
Annales Univ. Sci. Budapest., Sect. Comp. 23 (2004) 193-212

METAMATHEMATICAL FUNDAMENTAL CONCEPTS
OF COMPUTER PROGRAMMING

V. Novitzká and B. Novitzky (Košice, Slovakia)

Abstract. In our paper we state that every reasonable question which has

to be answered by a computer must have its mathematical theory as a basis.

This basis is needed for proving the algorithm answering the question. The

algorithm and data can be specified and programmed by languages. The

metamathematics of these languages and programming can be formulated

by concepts of the mathematical logic, set theory, category theory and

universal algebra.

1. Introduction

What is a program? The most popular answer had been given by Niklaus
Wirth as the title of his famous book Data structures + Algorithms = Programs
[14]. But what mean precisely the words ’algorithms’ and ’data structures’?
We are not able to formulate the general meaning of these concepts in an
explicit manner. However, in Wirth’s book it is clear, that an algorithm means
some sequence of statements written in the programming language Pascal,
while data structures are definitions of types and declarations of variables of
uniquely defined types written in the same programming language. But, from
the metamathematical point of view, we need unambiguous formulation of the
essential notions of data structures and algorithms. We take over from this
book only the concept that description of algorithms and data structures are
texts written in some artificial languages with mathematically defined meaning,
i.e. in an unambiguous syntax and semantics.

To characterize exactly the forming of a program we have

• to formulate a reasonable (scientific) question for which we want to find
a reasonable (logically) proved answer, and

194 V. Novitzká and B. Novitzky

• to describe the algorithm and data structures for finding the proved
answer for the specified question.

The languages used for the first task we call specification languages as e.g.
CASL [4] and Larch [8] and the languages for the second task are (procedural,
logical or functional) programming languages, as e.g. Ada [7], Prolog [3] and
Haskell [9]. The task of the program forming, that we call programming, is
to transit from the specification of the question in a mathematically precise
manner to the program which together with data structures algorithmically
answer the specified question. The forming such a program has to guarantee
that the specified problem is decidable (solvable), that the methods of problem
solving have reasonable complexity and that the results of problem solving
are mathematically proved. Without these conditions the universal concept of
programs has no mathematically precise meaning.

We have to consider that a specification (or a program) can be het-
erogeneous, i.e. it may be written in many specification (or programming)
languages and transitions from specifications to programs have to reflect
this heterogeneity. Therefore the programming is actually a transition from
specifications to programs which in the PROSPECTRA project [5] is called
transformation. We use for transitions more mathematical notions arrows.

So, in the metamathematics of programming we have to characterize the
(original) theory of specification, the (target) theory of final program and
an arrow from the original to the target one. In this paper we first give
a foundation of the metamathematical notion of programming and then we
shortly introduce an example of a concrete theory of programming using this
metamathematics.

2. Categories in programming

In the next few definitions we use some ideas of the alternative set theory of
Petr Vopěnka [13]. We begin with description of the notion ’object’. When we
phenomenologically describe our world, we can emphasize some events or things
of it and we decide about them that they have some kind of ’individuality’, i.e.
they differ from others in some sense. We call an object such an event or a
thing. This description of objects includes the fact that they may not exist
yet, but it is possible to create them. Therefore the phrase ’an object exists’
actually means that it is possible to create it. It is the fact, in which our notion
of object differs from the approach of elements of sets in Cantor’s set theory.
Such notion of object is useful in the metamathematics of programming because
during the programming process we really create new objects from ready ones.

Metamathematical fundamental concepts of computer programming 195

We suppose that there are some already created objects which have a
common property, and there are no promoted objects between them. Such
objects form a collection. Let us have a collection where every object has a
uniquely defined property and everyone can be promoted from other objects.
Such collection we call a set. For the so defined sets we can apply Cantor’s
set theory or some its axiomatized version. Elements of a set X are objects
satisfying the common property ’object is an element of the object’, written as
x ∈ X which promotes a set object X from an element object denoted by x.
An unordered pair is a set {x, y}, where x and y are objects. An ordered pair
〈x, y〉 can be defined as the set of two sets by

〈x, y〉 = {{x}, {x, y}}

which uniquely determines objects x and y and the property: ’x is the first
and y is the second element of the ordered pair 〈x, y〉’. This definition can be
extended to ordered n-tuples 〈x1, . . . , xn〉.

