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1. Introduction

According to Moore’s Law, the speed of modern computers doubles every
18 months. Hence it is no surprise that several old and new problems in
number theory have gained special interest, mainly because one can study them
using both a theoretical approach and a computational one. In this paper, we
examine two such challenging problems.

Throughout this paper, we denote by N the set of positive integers and
by P the set of prime numbers. Furthermore, given an integer n ≥ 2, we shall
write P (n) to denote its largest prime factor and ω(n) to denote the number
of distinct prime factors of n.

2. Sum of the digits of prime numbers

Given a positive integer n, let s(n) stand for the sum of its (decimal) digits.
Given a positive integer k which is not a multiple of 3, let ρ(k) be the smallest
prime number p such that s(p) = k. Below, is the table of values of ρ(k) for
k = 2, 4, 5, 7, 8, . . . , 83.

Is it clear that ρ(k) is a well defined function? Not at all! In fact, it is an
open problem. Nevertheless, given any integer k ≥ 4 which is not a multiple of
3, the set Ak := {p ∈ P : s(p) = k} is expected to be non empty and, in fact,
is most likely infinite.
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k ρ(k)

2 2
4 13
5 5
7 7
8 17

10 19
11 29
13 67
14 59
16 79
17 89

k ρ(k)

19 199
20 389
22 499
23 599
25 997
26 1889
28 1999
29 2999
31 4999
32 6899
34 17989

k ρ(k)

35 8999
37 29989
38 39989
40 49999
41 59999
43 79999
44 98999
46 199999
47 389999
49 598999
50 599999

k ρ(k)

52 799999
53 989999
55 2998999
56 2999999
58 4999999
59 6999899
61 8989999
62 9899999
64 19999999
65 29999999
67 59899999

k ρ(k)

68 59999999
70 189997999
71 89999999
73 289999999
74 389999999
76 689899999
77 699899999
79 799999999
80 998999999
82 2999899999
83 3999998999

The size of A2 is a different matter. Indeed, since one can easily show that
any element of A2 larger than 2 must be of the form ar := 102r + 1 and since
a0 and a1 are primes, and since, using a computer, one can establish that ar

is composite for 2 ≤ r ≤ 17, it follows that any prime number p ∈ A2, p 6=
6= 2, 11, 101, must be larger than 2218

. Therefore, it is possible that #A2 = 3.
On the other hand, one can easily show that #Ak ≥ 1 infinitely often.

Indeed, assume the contrary, meaning that #Ak ≥ 1 only a finite number of
times, and therefore assume that there exists a positive integer k0 such that
#Ak = 0 for all k ≥ k0, thus implying that s(p) < k0 for all primes p. Let
` = [k0/9] + 1 and consider the sequence of integers

am := 10` ·m + 99 . . . 9︸ ︷︷ ︸
` times

(m = 1, 2, . . .).
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It follows from Dirichlet’s theorem that there exists a positive integer m0 such
that am0 is a prime number, in which case

s(am0) = s(m0) + 9` > s(m0) + 9
k0

9
≥ 1 + k0 > k0,

thus contradicting the fact that s(p) < k0 for all primes p.
Finally, observe that ρ(k) cannot be ”too large” all the time; in fact,

one can show that there exist infinitely many positive integers k such that
ρ(k) ≤ 102k. Indeed, assume that there are only finitely many positive integers
k such that ρ(k) ≤ 102k, in which case there exists an integer k0 such that
ρ(k) > 102k for all k ≥ k0. This means in particular that, for all k ≥ k0,
each prime p with s(p) = k is such that p > 102k. Therefore, in particular, if
p ≤ 102k0 then s(p) < k0. But this is impossible since the number of primes
p ≤ 102k0 is much larger than S(k0), the number of primes p with no more
than 2k0 digits and such that s(p) < k0. Indeed,
(1)

S(k0) <

k0−1∑
k=2

k/3 6∈N

#{p ∈ P : s(p) = k with p having no more than 2k0 digits} <

<

k0−1∑

k=2

#{n ∈ N : s(n) = k with n having no more than 2k0 digits} <

<

k0−1∑

k=2

p9(k, 2k0 − 1),

where pr(k, 2k0− 1) stands for the number of partitions of k into parts ∈ [0, r],
but with no more than 2k0 − 1 zeros amongst its parts. Since p9(k, 2k0 − 1) <
< p9(k) ·22k0−1, where pr(k) is the number of partitions of k into parts ∈ [1, r],
then it follows from (1) that

(2) S(k0) < 4k0

k0−1∑

k=2

p9(k).

