and busy, and it can be up or failed
in both states.

The node part defines the nodes of the system. Our queueing network
contains 6 nodes: one node for the number of busy terminals (primary call
generation, every terminal is busy when the system starts), the number of
retrying terminals (repeated call generation), the number of waiting terminals
(job service at the CPU) and the number of failed terminals, respectively, and
two pieces for the CPU (which is idle and up at the starting time).

The transition part describes how the system works. The first transition
rule defines the successful primary call generation: the CPU moves from the
idle state to busy and the terminal from busy to waiting. During primary
call generation the terminal can fail. In this case the CPU remains idle, and
the terminal moves to state failed. The second rule shows an unsuccessful
primary call generation: if the CPU is busy when the call is generated then
the terminal moves to state retrying. The terminal can fail like in the first
rule. The third rule handles the case of the successful repeated call generation:
the CPU moves from the idle state to busy and the terminal from retrying to
waiting. The fourth rule describes the request service at the CPU. The fifth
and sixth rules describe the CPU fail in idle and busy state and the seventh rule
shows the CPU repair. The last rule shows the terminal repair: the terminal
moves to state busy, so it can generate a new primary call. Terminals can be
repaired only if the CPU is operational.

Finally the result part calculates some output performance measures.

2.3. Validation of results

The results in the reliable case were validated by the Pascal program given
in [11]. In the case of server’s breakdowns and reliable sources the program
was tested by the results of [4].

In Table 1 some test results are collected when the retrial rates are quite
large. The corresponding performance measures should be very close to each
other in the case of continued service, restarted repeated call generation after
server failure (abbreviated by orbit) and the FIFO discipline which was studied
in [2]. As we can see, the results confirm our expectation, the derived results
are the same up to the 6th decimal digit.











Homogeneous finite-source retrial queues with breakdowns and repairs 225

• In Figure 2 we can see the effect of the retrial rate on the overall system
utilization. At the beginning the overall system utilizations are larger for
the continuous than the non-continuous cases, then it changes and the
difference increases as the retrial rate increases.

• In Figure 3 the effect of the sources’ failure rate is displayed on the mean
response time, the mean number of sources of repeated calls and the mean
number of operational sources. There is a very slight difference between the
continuous and non-continuous cases for the mean number of operational
sources, and the mean response time decreases as the failure rate increases,
that is the the mean number of operational sources decreases.

4. Conclusion

In this paper a homogeneous finite-source retrial queueing system with
non-reliable sources and a single non-reliable server is studied. The novelty of
the investigation is the non-reliability of the sources which makes the system
rather complicated. The MOSEL tool was used to formulate the model and to
calculate some system measures which were graphically displayed to show the
effect of the non-reliability of the server and the sources on the mean response
times of the calls, the overall system utilization, the mean number of sources
of repeated calls and the mean number of operational sources.

Acknowledgement. Special thanks to Béla Almási and János Sztrik,
their help is greatly acknowledged.

References

[1] Almási B., A queueing model for a processor-shared multi-terminal
system subject to breakdowns, Acta Cybernetica, 10 (4) (1993), 273-282.

[2] Almási B., Bolch G. and Sztrik J., Performability modeling of non-
homogeneous terminal systems using MOSEL, 5th International Workshop
of Performability Modeling of Computer and Communication Systems,
Erlangen, Germany, 2001, 37-41.

[3] Almási B. and Sztrik J., Optimization problems on the performance
of a non-reliable terminal system, Computers and Mathematics with Ap-
plications, 38 (1999), 13-21.



226 J. Roszik

[4] Almási B., Roszik J. and Sztrik J., Homogeneous finite-source retrial
queues with server subject to breakdowns and repairs, Technical report,
University of Debrecen, 2002/17.

[5] Artalejo J.R., New results in retrial queueing systems with breakdown
of the servers, Statistica Neerlandica, 48 (1994), 23-36.

[6] Artalejo J.R., Retrial queues with a finite number of sources, J. Korean
Math. Soc., 35 (1998), 503-525.

[7] Artalejo J.R., Accessible bibliography on retrial queues, Mathematical
and Computer Modelling, 30 (1999), 1-6.

[8] Aissani A. and Artalejo J.R., On the single server retrial queue subject
to breakdowns, Queueing Systems, 30 (1998), 309-321.

[9] Begain K., Bolch G. and Herold H., Practical performance modeling,
application of the MOSEL language, Kluwer, 2001.

[10] Falin G.I., A survey of retrial queues, Queueing Systems, 7 (1990), 127-
168.

[11] Falin G.I. and Templeton J.G.C., Retrial queues, Chapman and Hall,
London, 1997.

[12] Falin G.I. and Artalejo J.R., A finite source retrial queue, European
J. of Operational Research, 108 (1998), 409-424.

[13] Falin G.I., A multiserver retrial queue with a finite number of sources of
primary calls, Mathematical and Computer Modelling, 30 (1999), 33-49.

[14] Gomez Corral A., Analysis of a single-server retrial queue with quasi-
random input and nonpreemptive priority, Computers and Mathematics
with Applications, 43 (2002), 767-782.

[15] Kornyshev Y.N., Design of a fully accessible switching system with
repeated calls, Telecommunications, 23 (1969), 46-52.

[16] Kovalenko I.N., Kuznetsov N.Yu. and Pegg P.A., Mathematical
theory of reliability of time dependent systems with practical applications,
John Wiley and Sons, Chichester, 1997.

[17] Kulkarni V.G. and Choi Bong Dae, Retrial queues with server subject
to breakdowns and repairs, Queueing Systems Theory and Applications, 7
(1990), 191-208.

[18] Lakatos L., On a simple continuous cyclic-waiting problem, Annales
Univ. Sci. Budapest. Sect. Comp., 14 (1994), 105-113.

[19] Lakatos L., A retrial system with time-limited tasks, Theory of Stochastic
Processes, 8(24) (3-4) (2002), 249-255.

[20] Mykhalevych K.V., A comparison of a classical retrial M/G/1 queueing
system and a Lakatos-type M/G/1 cyclic-waiting time queueing system,
Annales Univ. Sci. Budapest. Sect. Comp., 23 (2003), 229-238.



Homogeneous finite-source retrial queues with breakdowns and repairs 227

[21] Sztrik J. and Gál T., A recursive solution of a queueing model for a
multi-terminal system subject to breakdowns, Performance Evaluation,
11 (1990), 1-7.

[22] Takagi H., Queueing analysis. A foundation of performance evaluation,
Vol. 2. Finite systems, North-Holland, 1993.

[23] Trivedi K.S., Probability and statistics with reliability, queueing and
computer science applications, Prentice Hall, Englewood Cliffs, 1982.

[24] Wang Jinting, Cao Jinhua and Li Quanlin, Reliability analysis of
the retrial queue with server breakdowns and repairs, Queueing Systems
Theory and Applications, 38 (2001), 363-380.

(Received April 28, 2003)

J. Roszik
Institute of Informatics
University of Debrecen
H-4010 Debrecen, P.O.B. 12
Hungary
jroszik@delfin.unideb.hu






