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CONSTRUCTION OF
HIGHLY NONLINEAR FUNCTIONS

I. Licskó (Budapest, Hungary)

1. Abstract

The highly nonlinear odd-dimensional Boolean functions have many ap-
plications in cryptographic practice, that is why the research of this class of
functions is important. This study focusses on some types of functions in
the class of highly nonlinear odd-dimensional Boolean functions which have
special characteristics. Upper bound is given for the number of non-zero linear
structures of such functions and regarding them as mappings some functional
relations are proved. From the results one can gain an algorithm to construct
highly nonlinear odd-dimensional Boolean functions with special characteristics
by the use of functions having the same characteristics.

2. Introduction

The functions used for the purposes of cryptographic applications basically
determine the strength of the cipher. The information to be coded is generally
stored in binary format, that is why one applies the Boolean functions. There
are two basic models of encryption: the stream cipher and the block cipher.
The standard model of the stream cipher combines the outputs of several
independent linear feedback shift registers using a nonlinear Boolean function.
The model of the different block ciphers uses a so-called round-function for
combining the round-key with the text to be coded. To be cryptographically
strong, the Boolean function used in the process must have high nonlinearity.
Moreover, such functions should be balanced, correlation immune and have
high algebraic degree.

As we have seen the use of nonlinear functions is advisable but their
construction often leads to much trouble.
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3. Background

The mapping f : {0, 1}n → {0, 1} is called a Boolean function. Sometimes
the f : {0, 1}n → {−1, 1} mapping is used instead of the Boolean function.
The relation between f and f can be described as follows:

f(x) = (−1)f(x)

or
f(x) = 1− 2f(x).

In the following we use the notation f(x) to denote the whole {−1, 1} sequence
generated by f(x), that means f(x) can be regarded as a vector having 2n

elements.

The elements of the set {0, 1}n can be regarded as vectors. In this case
{0, 1}n is a vector space called Boolean space. As the coordinates of these
vectors are the numbers 0 and 1, the vector can be regarded as an integer
written in binary form. We can refer to a vector by an integer and in this case
the components of the vector show the binary representation of the integer. It
is also possible to refer to a vector by an indexed name, where the index is the
integer corresponding to the vector.

The weight of a function f(x) is the number of 1-s in its truth table: w(f) =
=

∑
x∈{0,1}n

f(x).

The function f(x) is called balanced if the number of 1-s and the number
of 0-s in its truth table are equal, that is

∑
x∈{0,1}n

f(x) = 0, and the weight of

a balanced function is w(f) = 2n−1.
Ordinary operations are defined by components in GF(2). If a, b ∈ {0, 1}n,

a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1), then a ⊕ b = (a0 ⊕ b0, a1 ⊕
⊕b1, . . . , an−1 ⊕ bn−1) is the sum and ab =

n−1⊕
i=0

aibi is the scalar product of the

two vectors.
When the Zhegalkin polynomial of a Boolean function is

f(x0, x1, . . . , xn−1) = a0x0 ⊕ a1x1 ⊕ . . .⊕ an−1xn−1 ⊕ c,

where c, ai ∈ {0, 1} for 0 ≤ i ≤ n − 1, the function is called affine and linear
in the special case if c = 0. A linear function can be regarded as the scalar
product of the constant a ∈ {0, 1}n and the variable x. Function f satisfies the
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propagation criterion regarding an element a ∈ {0, 1}n, a 6= 0 if f(x)⊕f(x⊕a)
is balanced. The distance between the functions f and g is

d(f, g) = w(f ⊕ g) =
∑

x∈{0,1}n

(f(x)⊕ g(x)) ,

while their correlation is specified as

c(f, g) =
∑

x∈{0,1}n

f(x)g(x) =
∑

x∈{0,1}n

(−1)f(x)⊕g(x) = 2n − 2d(f, g).

The autocorrelational function rf (a) of f is defined as

rf (a) =
∑

x∈{0,1}n

f(x)f(x + a).

This expression is in principle the scalar product of the 2n-dimensional (−1, 1)
vectors ξ(0), ξ(a), where ξ(0) is given by f(x) and ξ(a) is given by f(x + a).