Using the general estimate

pr(k) ∼ kr−1

r!(r − 1)!
(k →∞)
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(see Corollary 15.1 of Nathanson [4]), it follows from (2) that

(3) S(k0) ¿ 4k0

k0−1∑

k=2

k8

9!8!
¿ 4k0k9

0,

a quantity which is clearly smaller that

π(102k0) ≈ 102k0

2k0 log 10

if k0 is sufficiently large, thus proving our claim.

Here are some other open problems concerning ρ(k):

1. It is easy to show that if ρ(k) exists, then ρ(k) ≥ (a+1)10b−1, where b =
= [k/9] a = k − 9b. In the above table, equality holds when k =
= 5, 7, 10, 11, 14, 16, 17, 19, 22, 23, 28, 29, 31, 35, 40, 41, 43, 46, 50, 52,
56, 58, 64, 65, 68, 71 and 79. Does it hold infinitely often? For that matter,
is it true that

lim
k→∞

ρ(k)
(a + 1)10b − 1

= 1?

2. Is it true that ρ(k) ≡ 9 (mod 10) for all k > 25? That ρ(k) ≡
≡ 99 (mod 100) for all k > 38? That ρ(k) ≡ 999 (mod 1000) for all k > 59?

3. The sum of the prime factors of an integer

Let S(n) denote the sum of the prime factors of n taken with multiplicity.
A number n is called a Ruth-Aaron number if S(n) = S(n+1). It is not known
if there exist infinitely many such numbers, a problem which was first studied
in 1974 by Nelson, Penney and Pomerance [5].

Similarly, let β(n) denote the sum of the distinct prime factors of the
integer n ≥ 2. It is not known if the equation

(4) β(n) = β(n + 1)

has infinitely many solutions. Moreover, if one could show that there are
infinitely many prime numbers p such that the three numbers

r = 6p− 1, s = 10p− 1, q = 15p− 4
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are also prime numbers, then the corresponding number n = 4pq = rs−1 would
automatically be a solution of β(n) = β(n+1) (= 16p−2), thus enabling one to
construct an infinite family of solutions of (4). The existence of such an infinite
sequence of 4-tuples of primes would follow from the prime k-tuples conjecture
stated by L.E. Dickson [1] in 1904. This conjecture can be written as follows:

If a1, a2, . . . , ak and b1, b2, . . . , bk are integers such that ai > 0 and
gcd(ai, bi) = 1, and if for every prime number p ≤ k, there exists a
positive integer n such that none of the integers ain + bi is divisible by
p, then there exists an infinite number of positive integers n such that each
number ain + bi is prime.

The following table provides the values of B(x), the number of solutions
n ≤ x of (4), for x = 10j , j = 1, 2, . . . , 9.

x 101 102 103 104 105 106 107 108 109

B(x) 2 5 10 20 41 140 495 1749 6651

Eventhough no interesting lower bound is known for B(x), upper bounds
have been obtained. In 1978, Erdős and Pomerance [2] proved that, if C(x)
stands for the number of Ruth-Aaron numbers ≤ x, then

(5) C(x) = O

(
x

log x

)
.

Very recently, Pomerance [6] improved this estimate by establishing that

(6) C(x) = O

(
x(log log x)4

log2 x

)
.

Now, as Pomerance [6] observed, (5) and (6) also hold if C(x) is replaced by
B(x).

Although very little is known about the solutions of (4), it is nevertheless
interesting to consider an even more general problem, that is to find, given an
arbitrary integer k ≥ 2, the possible solutions of

(7) β(n) = β(n + 1) = . . . = β(n + k − 1).