A class is a collection of objects with loosely defined common property. A
class is not necessarily a set, however we define also for classes the property:
’object is an element of a class’. Every set is a class; a class which is not a set
is called a proper class. Let X and Y be classes (or sets), we say that X is a
subclass (or subset) of Y, X ⊆ Y , if every element of X is also an element of
Y . A class X is a semiset, if there exists a set Y such that X ⊆ Y .

We assume that all elements of sets and classes were already created.
We define the notion of a semicollection for which we can create and put in
new objects. When we already do not intend to put new objects into the
semicollection, then it becomes a collection. Further, if every object x has a
loose property ϕ(x), then such collection {x|ϕ(x)} with already created objects
becomes a class. In a similar way we can define from such a class also a
set. Because in our metamathematics of programming we deal with objects
created within the program development process, in some cases we use the
notion semicollection which better reflects this property. The property ’object
R is a binary relation’ we define as follows: R is a class and for every y ∈ R
there are y1, y2 such that y = 〈y1, y2〉. We can define the usual properties
of binary relations as reflexivity, symmetricity, antisymmetricity, transitivity
and dichotomicity. Then a reflexive, symmetric and transitive relation is called
equivalence; a reflexive, antisymmetric and transitive relation is called ordering;
and an ordered and dichotomic relation is called linear ordering.

Let X,Y be classes. We define a property ’an object f is a mapping from
X to Y ’, written f : X → Y , as a binary relation which satisfies

(∀x1 ∈ X)(∀y1, y2 ∈ Y)((〈x1, y1〉 ∈ f & 〈x1, y2〉 ∈ f) ⇒ y1 = y2)).

The class X is called domain, Y codomain of the mapping f .

196 V. Novitzká and B. Novitzky

We can use the notions defined above in the introduction of the concept of
category. In the programming process there are frequently such situations
when programmers are interested only in special kinds of mappings called
morphisms and they are not interested in the actual structure of the domains
and codomains of them. Therefore we introduce the known concept of category
[1,12] that we use in defining rather sophisticated concepts needed for exact
description of the program development process.

Definition 1. A category C is a quadruple

C = (CObj,homC, idC, ◦),

where

• CObj is a class of objects;
• homC is a set of the sets homC(A,B) of category morphisms f : A →

→ B, for all objects A,B ∈ CObj;
• idC is a set of identity morphisms idA : A → A, for every object

A ∈ CObj;
• ◦ is an operator called morphism composition which assigns to two

morphisms f : A → B and g : B → C, where A,B, C ∈ CObj a composite
morphism g ◦ f : A → C such that g ◦ f ∈ homC(A,C).

The components of a category C are subjects to the following properties:

1. for each morphism f : A → B, f ∈ homC(A,B), A,B ∈ CObj

idB ◦ f = f = f ◦ idA;

2. the composition of category morphisms is associative, i.e. for morphisms
f : A → B, g : B → C and h : C → D, where A,B, C,D ∈ CObj

h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

3. the sets homC(A,B) for any objects A,B ∈ CObj are pairwise disjoint.

The previous definition of category uses notions object, class and morphism.
These notions are objects and classes in the sense of all set theories. A
morphism is an ordered two element set. We use the ideas of the alternative
set theory when we develop a new program text from the existing ones. Under
a specification (or program) text, we mean a text written in some specification
(or programming) language with modular and hierarchical structures.

Now we introduce (using Cantor’s set theory) several examples of cate-
gories that are useful for our purposes.

Metamathematical fundamental concepts of computer programming 197

Example 1. Category Set of sets.
The category of sets is

Set = (SetObj,homSet, idSet, ◦),

where

• SetObj is the class of all sets;
• homSet is the set of mapping sets from A to B, i.e.

homSet(A, B) = {f : A → B | A,B ∈ SetObj}
for every two sets A,B;

• idSet is the set of identity mapping idA : A → A for every set A;
• ◦ is the operator of mapping composition between sets.