A matrix H = (hij), where hij ∈ {−1, 1} for i, j = 0, 1, . . . ,m−1, is called
Hadamard matrix if HHT = mI. HT means the transpose of H, and I is the
identity matrix of order m. The 2n-order Hadamard matrix is denoted by Hn

and it can be generated by the following recursive process:

H0 = 1, Hn =
[

Hn−1 Hn−1

Hn−1 −Hn−1

]
, n = 1, 2, . . .

The rows of Hn are denoted by li, i = 0, 1, . . . , 2n−1. li can be regarded as
a {−1, 1} sequence generated by the linear function ix. The {−1, 1} sequences
of all linear functions in {0, 1}n appear in the rows of Hn.

The Walsh transform of the function f at a = (a0, a1, . . . , an−1) ∈ {0, 1}n

is
F (a) =

∑

x∈{0,1}n

f(x)(−1)ax,

while the Walsh transform of f is specified as

F (a) =
∑

x∈{0,1}n

(−1)f(x)⊕xa.

The value F (a) is the correlation of function f with the linear function ax and
it can be written as the scalar product (f(x)la).
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A vector a ∈ {0, 1}n is called the linear structure of the function f if
f(x)⊕ f(x⊕ a) is a constant function, that is

∑
x∈{0,1}n

(−1)f(x)⊕f(x⊕a) = ±2n.

A Boolean function f is called bent function if for all a ∈ {0, 1}n the
correlation of f with the linear function ax has a constant absolute value

|F (a)| =
∣∣∣∣∣∣

∑

x∈{0,1}n

(−1)f(x)⊕xa

∣∣∣∣∣∣
= 2

n
2 .

The Wiener-Khintchine theorem represents the relation between the Hadamard
matrix Hn, the autocorrelational function of f and its correlation with the
linear functions

(f(x)f(x⊕ a0), . . . , f(x)f(x⊕ a2n−1))Hn = ((f(x)l0)2, . . . , (f(x)l2n−1)2),

where li is the i-th row of Hn (see [8]).

The non-linearity of a function f is the distance between f and the set of
affine functions denoted by Nf ,

Nf = 2n−1 − 1
2

max
i=0,1,...,2n−1

(|f(x)li|).

The minimal value of the non-linearity is 0, which is the non-linearity of the
affine functions. The maximum of it is generated if |f(x)li| is constant and
its value is 2

n
2 . The maximal value of the non-linearity can be realized by

bent functions, whose non-linearity is Nf = 2n−1 − 2
n
2−1. Such functions are

interpreted in a space of even dimensions only. Despite their favourable non-
linearity characteristics they are not preferred for cryptographic applications,
because these functions are never balanced, correlation-immune, etc.

It is useful therefore to find other functions, which are in all probable ways
maximally nonlinear, balanced or at least can easily be arranged to have these
properties.

4. Characteristics of highly nonlinear functions

The behaviour of the correlation of a given Boolean function with the
linear functions determines its nonlinearity.
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Lemma 1. Let f : {0, 1}n → {0, 1} be such a function that its correlation
with the linear functions F (i) = f(x)li =

∑
x∈{0,1}n

(−1)f(x)⊕ix takes only the

values 0 and ±C and the number of the linear functions having non-zero
correlation with it is 22m. In this case C = ±2

2n−2m
2 = ±2n−m.

Proof. According to the Parseval equality

∑

a∈{0,1}n

F (a)2 = 2n
∑

x∈{0,1}n

f(x)2 ⇒
∑

a,F (a)6=0

C2 +
∑

a,F (a)=0

0 = 22n ⇒

⇒ 22mC2 ⇒ C = ±2
2n−2m

2 = ±2n−m

and this is the proof of the proposition.

An upper bound can be set for the number of nonzero linear structures of
functions having the characteristics shown in Lemma 1.

Theorem 1. If f : {0, 1}n → {0, 1} is a function, whose correlation with
the linear functions takes only the values 0 and ±C and the number of linear
functions having nonzero correlation with f is 22m, then the number of nonzero
linear structures of f is maximum L = 2n−2m − 1.

