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GRÖBNER BASES FOR PERMUTATIONS
AND ORIENTED TREES
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This paper is dedicated to professor Imre Kátai
on the occasion of his 65th birthday

Abstract. Let F be a field. We describe Gröbner bases for the ideals of

polynomials vanishing on the sets Xn and Ym. Here Xn = X(α1, . . . , αn)
is the set of all permutations of some α1, . . . , αn ∈ F. Ym is the set of

characteristic vectors of the oriented trees on an m-element vertex set.

1. Introduction

Let F be a field and n ≥ 1 an integer. For a subset X of the affine
space Fn one may consider the ideal I(X) of polynomial functions f ∈ S =
= F[x1, . . . , xn] vanishing on X. Many interesting (combinatorial) properties
of X can be formulated in terms of the polynomial functions X → F. This
approach leads to the study of I(X), and in particular to the study of Gröbner
bases, standard monomials and the Hilbert function of S/I(X) (see Subsection
1.1 for definitions). In [11], [133] we described Gröbner bases and related data
for the complete uniform families, i.e., when X consists of all 0,1-vectors in Fn

which, for a fixed k, have precisely k ones as coordinate values. Applications
are given in [3], [11], [13] and [14].

Research supported in part by OTKA and NWO-OTKA grants, and the
EU-COE Grant of MTA SZTAKI.
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In this note we consider another two types of interesting finite subsets of
Fn. Let α1, . . . , αn be n different elements of F and put

Xn := Xn(α1, . . . , αn) := {(απ(1), . . . , απ(n)) : π ∈ Sn}.

Xn is the set of all permutations of the αi, viewed as a subset of Fn.

For general terminology on directed graphs (path, circuit, cycle, etc.) we
refer to Lovász [17]. An oriented tree with vertex set V is a weakly connected
directed graph T on V with |V | − 1 edges such that there is a v ∈ V , the root
of T , which is reachable by a directed path from every w ∈ V . An oriented
forest is a digraph whose weak components are oriented trees.

Let m be a positive integer and Tm be the set of all oriented trees with
vertex set [m] := {1, 2, . . . , m}. It is known that |Tm| = mm−1, see for example
Section 2.3.4.4 in [15], or § 4 in [17]. We represent the trees T ∈ Tm by
their characteristic vectors v(T ) ∈ Fn, where n = m(m − 1). The coordinate
functions x(i,j) in Fn are indexed with directed edges (i, j), i 6= j ∈ [m]. The
(i, j)-component v(T )(i,j) is 1 if (i, j) is an edge of T and v(T )(i,j) = 0 otherwise.
We put

Ym := {v(T ) : T ∈ Tm} ⊆ Fn.

In Theorems 2.2 and 3.2 we describe Gröbner bases for the ideals I(Xn)
and I(Ym) above. Before formulating the precise statements, we overview the
facts from the theory of Gröbner bases we need later on.

Suppose that we have a set of variables x` indexed by elements ` of a set
J . In the sequel J will be either [n], or the set of edges of the complete digraph
KDm on [m]. For a subset H ⊆ J we denote by xH the monomial

∏
`∈H

x`, in

particular, x∅ = 1.

1.1. Gröbner bases and standard monomials

A total ordering ≺ on the monomials xi1
1 xi2

2 · · ·xin
n from variables x1, x2,

. . . , xn is a term order, if 1 is the minimal element of ≺, and uw ≺ vw holds
for any monomials u, v, w with u ≺ v. There are many term orders, important
examples being the lexicographic order ≺l and the deglex order ≺dl. We have

xi1
1 xi2

2 · · ·xin
n ≺l xj1

1 xj2
2 · · ·xjn

n

iff ik < jk holds for the smallest index k such that ik 6= jk. As for deglex, we
have u ≺dl v iff either degu < degv, or degu = degv, and u ≺l v.
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The leading monomial lm(f) of a nonzero polynomial f from the ring
S = F[x1, x2, . . . , xn] is the largest (with respect to ≺) monomial which occurs
with nonzero coefficient in the standard form of f .