It is trivial that components of Set satisfy category properties, i.e. we can say
that Set is a category.

Let C be a category. There are some special cases of C:

• if C contains exactly one object, it is essentially a monoid;
• if the sets homC(A,B) of morphisms between any two objects A,B

have at most one element, then C is essentially a preordered class;
• if C consists only of objects without morphisms, i.e. for any objects

A,B ∈ Cobj, homC(A,B) = ∅, then C is called discrete category. Clearly, a
discrete category is a class of objects;

• if CObj is empty class, then C is empty category.

Example 2. Category of Ω-algebras.
Let Ω = (ni)i∈I be a set of natural numbers ni, i ∈ I. An Ω-algebra A is

a pair
A = (X, (wi)i∈I)

consisting of a set X and a set of mappings

wi : Xni → X

called ni-ary operations on X. An Ω-homomorphism f : A → A′, where A =
= (X, (wi)i∈I) and A′ = (X ′, (w′i)i∈I), is a mapping f : X → X ′, such that f◦
◦wi = w′i ◦ fni for every i ∈ I.

The category Alg(Ω) of Ω-algebras consists of

• the class of Ω-algebras as objects;

198 V. Novitzká and B. Novitzky

• a set of Ω-homomorphisms between any two objects;
• a set of identical mappings from any object to itself;
• composition is usual composition of homomorphisms.

Composition of Ω-homomorphisms is also Ω-homomorphism and it is
associative, therefore Alg(Ω) is a category.

Example 3. Category Top of topological spaces.

A topological space is a pair (X, I), where X is a set of points and I
is an interior operation satisfying the following properties: Let A,B be sets,
A,B ⊆ X. Then

(i1) I(A ∩B) = IA ∩ IB;
(i2) IA ⊆ A;
(i3) IIA = IA;
(i4) IX = X.

A set IA is called an interior of A; and A is an open set if A = IA.
Let X,Y be topological spaces. A mapping f : X → Y is continuous if

for every open set B ⊆ Y also its counter image under f, f−1(B) ⊆ X is open
set. It is simple to prove that the composition of continuous mappings is also
a continuous mapping [1].

A continuous mapping idX : A → A is the identity on X if idX(A) = A.

Then the category Top = (TopObj,homTop, idTop, ◦) of topological spaces
consists of

• the class TopObj of topological spaces as objects;
• the set homTop of continuous mappings between all objects as

category morphisms;
• the class idTop of identities on all objects;
• composition denoted by operator ◦ is the composition of continuous

mappings.

We will use the category of topological spaces in defining such subtheories
of an arbitrary set theory in which we use some kind of ’continuity’. For
instance, if we define in our theory a concept of probability as a normed measure
on subsets of a topological space.

Example 4. Sequential automaton in the category of sets.

We can nest in the category Set of sets the concept of sequential automa-
ton. This example is important for the reason that we would like to work
out our metatheory of programming so general as it is possible. That means,

200 V. Novitzká and B. Novitzky

A very useful concept in category theory is the principle of duality. Let
C be a category. We get a dual (or opposite) category Copp by changing the
direction of all category morphisms in C.

Every concept and every theorem in category theory comes with its dual
version, where all morphisms are reversed.

Morphisms between categories are called functors.

Definition 2. Let C and C′ be categories. A functor F : C → C′ consists
of

• a mapping F : CObj → C′
Obj;

• and a set of mappings F : homC(A,B) → homC(F (A), F (B)), where
A and B range over CObj, so that for every A ∈ CObj it holds

F (idA) = idF (A)

and
F (g) ◦ F (f) = F (g ◦ f)

for any morphisms f : A → B and g : B → C in C.

We note here that in our metamathematics a functor may create objects
and morphisms of the target category from the ones of the original category
in a mathematically proved manner. This idea is useful in the cases when
the objects of a category are some kind of specification or program written in
some languages. In the next section we describe how to characterize program
development in mathematically proved manner.

An identity functor Id on an arbitrary category C consists of identity
morphism on the class CObj and of the set of identity mappings on homC. Of
course, in this case the target category C is already created.