In the particular case k = 3, the number n = 89460294 is a solution of
(7) and a computer search reveals that there is no other solution n < 1010.
Nevertheless, given any integer k ≥ 2, equations (7) may indeed have infinitely
many solutions. In fact, Carl Pomerance (private communication) came up
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with a heuristic argument indicating that, given any arbitrary small ε > 0, the
number Bk(x) of solutions n ≤ x of (7) satisfies

Bk(x) À x1−ε.

His argument goes as follows. Let k ≥ 2 and choose an arbitrary small ε > 0.
Let r be a fixed positive integer such that

k − 1
r

<
ε

2
,

and consider the set
{
n ≤ x : P (n) ≤ n1/r

}
, which is known to be of density

ρ(r), where ρ is the Dickman function (see for instance the book of Tenenbaum
[7]). It is reasonable to assume that the set

Dk := {n ≤ x : max(P (n), P (n + 1), . . . , P (n + k − 1)) ≤ n1/r}

is also a set of positive density δk (with possibly δk ≈ ρ(r)k). Since β(n) ≤
≤ P (n)ω(n) ≤ P (n) log n for each integer n ≥ 3, then if n ∈ Dk, we have

β(n + i) ∈ [2, n1/r log(n + k − 1)]

for i = 0, 1, . . . , k − 1. It follows that the probability that (7) holds for a given
integer n ∈ [3, x] is equal to

δk

(
n1/r log(n + k − 1)

)−(k−1)

= δk
1

n(k−1)/r log(k−1)(n + k − 1)
> δk

1
nε

,

provided n is large enough so that log(k−1)(n + k − 1) < nε/2. Therefore, if x
is sufficiently large, we would have

Bk(x) > δk
x

xε
À x1−ε

as claimed.
Now consider the function β∗(n) := β(n)−P (n). It is clearly much smaller

than β(n) since, denoting by P2(n) the second largest prime factor of n (or 0
if no such factor exists), we have

β∗(n) ≤ (ω(n)− 1)P2(n) ≤ (log n)
√

n.

Hence one might expect the corresponding equations

(8) β∗(n) = β∗(n + 1) = . . . = β∗(n + k − 1),
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to have more solutions. In fact, we can show that (8) has infinitely many
solutions n if one accepts the prime k-tuples conjecture.

Hence, we shall prove the following result.

Theorem 1. Let k ≥ 2 be an integer. If one assumes that the prime
k-tuples conjecture is true, then there exist infinitely many positive integers n
such that

β∗(n− k + 1) = β∗(n− k + 2) = . . . = β∗(n).

Proof. Let k ≥ 2 and A = {p ∈ P : p ≤ k}. Let E1, E2, . . . , Ek be k sets
of primes and R a positive integer satisfying the following conditions:

(a) (Ei\A) ∩ (Ej\A) = ∅ if i 6= j;

(b) each prime q ∈ A belongs to one and only one of the sets Ei, Ei+1, . . . ,
Ei+q−1 for each integer i ∈ [1, k − q + 1];

(c)
∑

p∈E1

p =
∑

p∈E2

p = . . . =
∑

p∈Ek

p = R.

For the moment, assume that such sets Ei’s with an appropriate integer
R exist. Then let Qi =

∏
p∈Ei

p for i = 1, 2, . . . , k and consider the system of

congruences

(9)





n− k + 1 ≡ 0 (mod Q1),
n− k + 2 ≡ 0 (mod Q2),

...
n ≡ 0 (mod Qk).

Using the Chinese Remainder Theorem, we are guaranteed the existence of a
solution n0 < Q := Q1Q2 . . . Qk of (9), each other solution n of (9) being of
the form

n = n0 + xQ, with x = 0, 1, 2, 3, . . . .

Hence, if we set

gi := gcd
(

n0 + k − i

Qi
,

Q

Qi

)
(1 ≤ i ≤ k),

then, for each integer i ∈ [1, k],

n− k + i = n0 − k + i + xQ = Qigi

(
n0 − k + i

Qigi
+ x

Q

Qigi

)
= Qigi · qi(x),
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where each polynomial qi(x), 1 ≤ i ≤ k, is defined implicitly. If we can find
a value of x, say r, for which the corresponding numbers q1(r), q2(r), . . . , qk(r)
are all prime numbers, with

(10) qi(r) > P (Qigi) (1 ≤ i ≤ k),

then our theorem will be proved, since in this case

β∗(n− k + i) = β∗(Qigiqi(r)) = β(Qigi) = β(Qi) = R (1 ≤ i ≤ k).