Let I be an ideal of S. A finite subset G ⊆ I is a Gröbner basis of I if for
every f ∈ I there exists a g ∈ G such that lm(g) divides lm(f). A term order is
well-founded, implying that G generates I, i.e. G is a basis of I. A fundamental
fact is (cf. [10, Chapter 1, Corollary 3.12] or [1, Corollary 1.6.5, Theorem 1.9.1])
that every nonzero ideal I of S has a Gröbner basis with respect to any term
order ≺.

A monomial w ∈ S is a standard monomial for I if it is not a leading
monomial of any f ∈ I. Let sm(≺, I,F) stand for the set of all standard
monomials of I with respect to the term-order ≺ over F. It is known (see [10,
Chapter 1, Section 4]) that for a nonzero ideal I the set sm(≺, I,F) is a basis
of the F-vector space S/I. More precisely every g ∈ S can be written uniquely
as g = h + f where f ∈ I and h is a unique F-linear combination of monomials
from sm(≺, I,F).

Now if X ⊆ Fn is a finite set, then an easy interpolation argument gives
that every function from X to F is a polynomial function. The latter two facts
imply that

(1) |Sm(≺, I(X),F)| = |X|.

A Gröbner basis {f1, . . . , fm} of I is reduced if the coefficient of lm(fi)
is 1, and no nonzero monomial in fi is divisible by any lm(fj), j 6= i. By
a theorem of Buchberger ([1, Theorem 1.8.7]) a nonzero ideal has a unique
reduced Gröbner basis.

The initial ideal in(I) of I is the ideal in S generated by the monomials
{lm(f) : f ∈ I}.

Next we introduce reduction, a notion closely related to Gröbner bases.
Let G be a set of polynomials in F[x1, . . . , xn] and let f ∈ F[x1, . . . , xn] be a
fixed polynomial. Let ≺ be an arbitrary term-order. We can reduce f by the
set G with respect to ≺. This gives a new polynomial h ∈ F[x1, . . . , xn].

Here reduction means that we possibly repeatedly replace monomials in f
by smaller ones (with respect to ≺) as follows: if w is a monomial occurring in
f and lm(g) divides w for some g ∈ G (i.e. w = lm(g)u for some monomial u),
then we replace w in f with u(lm(g)−g). Clearly the monomials in u(lm(g)−g)
are ≺-smaller than w. If G is a Gröbner basis then any f ∈ S can be reduced
into a (unique) F-linear combination of standard monomials.

Let I be an ideal of S = F[x1, . . . , xn]. The Hilbert function of the algebra
S/I is the sequence hS/I(0), hS/I(1), . . .. Here hS/I(m) is the dimension over F
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of the factor space F[x1, . . . , xn]≤m/(I ∩F[x1, . . . , xn]≤m) (see [5, Section 9.3]).
It is easy to see that hS/I(m) is the number of standard monomials of degree
at most m, where the ordering ≺ is deglex.

In the case when I = I(X) for some X ⊆ Fn, the number hX(m) :=
:= hS/I(m) is the dimension of the space of functions from X to F which are
polynomials of degree at most m.

2. Permutations

We recall the definition of the complete symmetric polynomials. Let i be
a nonnegative integer and write

hi(x1, . . . , xn) =
∑

a1+···+an=i

xa1
1 xa2

2 · · ·xan
n .

Thus, hi ∈ F[x1, . . . , xn] is the sum of all monomials of total degree i. For
0 ≤ i ≤ n we write σi for the i-th elementary symmetric polynomial:

σi(x1, . . . , xn) =
∑

S⊂[n], |S|=i

xS .

σi ∈ F[x1, . . . , xn] is the sum of all square free monomials of degree i in the
variables x1, . . . , xn.

Let α1, . . . , αn be n different elements of F, and Xn = Xn(α1, . . . , αn) ⊆ Fn

be the set of permutations of α1, . . . , αn.

For 1 ≤ k ≤ n we introduce the polynomials fk ∈ S as follows:

fk =
k∑

i=0

(−1)ihk−i(xk, xk+1, . . . , xn)σi(α1, . . . , αn).