In Example 4 above we have shown how a sequential automaton can
be represented in the category of sets. By using the concept of functor, we
can determine more general concept of so called F -automaton in an arbitrary
category C as follows.

Example 5. F -automaton.

Let C be a category and let F : C → C be a functor on this category. We
define F -automaton in the category C as a tuple

P = (Q, δ,G, γ, I, λ),

where

Metamathematical fundamental concepts of computer programming 201

• Q,G, I are objects of C; Q is the state object, G is the output object
and I is the initialization object;

• δ, γ, λ are morphisms in C, δ : F (Q) → Q is the next-state morphism,
γ : Q → G is output morphism and λ : I → Q is initialization morphism.

If the functor F is defined on the category of sets, i.e. F : Set → Set by

F (X) = X × S for every set X ∈ SetObj,

F (f) = f ◦ idS for every mapping f from Set,

then such F -automaton is just sequential S-automaton.

Functors are defined as morphisms between categories. It is trivial to
prove that they are closed under composition, which is associative, because it
is the composition of functions between classes. We have introduced identity
functor, too. Therefore we can consider category of categories. But we forbid
the existence of the category of all categories (Russell’s paradox). To avoid
this situation we consider category of small categories, where small category
is such a category whose objects form a set. Then the category Cat of small
categories consists of the class CatObj of small categories as objects and of the
set homCat of functors between them as category morphisms. For every object
C from the category Cat, the identity functor IdC is the identity morphism and
idCat is the set of them. Composition of category morphisms is the composition
of functors, which is associative. We can say that Cat is a category, but it is
not a small category.

Let C be an arbitrary category. A special case of functor is the functor

FC : C → Set

from the category C to the category Set of sets, which assigns to every object
A ∈ CObj its underlying set (without structure) X ∈ SetObj, such that

FC(A) = X

and to every category morphism f : A → B,A, B ∈ CObj is a mapping p :
X → Y defined by

FC(f) = p, where X = FC(A) and Y = FC(B).

Functor FC maps a structured category’s objects to their underlying sets,
i.e. it ’forgets’ the structure of them. Therefore FC is called forgetful functor.
The forgetful functor actually creates its target.

Metamathematical fundamental concepts of computer programming 203

Many programming languages supporting ADTs were developed, e.g. Alphard
[15] with a construction form and Ada with generic packages. But using
an equivalent of ADTs is possible also in logical or functional programming
languages. We have mentioned above that the specifications and programs
can be heterogeneous. Of course, heterogeneous specifications and their
programs necessarily form graphs, i.e. these specifications and programs are
also hierarchical.

The syntax of an ADT we call signature, a known notion from universal
algebra. We call semantics of an ADT as a set of sentences, characterizing
the exact meaning of an ADT of the specified question or answering program.
These sentences can be true of false, therefore we need some model in which we
can test the satisfiability of them because we should like to bypass using the
whole entailment. In the next text we define signatures, sentences and models
from which we form the theories of specifications and programs.

Definition 4. A Signature Σ is a triad Σ = (S,O, P) consisting of

• S, a linear ordered finite set of sorts;
• O, a finite set of (total or partial) function names of the form f :

〈s1, . . . , sn〉 → s, where n is the arity of f , 〈s1, . . . , sn〉 → s is its profile and
s1, . . . , sn, s ∈ S;

• P , a finite set of predicate names of the form p : 〈s1, . . . , sn〉, where n
is the arity of p, s1, . . . , sn ∈ S.

A signature contains the names of components of an ADT. Let Σ and Σ′

be signatures. Signature morphism σ : Σ → Σ′ maps sorts, function names and
predicate names from Σ to the corresponding ones from Σ′, so that it preserves
linear ordering of sorts, function profiles and predicate arities.

Example 6. A simple signature for natural numbers can be of the form

Σnat = (Snat, Onat, Pnat),

where
Snat = {nat},
Onat = {zero :→ nat, succ : nat → nat},
Pnat = { ≤ : 〈nat, nat〉}.

We construct the class SignObj of signatures needed for specifying our
question to be solved by a program. We denote by homSign the set of all
signature morphisms between elements of this class and by idSign the set of
all identical signature morphisms idΣ : Σ → Σ for every element Σ ∈ SignObj.