Now

pgcd
(

n0 − k + i

Qigi
,

Q

Qigi

)
= 1 (1 ≤ i ≤ k)

and, for each integer i ∈ [1, k], no prime p ∈ A divides each value of qi(x).
Hence we may conclude, assuming the prime k-tuples conjecture, that there
exists one positive integer r (as a matter of fact, infinitely many) such that
the corresponding numbers q1(r), q2(r), . . . , qk(r) are all primes, and moreover
that they satisfy (10).

Hence, in order to complete the proof of Theorem 1, it remains to show
that one can always find k sets of primes E1, . . . , Ek and in integer R satisfying
conditions (a), (b) and (c).

First, observe that if we denote by s3(n) the number of representations of
n as a sum of three primes, then using the known estimate

∑
q1+q2+q3=n

(log q1)(log q2)(log q3) ∼ n2

2
G(n) (n →∞),

where

G(n) =
∏

p|n

(
1− 1

(p− 1)2

) ∏

p|/n

(
1 +

1
(p− 1)2

)

(see for instance Friedlander and Goldston [3]), one can easily establish that

s3(n) À n2

log3 n
(n →∞).

It follows from this estimate that, provided an odd integer n is large enough, the
number of representations of n as a sum of three odd primes can be as large as
one desires. Using this observation, we now show how one can contruct sets of
primes E1, E2, . . . , Ek and a corresponding odd integer R satisfying conditions
(a), (b) and (c).
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Let R be a large odd integer; how large it needs to be will become clear
at the end of this argument. Let Fi = {ri, si, ti}, i = 1, 2, . . . , k, be k sets each
containing exactly three distinct primes whose sum is equal to R, and such
that Fi ∩ Fj = ∅ if i 6= j. Let R1, R2, R3, . . . be odd integers defined implicity
by the following relations:

2 + R1 = R,

r1 + s1 + t1 = R,

2 + 3 + 5 + R2 = R,

r2 + s2 + t2 = R,

2 + R1 = R,

3 + 7 + R3 = R,

2 + R1 = R,

5 + 11 + R4 = R,

2 + 3 + 13 + R5 = R,

r3 + s3 + t3 = R,

and so on, where:
• on each i-th row with i odd, we place the prime 2;
• on each i-th row with i ≥ 3:

– if there exists a prime p which has already appeared on the (i− p)-th
row,
∗ we place it on this i-th row;
∗ we also place the smallest prime which has not yet appeared on the

previous lines, with the additional constraint that we place the two
smallest if the left side of the equation is even;

– if no such prime p exists, we place the next set Fj of primes;
• we end the process when the k-th line has been constructed.
We then define the sets Ei’s as follows (where the primes qi’s are primes

whose existence is guaranteed by the fact that each odd large integer can be
written as the sum of three primes):

E1 = {2, q1, q2, q3}, where q1 + q2 + q3 = R1,

E2 = {r1, s1, t1},
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E3 = {2, 3, 5, q4, q5, q6}, where q4 + q5 + q6 = R2,

E4 = {r2, s2, t2},
E5 = {2, q7, q8, q9}, where q7 + q8 + q9 = R3,

E6 = {3, 7, q10, q11, q12}, where q10 + q11 + q12 = R4,

E7 = {2, q13, q14, q15}, where q13 + q14 + q15 = R5,

E8 = {5, 11, q16, q17, q18}, where q16 + q17 + q18 = R6,

E9 = {2, 3, 13, q19, q20, q21}, where q19 + q20 + q21 = R7,

E10 = {r3, s3, t3},
and so on, up to Ek.

Since R can be taken arbitrarily large, we may assume that each of the
primes in the Fi’s are larger than the qi’s, which in turn may be assumed to be
larger than the p’s which we have been adding on some lines. By doing so, we
ensure that conditions (a), (b) and (c) are satisfied, thus completing the proof
of Theorem 1.

For each positive real number ε < 1, let

βε(n) :=
∑
p|n

p<n1−ε

p.