Proof. Let us use the Wiener-Khintchine form

(f(x)f(x⊕ a0), . . . , f(x)f(x⊕ a2n−1))Hn = ((f(x)l0)2, . . . , (f(x)l2n−1)2).

The result of the multiplication on the left side of the equation

(f(x)f(x⊕ a0), . . . , f(x)f(x⊕ a2n−1))Hn =

=

(
2n−1∑
a=0

f(x)f(x⊕ a)(−1)aa0 , . . . ,

2n−1∑
a=0

f(x)f(x⊕ a)(−1)aa2n−1

)
.

If we square both sides of the Wiener-Khintchine equation, we get

2n−1∑
y=0

((
2n−1∑
a=0

f(x)f(x⊕ a)(−1)ay

)(
2n−1∑

b=0

f(x)f(x⊕ b)(−1)by

))
=

=
2n−1∑

i=0

(f(x)li)4.
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With further reductions on the left side of the equation we receive

2n
2n−1∑
a=0

(
f(x)f(x⊕ a)

)2
=

2n−1∑

i=0

(f(x)li)4.

The left-side sum can be divided into two parts, taking a = 0 the value of the
autocorrelation is ±2n and its square is 22n. On the right side we may check the
following considerations: f is a function whose correlation with linear functions
is ±2n−m for 22m linear functions and is 0 for all other cases. In this way the
above equation will have the form

2n

(
22n +

2n−1∑
a=1

(
f(x)f(x⊕ a)

)
)

= 22m24n−4m = 24n−2m.

A further transformation thereof results in

2n−1∑
a=1

(
f(x)f(x⊕ a)

)2
=

2n − 22m

22m
22n =

(
2n−2m − 1

)
22n,

by which the proposition for the maximal number of the nonzero linear
structures is proved.

On the basis of the above result we can state the following with respect to
the functions interesting for us:

1. in the case of bent functions 2m = n and c(f, ax) = ±2
n
2 for each a, and

the maximum number of nonzero linear structures is L = 2n−2m − 1 =
= 20 − 1 = 0;

2. for highly nonlinear functions of odd dimension 2m = n − 1 and

c(f, ax) =
{
±2

n+1
2

0
. The maximal number of nonzero linear structures

is L = 2n−2m − 1 = 21 − 1 = 1;
3. for linear functions 2m = 0 and the maximal number of nonzero linear

structures is L = 2n−0 − 1 = 2n − 1.

The property of functions that their correlations with the linear functions take
only the value 0 and ±C is not influenced by a linear transformation of the
input variables.

Theorem 2. Let f : {0, 1}n → {0, 1} be a function whose correlation
with the linear functions takes only the values 0 and ±C, and the number
of the linear functions having nonzero correlation with f is 22m. Let A be
a nonsingular n × n matrix over GF(2). Then for any x, b ∈ {0, 1}n the
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correlation of the function g(x) = f(Ax + b) with the linear functions takes
only the values 0 and ±C and the number of linear functions having nonzero
correlation with g is 22m.

Proof. Let y = Ax⊕ b and la be the a-th row of the matrix Hn, which in
other words is the {−1, 1} sequence generated by the function ax

g(x)la =
∑

x∈{0,1}n

(−1)g(x)⊕ax =
∑

x∈{0,1}n

(−1)f(Ax⊕b)⊕ax.

Since A is nonsingular

x = A−1(y ⊕ b) is true.

The function aA−1(y ⊕ b) is affine, so there is such a c ∈ {0, 1}n, that

aA−1(y ⊕ b) = cy ⊕ d

is true. So
∑

x∈{0,1}n

(−1)f(Ax⊕b)⊕ax =
∑

y∈{0,1}n

(−1)f(y)⊕aA−1(y⊕b) =

=
∑

y∈{0,1}n

(−1)f(y)⊕cy⊕d = (−1)dc(f, ax).

Considering the functions fulfilling the conditions of Lemma 1 one can find
that the maximal value of the nonlinearity is reached in the case when 2m =
= n−1. In order to construct such functions let us examine their characteristics.