We remark, that fk ∈ F[xk, xk+1, . . . , xn]. Moreover, degfk = k and the
leading monomial of fk is xk

k with respect to any term order ≺ for which
x1 Â x2 Â . . . Â xn.

Proposition 2.1. Let v ∈ Xn. Then fk(v) = 0 for 1 ≤ k ≤ n.
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Proof. The statement is immediate from the following known (see, e.g.
[9, p. 314]) identities. Let 1 ≤ k ≤ n. Then

(2)
k∑

i=0

(−1)ihk−i(xk, . . . , xn)σi(x1, . . . , xn) = 0.

For the convenience of the reader we sketch a proof of (2). For a fixed k one
verifies first that

(3) σi(x1, . . . , xn) =
∑

S⊆[k−1]

xSσi−|S|(xk, . . . , xn),

where we understand σj = 0 for j < 0.

We need also the fundamental relation connecting complete symmetric
polynomials to the elementary ones, see [20, Theorem 4.3.7] or [18, p.14]. If
t,m are positive integers then, with the convention σi = 0 for i > m, we have

(4)
t∑

i=0

(−1)iht−i(w1, . . . , wm)σi(w1, . . . , wm) = 0.

Now using (3), we obtain

k∑

i=0

(−1)ihk−i(xk, . . . , xn)σi(x1, . . . , xn) =

=
∑

S⊆[k−1]

xS

k∑

j=|S|
(−1)ihk−i(xk, . . . , xn)σi−|S|(xk, . . . , xn).

To establish (2), it suffices to verify that the coefficient of xS is 0 for every
S ⊆ [k− 1]. For this we can apply (4) with t = k− |S| > 1, and m = n− k +1.

We can state now the main result of this section. A related weaker
statement is given in [9, Proposition 5, Chapter 7].

Theorem 2.2. Let F be a field and let ≺ be an arbitrary term order on the
monomials of F[x1, . . . , xn] such that xn ≺ . . . ≺ x1. Then the reduced Gröbner
basis of I(Xn) is

{fi : 1 ≤ i ≤ n}.
Moreover the set of standard monomials is

(5) Sm(≺, I(Xn),F) = {xα1
1 . . . xαn

n : 0 ≤ αi ≤ i− 1, for 1 ≤ i ≤ n}.
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Proof. Let M denote the set of monomials on the right hand side of (5).
The leading monomial of fk is xk

k, hence if a monomial w is not in M then w is
clearly a leading term for I(Xn). We infer that the standard monomials are a
subset of M. The reverse inclusion follows at once from |M| = n! = |Xn| and
(1). Now (5) implies that the monomials xk

k, (1 ≤ k ≤ n) generate the initial
ideal for I(Xn), therefore {f1, . . . fn} is a Gröbner basis for I(Xn).

Reducedness is immediate: on one hand, there are no divisibilities among
the xk

k. On the other hand, except for the leading term, all monomials in fk

are standard monomials.

In [2] E. Artin proved that M is a basis of the quotient ring

F[x1, . . . , xn]/(σ1, . . . , σn).

Our result can be considered as a refinement of Artin’s theorem. We call the
elements of M Artin monomials.

There is a useful and simple bijection between permutations and Artin
monomials, more precisely their exponent vectors. This is the Hall map [16,
Section 5.1.1]. To a permutation π of {1, . . . , n} the Hall map associates the
sequence of integers bn, bn−1, . . . , b1, where bj is the number elements k ∈ [n]
such that k > j and k appears in π to the left of j. Clearly we have bi ≤ n− i

for i = 1, . . . , n, hence xbn
1 xb2

2 · · ·xb1
n ∈ M. It is not hard to show that this

map is invertible. Monomials of degree k correspond under the Hall map to
permutations with exactly k inversions. These latter objects have been studied
intensively. Writing simply h(m) for the Hilbert function hS/I(Xn)(m), we have

h(m)− h(m− 1) = Im(n), m = 1, 2, . . . ,

(
n

2

)
,

where Im(n) is the number of permutations of n symbols with m inversions.
In [16, Section 5.1.1.] there are some explicit formulae for Im(n), m ≤ n.
Asymptotic estimates are given in [7] and [19].