Since, in the above proof, the prime k-tuples conjecture guarantees the
existence of infinitely many integers x such that qi(x) is prime for 1 ≤ i ≤ k,
and since for each i ∈ [1, k], the sequence of primes qi(x) tends to +∞, it is
clear that the following result also holds.

Theorem 2. Given an integer k ≥ 2 and a positive real number ε <
< 1. Then, assuming the prime k-tuples conjecture, there exist infinitely many
positive integers n such that

βε(n− k + 1) = βε(n− k + 2) = . . . = βε(n).

Using the idea of the proof of Theorem 1, we can also establish that,

assuming the prime k-tuples conjecture, the quotients
β(n− k + j)
β(n− k + i)

, with i, j ∈
∈ [1, k] can be arbitrarily close to 1, infinitely many often. More precisely, we
can prove the following result.
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Theorem 3. Given an integer k ≥ 2 and assuming the prime k-tuples
conjecture,

(11) lim inf
n→∞

max
1≤i≤k

β(n− k + i)

min
1≤i≤k

β(n− k + i)
= 1.

Proof. We only need to show that, given any real number δ > 0, there
exist infinitely many integers n such that

(12)
max
1≤i≤k

β(n− k + i)

min
1≤i≤k

β(n− k + i)
≤ 1 + δ.

Let N be a large positive integer and consider the system of congruences




n− k + 1 ≡ 0 (mod N − k + 1),
n− k + 2 ≡ 0 (mod N − k + 2),

...
n ≡ 0 (mod N),

of which n0 = N is clearly the smallest positive solution, in which case all other
solutions n are given by n = n0 + xQ, x = 0, 1, 2, . . ., where

Q := (N − k + 1)(N − k + 2) . . . N.

We then have, for each integer i ∈ [1, k],

n− k + i = n0 − k + i + xQ = N − k + i + xQ =

= (N − k + i)
(

1 + x
Q

N − k + i

)
= (N − k + i) · qi(x),

say. Assuming the prime k-tuples conjecture, we may conclude that there exists
a positive integer r such that q1(r), . . . , qk(r) are all prime numbers. For the
corresponding integer n, with β(n− k + j) ≥ β(n− k + i), we have

1 ≤ β(n− k + j)
β(n− k + i)

=
β((N − k + j)qj(r))
β((N − k + i)qi(r))

=
β(N − k + j) + qj(r)
β(N − k + i) + qi(r)

=

=
β(N − k + j) + (n− k + j)/(N − k + j)
β(N − k + i) + (n− k + i)/(N − k + i)

≤

≤ β(N − k + j) + (n− k + j)/(N − k + j)
(n− k + i)/(N − k + i)

=

=
β(N − k + j)

N − k + j

n− k + j
+ 1

n− k + i

n− k + j
· N − k + j

N − k + i

≤

≤ 1 + δ,
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provided n is large enough, thus proving Theorem 3.

Computational data. The algorithm mentioned in the proof of The-
orem 1 is not optimal; it only guarantees the existence of a set of primes
Ei’s with an appropriate integer R. Much simpler configurations can be
obtained by inspection, say for example for 1 ≤ k ≤ 5. For k = 2,
one can take R = 5 with E1 = {5} and E2 = {2, 3} which yields as
part of the solutions of (8) the numbers n = 65, 185, 365, 785 and 905.
For k = 3, take R = 19 with E1 = {19}, E2 = {2, 17} and E3 =
= {3, 5, 11} providing the solutions

n = 8161393, 18607213, 26068513, 64014553 and 67212253.

For k = 4, one can take R = 36 with E1 = {2, 5, 29}, E2 = {13, 23}, E3 =
= {2, 3, 31} and E4 = {17, 19}, with solutions

73494447431170, 111699918460090, 112793884769890,

127098796611370 and 141955900971130.

For k = 5, one can take R = 50, E1 = {13, 37}, E2 = {2, 5, 43}, E3 =
= {3, 47}, E4 = {2, 7, 41} and E5 = {19, 31}, providing the solutions

981705863038517929, 1036978848810729409, 1052399282229876529,

1595959700642651929 and 2050448382796747609.
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Québec G1K 7P4
Canada
jmdk@mat.ulaval.ca