Theorem 3. Let n be odd, g1 and g2 : {0, 1}n → {0, 1} Boolean functions
whose correlations with the linear functions take only 0 and ±C and the number
of the linear functions having nonzero correlation with g1 and g2 is 22m. Then
the set of linear functions having nonzero correlation with g1 is disjoint from
the set of linear functions having nonzero correlation with g2 if and only if

(g1(x)li)
2 + (g2(x)li)

2 = 22n−2m for each i = 0, 1, . . . , 2n − 1.

Remark. The two sets of functions are disjoint when from (g1(x)li)
2 = 0

follows that (g2(x)li)
2 6= 0, and conversely.

Proof. The proof consists of two steps.
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1. Necessity. When both functions fulfill the condition that their corre-
lations with the linear functions take only the values 0 and ±C and there are
22m linear functions having nonzero correlation with them, then both functions
satisfy

(g1(x)li)
2 =

{
22n−2m

0
or (g2(x)li)

2 =
{

22n−2m

0
.

Since it is true that (g2(x)li)
2 = 22n−2m in every case when (g1(x)li)

2 = 0, so

(g1(x)li)
2 + (g2(x)li)

2 = 22n−2m for each i = 0, 1, . . . , 2n − 1.

2. Sufficiency. If

(g1(x)li)
2 + (g2(x)li)

2 = 22n−2m = 22(n−m)

is met for each i = 0, 1, . . . , 2n − 1, we apply Lemma 9 of [8]. The value
2(n −m) is even in every case, so the above equality is met if (g1(x)li)

2 = 0
and (g2(x)li)

2 = 22n−2m, or vice versa. This, on the other hand, means that
the correlations of the two functions with the same linear function can never
take the same absolute value.

Theorem 4. Let n be odd, g1 and g2 : {0, 1}n → {0, 1} Boolean functions
whose correlations with the linear functions take only the values 0 and ±C and
the number of the linear functions having nonzero correlation with g1 and g2 is
22m. Then the set of the linear functions having nonzero correlation with g1 is
disjoint from the set of linear functions having nonzero correlation with g2 if
and only if

g1(x)g1(x⊕ bj) + g2(x)g2(x⊕ bj) = 0

for each 0 6= bj ∈ {0, 1}n.

Proof. Let us use the Wiener-Khintcine relation for both functions
(
(g1(x)g1(x⊕ b0)), . . . , (g1(x)g1(x⊕ b2n−1))

)
Hn =

=
(
(g1(x)l0)2, . . . , (g1(x)l2n−1)2

)
,

(
(g2(x)g2(x⊕ b0)), . . . , (g2(x)g2(x⊕ b2n−1))

)
Hn =

=
(
(g2(x)l0)2, . . . , (g2(x)l2n−1)2

)
.

If we add up the two equations, multiply the sum Hn and then divide by 2n,
we receive

(
(g1(x)g1(x⊕ b0) + g2(x)g2(x⊕ b0)), . . .
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. . . , (g1(x)g1(x⊕ b2n−1) + g2(x)g2(x⊕ b2n−1)) =

=
((

(g1(x)l20 + (g2(x)l0)2)
)
, . . . ,

(
(g1(x)l2n−1)2 + (g2(x)l2n−1)2

))
Hn2−n.

1. Necessity

If it is true for both functions that g2(x)li)2 = 0 follows from (g1(x)li)2 6= 0,
and vice versa, then each element of the vector on the right hand side of the
above equation, according to Theorem 3, has the value 22n−2m and so

(
(g1(x)g1(x⊕ b0) + g2(x)g2(x⊕ b0)), . . .

. . . , (g1(x)g1(x⊕ b2n−1) + g2(x)g2(x⊕ b2n−1))
)
=

= 22n−2m · (1, 1, . . . , 1) ·Hn · 2−n.

In this case, however,

(g1(x)g1(x⊕ bj) + g2(x)g2(x⊕ bj)) = 2n · 22n−2m2−n = 22n−2m if j = 0,

(g1(x)g1(x⊕ bj) + g2(x)g2(x⊕ bj)) = 0 if j 6= 0.