204 V. Novitzká and B. Novitzky

Because the composition of signature morphisms is closed in SignObj and
associative,

Sign = (SignObj,homSign, idSign, ◦)
is the category of signatures.
Now we formulate the formal language of a metamathematics of a set theory
which serves for writing sentences. Symbols of this language are:

• variables of different sorts grouped into disjoint classes;
• predicate names with their arities;
• function names with their profiles. Function names with zero arities

are constants of some sorts;
• logical connectives ⇒,¬,∧,∨,⇔;
• quantifiers ∀,∃;
• auxiliary symbols, e.g. (and).

Terms are formed by repeated application of the following two rules:

1. every variable and constant is a term of some sort;
2. if f : 〈s1, . . . , sn〉 → s is a function name and t1, . . . , tn are terms of

sorts s1, . . . , sn, respectively, then f(t1, . . . , tn) is also a term of the sort s.

Formulas are created by repeated application of the following three rules:

1. if t1, . . . , tn are terms of sorts s1, . . . , sn, respectively, and p : 〈s1, . . . , sn〉
is a predicate name, then p(t1, . . . , tn) is a basic formula;

2. if ψ1 and ψ2 are formulas, then also ψ1 ⇒ ψ2, ¬ψ1, ψ ∧ ψ2, ψ1 ∨ ψ2

and ψ1 ⇔ ψ2 are formulas;
3. if ψ is a formula and x : s is a variable of a sort s, then also (∀x)ψ and

(∃x)ψ are formulas.

Every variable in a basic formula is free. Logical connectives do not change
the freeness of variables. Quantifiers bind their variables, i.e. a variable x
is bound in the formulas (∀x)ψ and (∃x)ψ. A formula ψ in which all its
variables are bound is complete formula. Complete formulas can be evaluated
as sentences, i.e. they can be true or false. For instance, the following complete
formula is sentence (more precisely, the power axiom of the Zermelo-Fraenkel
axiomatic set theory):

(∀x)(∃y)(∀z)(z ∈ y ⇔ (∀u)(u ∈ z ⇒ u ∈ x)),

because the variables x, y, z, u are bound.

Let Σ be a signature from the category Sign. The Σ-sentence is such
complete formula that contains only symbols from Σ.

Metamathematical fundamental concepts of computer programming 205

For any signature Σ as a syntax for an ADT we construct a Σ-model that
is a model from universal algebra (called also many-sorted extended algebraic
model) as follows.

Definition 5. Let Σ = (S, O, P) be a signature. A Σ-model is an algebra
A = (SA, OA, PA) where

• SA is a class of data sets, such that the sorts from S are injectively
mapped to the sets from SA. The cardinality of SA is at least such that the
cardinality of S. Elements of sets from SA can be denoted by variables.

• OA is the set of (total or partial) functions (algebraic operations)
named by (total or partial) function names from O. The domains and ranges
of the functions come from the profiles of corresponding function names from
O.

• PA is the set of true Σ-sentences containing concrete predicates
corresponding to the predicate names from P . These Σ-sentences express the
algebraic properties of model functions. We call Σ-sentences also Σ-model
axioms.

Example 7. One of the possible models for the signature Σnat introduced
in the Example 6 can be the Σnat-algebra

AN = (SN , ON , PN),

where
SN =N is the set of natural numbers;
ON contains the functions zeroN = 0 and succN = n + 1, for a variable

n ranging over the set N;
PN contains the relation defined by the true sentence

(∀n1)(∃n2)(n2 = succN (n1)).

From Σ-model axioms we can derive other true Σ-sentences by the follow-
ing way. Let Ψ be a set of Σ-axioms from a Σ-model A. A Σ-sentence ϕ is true
if

• there exists a sequence of the true Σ-sentences

ψ1, ψ2, . . . , ψk,

• ψk is ϕ, and
• every ψi, i < k, is either a Σ-model axiom or it can be derived from

the previous sentences by the application of the following two rules:

206 V. Novitzká and B. Novitzky

1. if ψ1 and ψ1 ⇒ ψ2 are true sentences, then also ψ2 is true sentence
(modus ponens);

2. if ψ is a true sentence and x is any variable, then also (∀x)ψ is true
sentence (generalization rule).