The Fundamental Theorem on Symmetric Polynomials asserts that every
symmetric polynomial f ∈ F[y1, . . . , yn] admits a unique expression of the form

f =
∑

p≥0

apσ
p1
1 σp2

2 · · ·σpn
n ,

where p = (p1, p2, . . . , pn), ap ∈ F, and the σi are the elementary symmetric
polynomials in the yi. In [12] Garsia obtained a beautiful generalization. Here
we present a simple proof. Let N be the set of Artin monomials in the yi (we
substitute yi in the place of xi for every w ∈M).
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Corollary 2.3. Every polynomial f ∈ F[y1, . . . , yn] has a unique expansion
of the form

f(y1, . . . , yn) =
∑

w∈N

∑

p≥0

aw,pwσp1
1 σp2

2 · · ·σpn
n ,

where aw,p ∈ F.
Proof. Let {y1, . . . , yn} be variables, and consider the set of permutations

Xn = Xn(y1, . . . , yn) in Kn, where K is the function field F(y1, . . . , yn). The
polynomial f(x1, . . . , xn) can be considered as an element of K[x1, . . . , xn]. We
apply the preceding Theorem with K in the place of F and αi = yi. The
reduction of f(x1, . . . , xn) with respect to f1, . . . , fn shows the existence of a
unique expansion of the form

(6) f(x1, . . . , xn) =
∑

w∈M
wgw,

where gw ∈ F[y1, . . . , yn] are symmetric polynomials in the yi. This holds
because the leading coefficient of an fi is 1, and the non leading terms of fi are
of the form wgw as above. The two sides of (6) are equal as functions on Xn.
Now the substitutions xi = yi and the Fundamental Theorem on Symmetric
Polynomials gives the claim.

Remark. The Corollary, together with the proof we presented here, offers
an algorithmic version of the fact that F[y1, . . . , yn] is a free module of rank
n! over the ring of symmetric polynomials. The reduction procedure gives an
expression of f in terms of the Artin basis.

3. Oriented trees

Let m be a positive integer. Recall that Ym is the set of characteristic
vectors of the oriented trees on [m]. We have Ym ⊂ Fn, where n = m(m− 1).
The coordinate functions on Fn are indexed with the edges of the complete
directed graph KDm with vertex set [m]. We consider the ideal I(Ym) in the
polynomial ring S = F[x(i,j) : 1 ≤ i, j ≤ m, i 6= j]. We work with the
lexicographic order, where the ordering of the variables is as follows:

(7) x(2,1) Â x(3,1) Â . . . Â x(m,1) Â x(1,2) Â . . . Â x(1,m) Â x(3,2) Â ...,

i.e. the edges entering 1 are the largest, then follow the edges leaving 1, and
we proceed similarly for 2, 3, . . . , m.
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In this section i, j, k denote three different integers from [m]. We introduce
four sets of polynomials.

A = {x2
(i,j) − x(i,j) : j > 1},

B = {x(i,j)x(i,k) : j, k > 1},

C = {xC : C is a directed cycle in KDm, which avoids vertex 1}.
We define the polynomials gi ∈ S, i > 1 as follows

(8) gi :=


−1 +

∑

j 6=i

x(i,j)




(
−1 +

∑

P

xP

)
−

∑

C

xC ,

where P ranges over the directed paths in KDm from 1 to i and C runs through
the subgraphs KDm which consist of a directed path Q from 1 to i and an edge
(i, j), where j is a node on Q. Please note that the leading term of gi is x(i,1).
Also, simplification of (8) shows that the non leading terms of gi are of the
shape αF xF , where αF ∈ F and F is an oriented forest on [m], without edges
entering 1. We put

D = {gi : i > 1},
and set

G := A ∪ B ∪ C ∪ D.

Proposition 3.1. We have G ⊆ I(Ym).

Proof. The polynomials from A vanish on all 0,1-vectors. We have
f(v(T )) = 0 for f ∈ B and T ∈ Tm because the out-degree of a vertex in
T is at most 1. The polynomials from C vanish on v(T ) because T does not
contain directed cycles.