2. Sufficiency

Let us assume that (g1(x)g1(x⊕ bj)+ g2(x)g2(x⊕ bj)) = 0 is true for each
j 6= 0. Having the Wiener-Khintchine theorem for both functions let us sum
them and multiply the result by Hn:

2n
(

(g1(x)g1(x⊕ b0) + g2(x)g2(x⊕ b0)), . . .

. . . , (g1(x)g1(x⊕ b2n−1) + g2(x)g2(x⊕ b2n−1))
)




1
. . .

1


 =

=
(((

g1(x)l0
)2 +

(
g2(x)l0

)2
)
, . . .

. . . ,
((

g1(x)l2n−1

)2 +
(

g2(x)l2n−1

)2
))

Hn.

After multiplication the j-th element of the resulted vector is

2n
(

g1(x)g1(x⊕ bj) + g2(x)g2(x⊕ bj)
)
=
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=
2n−1∑

i=0

((
g1(x)li

)2 +
(

g2(x)li
)2

)
(−1)aibj .

As for each j 6= 0 it is true that (g1(x)g1(x⊕ bj) + g2(x)g2(x⊕ bj) = 0 we get

a) if j 6= 0 then the components of the vector are 0;
b) if j = 0 g1(x)g1(x + b0) = 2n and g2(x)g2(x + b0) = 2n. As we have

2n
(

g1(x)g1(x⊕bj)+g2(x)g2(x⊕bj)
)
=

2n−1∑

i=0

((
g1(x)li

)2 +
(

g2(x)li
)2

)
,

so we get
2n−1∑

i=0

((
g1(x)li

)2 +
(

g2(x)li
)2

)
= 2n2n+1.

Using the fact that 2m = n− 1 and 2n+1 = 22n−2m the result is

2n−1∑

i=0

((
g1(x)li

)2 +
(

g2(x)li
)2

)
= 2n22n−2m

and on the basis of Theorem 2 this proves the proposition.

As the highly nonlinear functions can be applied in many areas of cryptog-
raphy, finding the conditions for the construction of such functions is important.

Lemma 2. Let us assume
1. g1 and g2 : {0, 1}n → {0, 1} are Boolean functions, whose correlations

with linear functions take only the values 0 and ±C and n is odd;
2. the number of linear functions having nonzero correlation with gi for i =

= 1, 2 is P = 22m, where 2m = n− 1;

3. from
(

g2(x)li
)2= 0 follows

(
g1(x)li

)2 6= 0 and vice versa.
Then the series

h1(i) =
(g1(x)li) + (g2(x)li)

2n−m

and

h2(i) =
(g1(x)li)− (g2(x)li)

2n−m

only take the values of 1 and −1 for each i = 0, 1, . . . , 2n − 1.

Proof. As both of g1 and g2 satisfy the conditions of Lemma 1 the
correlations of both functions with the linear functions take the values of 0
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and ±2n−m. Considering a linear function, its correlation with g1 differs from
its correlation with g2, so

h1(i) =
(g1(x)li) + (g2(x)li)

2n−m
=

{ +1
−1

and

h2(i) =
(g1(x)li)− (g2(x)li)

2n−m
=

{ +1
−1

for each i = 0, . . . , 2n − 1.
The series h1(i), h2(i), generated in Lemma 2, where i = 0, 1, . . . , 2n−1,

can be regarded as {−1, 1} series, generated by the functions h1 = f1 and
h2 = f2, both of them belonging to a Boolean function of n variables, to f1

and f2. These functions have the following properties.

Theorem 5. Let n be odd and let f1 and f2 be such Boolean functions that
the series h1(i) = f1(i) and h2(i) = f2(i), where i = 0, 1, . . . , 2n−1, are equal
to the sequences constructed in Lemma 2. Then the correlations of f1 and f2

with the linear functions take only the values 0 and ±C and the number of the
linear functions having nonzero correlation with them is 22m and (f2(x)li)2 +
+(f2(x)li)2 = 22n−2m.