Such sequence ψ1, ψ2, . . . , ψk we call a proof for ϕ. If there exists a proof
for a Σ-sentence ϕ, we say that ϕ is satisfied in the Σ-model A, denote by

A |=Σ ϕ.

We define the functor Sen:Sign→Set from the category of signatures to
the category of sets, which assigns to every signature Σ a set of true Σ-sentences
and to every signature morphism σ : Σ → Σ′ the mapping translation of Σ-
sentences, that replaces symbols in a Σ-sentences ψ with their images from Σ′

under σ.
The class of the Σ-models together with the set of homomorphisms between

them form the category Mod(Σ) of Σ-models.
Let σ : Σ → Σ′ be a signature morphism and A′ a Σ′-model. A reduct of

A′ with respect to σ is the Σ-model

A′|σ =
(
S′A|σ, O′

A|σ, P ′A|σ
)

,

where

• S′A|σ is the class of data sets whose corresponding sorts are counter
images of the sorts from S′ with respect to σ;

• O′A|σ is the set of functions whose corresponding function names are
counter images of the function names from O′ with respect to σ;

• P ′A|σ is the set of Σ′-sentences containing predicates named by counter
images of the predicate names from P ′ with respect to σ.

Reduct functor | : Mod(Σ′) → Mod(Σ) from the category of Σ′-models to
the category of Σ-models with respect to the signature morphism σ : Σ → Σ′

maps

• each Σ′-model A′ to its reduct, the Σ-model A′|σ, and

• each Σ′-homomorphism between Σ′-models to Σ-homomorphism be-
tween the corresponding reducts.

Now we can define the functor Mod : Signopp → Cat from the dual
category of signatures to the category of small categories that assigns to every
object Σ the category Mod(Σ) of Σ-models and to every signature morphism
σ : Σ → Σ′ the reduct functor | : Mod(Σ′) → Mod(Σ).

Metamathematical fundamental concepts of computer programming 207

Now we have defined all necessary components of institution [6]. An
institution I is a quadruple

I = (Sign, Sen, Mod, |=),

where

• Sign is the category of signatures, Sen and Mod are functors as defined
above,

• |= is a set of satisfaction relations |=Σ for every Σ from Sign,
• if σ : Σ → Σ′ is a signature morphism from Sign and ψ is a Σ-sentence,

then it holds the following equivalence

A′ |= Sen(σ)(ψ) ⇔ Mod(σ)(A′) |= ψ,

i.e. ψ is satisfied in the reduct A′|σ iff its translation with respect to σ is satisfied
in A.

We now give some notes about the definition of institution. A signature Σ
is the syntax of an ADT. The set of Σ-sentences contains the definition of se-
mantics of the ADT and also definitions and theorems from that mathematical
theory which is needed to formulate the facts for specifying question and/or
proving the algorithm answering the question. In Σ-models we can prove new
properties from Σ-sentences provided that between axioms of this model there
are axioms of a suitable general axiomatic set theory.

As we know from the program construction, we are able to tell that
the program development must have at least two institutions: (original) one
for the specification of the question and (target) one for a final program
fully answering the specified question. The main problem in formalization
of program development is to define mathematically provable transitions of
original institution for specification to the target institution for a final program.
In this paper we are not concerned with concrete syntaxes of the specification
and programming languages; defining them will be the subject of further
research. We mention here only that there are several methods for constructing
arrows by which it is possible to create the target institution from the original
one.

Now we present several illustrative examples for arrows.

Example 8. Let I=(Sign,Sen, Mod, |=) be an institution. We construct

• a functor Θ : Sign → Sign′ creating a new category Sign′ of
signatures so that we construct to every signature Σ from Sign a signature
Σ′ and to every signature morphism σ : Σ1 → Σ2 from Sign a morphism
σ′ : Θ(Σ1) → Θ(Σ2). Because Θ(Σ1) and Θ(Σ2) are signatures, σ′ is a signature

208 V. Novitzká and B. Novitzky

morphism. It is trivial to prove that such constructed Sign′ is the category
with object Θ(Σ) and category morphism σ′ between them.