Finally gi(v(T )) = 0 for i > 1 because either the out-degree of vertex i in
T is 1, or else i is the root of T , and hence T contains a directed path from 1
to i.

Let Fm be the set of all oriented forests F on [m] which do not contain
edges entering vertex 1. We note that |Tm| = |Fm|. Indeed, from a tree T ∈ Tm

we obtain a forest F ∈ Fm by just deleting the edges entering vertex 1. This
map is invertible: from F we recover T by adding edges (i, 1), where i is the
root of a component C of F for which 1 6∈ C.

Theorem 3.2. Let F be a field and let ≺ be the lex order on the monomials
of S, as specified in (7). Then G is the reduced Gröbner basis of I(Ym).
Moreover the set of standard monomials is

(9) Sm(≺, I(Ym),F) = {xF : F ∈ Fm}.
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Proof. We prove first (9). In view of |Tm| = |Fm| and (1) it suffices to
show ⊆. Let w be a monomial which is not divisible by the leading monomial
of any f ∈ G. The leading term of gi is x(i,1), hence w does not contain any of
the these variables. The polynomials in A ensure now that w is not divisible
by the square of any variable, hence w = xG for some subgraph G of KDm.
The monomials in B do not divide w, hence the out-degree of any vertex of G
is at most 1. Likewise, the monomials in C ascertain that G does not contain
directed cycles. It is a simple and well known (see, e.g. Exercise 2.3.4.2.7 in
[15]) fact that such a G must be an oriented forest. As G has no edges entering
1, we conclude that G ∈ Fm.

The argument above gives also that the leading terms of G generate the
initial ideal of I(Ym), hence G is a Gröbner basis of I(Ym).

Concerning reducedness, the set of the leading monomials of G is

{x2
(i,j) : j > 1} ∪ B ∪ C ∪ {x(i,1) : i > 1},

and there are no nontrivial divisibilities among these monomials. The other
(non leading) terms of an f ∈ G are all standard monomials.

In this case we have a nice formula for the number of standard monomials
of degree i. We shall use a result of Clarke [8]: for 1 ≤ k ≤ m− 1 let L(m, k)
denote the number of undirected spanning trees on the vertex set [m] where
the degree of 1 is k. Clarke proved that

L(m, k) =
(

m− 2
k − 1

)
(m− 1)m−k−1.

We observe that for m ≥ 2, L(m, k) is the number of oriented forests on
{2, . . . , m} with m−1−k edges. Indeed from such an oriented forest we obtain
a spanning tree on [m] by joining the roots of the trees to 1 and then forgetting
the orientation of edges. This map is clearly invertible.

Proposition 3.3. We have

|{F ∈ Fm : F has exactly i edges}| =
(

m− 1
i

)
(m− 1)i

for 0 ≤ i ≤ m− 1.

Proof. The formula is obviously correct for m = 1, 2 and in general for
i = 0. The case i = m − 1 is also easy. Then F spans an oriented tree on
{2, . . . , m} and has an edge leaving 1. The number of such graphs is (m −
−1)(m−2)(m− 1) = (m− 1)(m−1).
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Assume now that 1 < i < m − 1. Let F ∈ Fm and |F | = i. Then F has
0 or 1 edges starting at 1. The subgraph of F spanned by {2, . . . , m} is an
oriented tree on m − 1 points with i edges in the former case and with i − 1
edges in the latter case.

The number of possibilities therefore is

L(m,m− 1− i) + L(m,m− i)(m− 1) =

=
(

m− 2
m− 2− i

)
(m− 1)i +

(
m− 2

m− i− 1

)
(m− 1)i−1(m− 1) =

=
((

m− 2
i

)
+

(
m− 2
i− 1

))
(m− 1)i =

(
m− 1

i

)
(m− 1)i.

The proof is complete.

4. A concluding remark

It would be interesting to give Gröbner bases for I(Ym) with respect to
some degree compatible order ≺, such as deglex. This would likely be helpful
to determine the Hilbert function of S/I(Ym).
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