Proof. The construction of the series h1 and h2 is given in Lemma 2. We
can calculate the autocorrelation value for the two functions f1 and f2 with an
a ∈ {0, 1}n as follows:

f1(i) =
(g1(x)li) + (g2(x)li)

2n−m
, f2(i) =

(g1(x)li)− (g2(x)li)
2n−m

and

f1(i⊕a) =
(g1(x)li⊕a) + (g2(x)li⊕a)

2n−m
, f2(i⊕a) =

(g1(x)li⊕a)− (g2(x)li⊕a)
2n−m

,

f1(i)f1(i⊕ a) =
2n−1∑

i=0

(
(g1(x)li) + (g2(x)li)

2n−m
· (g1(x)li⊕a) + (g2(x)li⊕a)

2n−m

)

and

f2(i)f2(i⊕ a) =
2n−1∑

i=0

(
(g1(x)li)− (g2(x)li)

2n−m
· (g1(x)li⊕a)− (g2(x)li⊕a)

2n−m

)
.
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The sum of the autocorrelations is

f1(i)f1(i⊕ a) + f2(i)f2(i⊕ a) =

=
2n−1∑

i=0

(g1(x)li) + (g2(x)li)
2n−m

· (g1(x)li⊕a) + (g2(x)li⊕a)
2n−m

+

+
2n−1∑

i=0

(g1(x)li)− (g2(x)li)
2n−m

· (g1(x)li⊕a)− (g2(x)li⊕a)
2n−m

.

Upon having done the operations we get

f1(i)f1(i⊕ a) + f2(i)f2(i⊕ a) =

=
2

22n−2m

2n−1∑

i=0

((g1(x)li)(g1(x)li⊕a) + (g2(x)li)(g2(x)li⊕a)) .

The Wiener-Khintchine theorem can be used for both functions

(
f1(i)f1(i⊕ a0), . . . , f1(i)f1(i⊕ a2n−1)

)
Hn =

(
(f1(i)l0)

2, . . . , (f1(i)l2n−1)2
)
,

(
f2(i)f2(i⊕ a0), . . . , f2(i)f2(i⊕ a2n−1)

)
Hn =

(
(f2(i)l0)

2, . . . , (f2(i)l2n−1)2
)
.

If we add the two equations and then multiply the sum by Hn, we get

(
2n−1∑

j=0

((
f1(i)f1(i + aj) + f2(i)f2(i + aj)

)
(−1)aja0

)
, . . .

. . . ,

2n−1∑

j=0

((
f1(i)f1(i + aj) + f2(i)f2(i + aj)

)
(−1)aja2n−1

))
=

=
((

(f1(i)l0)
2 + (f2(i)l0)

2
)
, . . . ,

(
(f1(i)l2n−1)2 + (f2(i)l2n−1)2

))
.

On both sides of the equation there is a vector, the equation means that these
two vectors are equal in terms of the elements contained. Let us consider the
k-th element

2n−1∑

j=0

((
f1(i)f1(i + aj) + f2(i)f2(i + aj)

)
(−1)ajai

)
=

(
f1(i)lk

)2 +
(
f2(i)lk

)2
.
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Substituting the value of the autocorrelation and doing the possible transfor-
mations we receive

(f1(i)lk)2 + (f2(i)lk)2 =
22n+2

22n−2m

for any k. As 2m = n − 1 is true, the above equation can be written in the
form

(f1(i)lk)2 + (f2(i)lk)2 = 22n−2m

and on the basis of Theorem 3 our proposition is proved.

5. Summary

The results described in this article offer a methodology for constructing
highly nonlinear functions. Theorem 1 and Theorem 2 show the characteristics
of the highly nonlinear functions, Theorem 3 and Theorem 4 give sufficient
and necessary condition for the existence of special pairs of highly nonlinear
functions. Theorem 5 gives the basis of an algorithm to generate highly
nonlinear Boolean functions of odd dimension.
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[2] Licskó I., Characteristics of highly nonlinear functions, Hajducrypt’02,
Debrecen, 2002.
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