• A natural transformation µMod : Mod → Mod′ ◦ Θ, i.e. a set of
morphisms

µMod
Σ : Mod(Σ) → Mod′(Θ(Σ))

for every signature Σ from Sign, such that it constructs for every Σ-model A a
Θ(Σ)-model A′, and for every reduct function aσ it constructs a reduct functor
aΘ(σ).

Now we have a new syntax and new models of a new institution. We
can formulate Σ′-sentences ϕ′ for every signature Σ′ from Sign′ satisfied (i.e.
provable) in Σ′-models A′, A′ |=′Σ′ ϕ′, so that there exists

• a natural transformation

µSen : Sen′ ◦Θ → Sen,

i.e. a set of morphisms

µSen
Σ′ : Sen′(Θ(Σ)) → Sen(Σ)

for every signature Σ from Sign; and for every Σ-model A from Mod(Σ) the
following equivalence holds

A |=Σ µSen
Σ′ (ϕ′) ⇔ µMod

Σ (A) |=′Θ(Σ) ϕ′.

The construction described above ensures that

I′ = (Sign′, Sen′,Mod′, |=′)

is an institution and we call the morphism

µ = (Θ, µMod, µSen) : I → I′

as institution morphism.
Institution morphism enables construction of a new institution from an

original one by enriching syntax and semantics of ADTs. This example we can
simplify at two levels:

1. We do not consider morphisms between models, i.e. each Mod(Σ) is
a discrete category, a class. In this case we can construct a target institution
much easier, the satisfiability of sentences in models of the original isntitution is
simply mapped to models in the target institution. Such simplified institution
morphism is called institution representation.

Metamathematical fundamental concepts of computer programming 209

2. We do not require also the holding of the satisfaction equivalence
of institution morphisms. Then the constructed target institution is pure
’renaming’ of constituents of the original one. Then we speak about institution
coding.

Of course, institution representation and institution coding do not form
enriched target institutions.

The traditional approach of algebraic specification of abstract data types
uses the notion specification and/or program as a pair (Σ, Ψ), where signature
Σ is its syntax and a set Ψ of Σ-sentences its semantics. Such syntax and
semantics can be used for defining a language (for specifications and programs).
In the following example we discuss the problem of arrows between institutions
that arises from such considerations.

Example 9. Let I=(Sign,Sen, Mod, |=) be an institution. We consider
a pair (Σ, Ψ)I , where Σ is a signature from Sign, syntax of an abstract data
type, and Ψ is a set of Σ-sentences from Sen(Σ), its semantics. We can define a
category ADT(I) consisting of all such pairs (Σ, Ψ)I as objects and morphisms

ξ : (Σ1,Ψ1) → (Σ2, Ψ2)

such that ξ : Σ1 → Σ2 is a signature morphism and Sen(ξ)(Ψ1) ⊆ Ψ2.
To take into account this approach we use as the base for arrows building

new institution the concept of mapping institution introduced by Messeguer in
[10].

We construct

• a functor Θ:ADT(I)→ADT (I′), that constructs a new pair (Σ′,Ψ′),
i.e. syntax and semantics of abstract data type in a new theory I′ and maps
every morphism ξ to the morphism between images of Σ and Ψ, respectively,
under Θ;

• natural transformations

νSen : Sen → Sen′ ◦Θ,

νMod : Mod′ ◦Θ → Mod

such that for every Σ-sentence ϕ ∈ Sen(Σ), model A′ ∈ Mod′(Θ(Σ, ∅)) the
following equivalence holds

A′ |=′Σ′ , νSen
Σ (ϕ) ⇔ νMod

(Σ,∅)(A
′) |=Σ ϕ.

Then ν = (Θ, νSen, νMod): I→ I′ is called map of institutions.

210 V. Novitzká and B. Novitzky

Let us answer a nontrivial question. Let us specify it by a large scale
heterogenous and hierarchical specification in an algebraic specification lan-
guage like specification language. It would be very impracticle to construct
immediately one arrow from this original institution to a target one containing
the category of all signatures (ADTs) and the set of all sentences describing
the semantics of every signature, and all necessary definitions and/or theorems
of each mathematical theory containing the basis for proving the mathematical
correctness of the answer for the specified question. Of course, the mathe-
matical theories mentioned in the semantics above are necessarily formulated
as subtheories in a suitable axiomatic set theory. This fact implies that the
models contained in this institution must have axioms partly from this set
theory, partly also from the used subtheories to make easier the proofs of some
new theorems which will be necessary in the proving of algorithmical steps
in the construction of result program answering the specified question. We
suppose, that data abstractions of this institution form a graph, i.e. they are
also heterogeneous and hierarchical and their concrete texts will be written in
some kind of modular language. So it is reasonable to define more than two
institutions and more than one arrow between neighbouring institutions from
which the first will be the original and the second the target.

So, we divided the answer of a complicated question into a sequence of steps
in the sequence of specification and/or program theories in the sequence of the
according institutions and also in a sequence of arrows between neighbouring
institutions. We emphasize that such a construction of programming process
from metamathematical and also mathematical point of view is not a mechan-
ical activity. Such program development process needs a deep understanding
of the metamathematical methods and mathematical theories, well-founded
phantasy which can apply practically the whole mathematics in answering real
life human questions. The programming is an art as stated Professor Knuth.

4. Conclusion

It is possible before outline metamathematics of computer programming to
formulate not only an adequate axiomatic set theory, but also many subtheories
of the set theory which can be needed in answering real life questions. A
successful example of it is the well-known constraint programming [11]. But
we intend to generalize it for every possible mathematical theory and their
unions in the framework of an axiomatic set theory.

Because we are unsatisfied with the situation of the world’s society, we
should like to formulate as a first mathematical theory the theory of games.

Metamathematical fundamental concepts of computer programming 211

Scilicet we would like by computers to help the rational behaviour of persons,
families and communities in the worldwide society.

References

[1] Adámek J., Herrlich H. and Strecker G.E., Abstract and concrete
categories, Wiley & Sons, New York, 1989.

[2] Adámek J. and Trnková V., Automata and algebras in categories,
Kluwer, Dordrecht, 1990.

[3] Cloksin W.F. and Mellish C.S., Programming in Prolog, Springer,
1987.

[4] CoFl Task Group on Language Design, CASL - The CoFl algebraic
specification language - Summary, www.brics.dk/Projects/CoFl/Docu-
ments/CASL/Summary, 1999.

[5] Hoffmann M. and Krieg-Brückner B., PROgram Development by
SPECification and TRAnsformation: Methodology - Language Family -
System, Springer, LNCS 680, 1993.

[6] Goguen J.A. and Burstall R.M., Introducing institutions, Proc. Log-
ics of Programming Workshop, Springer, LNCS 164, 1984, 221-256.

[7] The programming language Ada. Reference Manual, eds. G.Goos and
J.Hartmanis, Springer, LNCS 155, 1983.

[8] Guttag J.V. et al., Larch: Languages and tools for formal specification,
Texts and Monographs in Computer Science, Springer, 1993.

[9] Hudak P. et al., Report on the programming language Haskell, SIG-
PLAN Notices, 27 (5) (1992).

[10] Messeguer J., General logic, Proc. Logic Colloquium 1987, North
Holland, 1989, 275-329.

[11] Rossi F., Constraint logic programming, Proc. ERCIM/Compulog Net
workshop on constraints, Springer, LNAI 1865, 2000.

[12] Schröder L., Categories: a free tour, Categorical perspectives, eds.
A.Melton and J.Koslowski, Birkhäuser, Basel, 2001, 1-27.

[13] Vopěnka P., Mathematics in the alternative set theory, Teubner, Leipzig,
1979.

[14] Wirth N., Data structuress + Algorithms = Programs, Prentice Hall,
Englewood Cliffs, 1975.

212 V. Novitzká and B. Novitzky

[15] Wulf W., London R.L. and Shaw M., An introduction to the con-
struction and verification of ALPHARD programs, IEEE Trans. Software
Eng., 2 (1976), 253-265.

(Received June 10, 2002)

V. Novitzká
Technical University
Košice, Slovakia

B. Novitzky
University of P.J. Šafárik
Košice, Slovakia

