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1. Introduction

There is a large literature on multiplicative arithmetic functions f(n) which
are prime-independent. Hence it is difficult to state anything that is really new.
However, I hope that at least some of the following is perhaps new.

We are concerned here with the set S of multiplicative arithmetic functions
f such that for every prime p and every positive integer k we have f(pk) =
an integer, independent of p. There are plenty of examples of such functions.
Some examples are: the Möbius function µ(n), the numbers of divisors of n

denoted by d(n), the Liouville function (−1)Ω(n), where Ω(n) denotes the total
number of prime divisors of n – multiplicity being taken into account, the
unitary divisor function, d∗(n) (= 2ω(n), ω(n) = the number of distinct prime
divisors of n, with ω(1) = 0), the unitary Möbius function µ∗(n) = (−1)ω(n),

more generally, µk(n) = (−k)ω(n), if n is square-free, and = 0 otherwise, with
µk(1) = 1, µ∗(k)(n) = kω(n), d∗(k)(n) = kω(n) = the number of representations of
1 < n as ∑

m1m2...mk=n

(mi,mj)=1, i 6=j

m1m2 . . . mk.

A further example is the exponential divisor function τ (e)(n) with τ∗(pa) =
= d(a), p prime. We may also mention, the extensions of d(n) and τ

(e)
k (n)
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obtained by using k-fold divisor products:

dr(n) =
∑

m1m2...mr=n

and
τ (e)
r (n) =

∏
p

dr(a1)
1 . . . p

dr(ar)
k ,

where n = pa1
1 . . . pak

k .

Note that we define f(1) = 1 for every multiplicative arithmetic function
f(n). A further set of examples of functions that belong to the set S is provided
by the following easy

Theorem 1. If f(n) and g(n) ∈ S, then their Dirichlet product (f · g)(n)
and Dirichlet inverse f−1 also belongs to S, where we recall the definition

(f · g)(n) =
∑

ab=n

f(a)g(b).

Proof. We only have to recall the well known result that (f · g)(n) is
multiplicative since f and g are, and for each prime p and k = 1, 2, . . . , we
have

(f · g)(pk) =
k∑

a=0

f(pa)g(pk−a).

Since every term in the summation on the right is independent of p, so is the
left member.

That f−1 – the Dirichlet inverse of f – belongs to the set S follows from
the relation that for each k ≥ 1,

f−1(pk)f(1) + f−1(pk−1)f(p) + · · ·+ f−1(1)f(pk) = 0

which shows recursively that f−1(p), f−1(p2), . . . are all independent of p and
are integral since f ∈ S.

2. A representation theorem

In what follows, p denotes an arbitrary prime:
∑
n

,
∏
p

respectively products

over all natural numbers n and all primes, and the summations
∑
n

,
∑
p

have
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analogous meanings. All our series and products are formal and all questions
of convergence are therefore ignored. ζ(s) is the Riemann zeta function. One
of our main results is the following. I did not find this (as well as much of the
material that follows in Sections 2 and 3) formally stated in the literature.

Theorem 2. A function f(n) belongs to the set S if and only if its
generating Dirichlet function

∑
f(n)n−s has the representation

(2.1)
∑

n

f(n)n−s =
∞∏

n=1

(
ζ(ns)

)b(n)
,

where b(n) are integers (positive, negative or zero).

Proof. To prove the ‘if’ part, let f(n) satisfy (2.1). Then

(2.2)
∑

n

f(n)n−s =
∏
p

∏
n

(1− p−ns)−b(n).

On using the binomial expansions for the terms in the inner product on
the right side of (2.2), we have

(2.3)
∑

n

f(n)n−s =
∏
p

( ∞∑

k=0

c(pk)p−ks

)
,

where c(pk) is an integer whose value is independent of the value of the prime
p. We now define c(n) to be the multiplicative function whose values for prime
powers pk of the argument n are as determined in the right side of (2.3). Then
(2.3) gives

(2.4)
∑

n

f(n)n−s =
∑

n

c(n)n−s.

In view of the uniqueness of representation of a function by a Dirichlet series,
we see from (2.4) that f(n) = c(n). This proves that f ∈ S and completes the
proof of the ‘if’ part.

To prove the ‘only if’ part we borrow an idea in a paper of Carlitz [1] and
remark that a given formal power series 1 + a1x + a2x

2 + . . . can be expressed
in the form

(2.5) 1 + a1x + a2x
2 + . . . = (1− x)b(1)(1− x2)b(2)(1− x3)b(3) . . . ,

where b(1), b(2), b(3), . . . are constants that can be determined recursively.
Moreover, b(1), b(2), b(3), . . . are integers if and only if a1, a2, . . . are integers.
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Now let f(n) ∈ S. Then its formal Dirichlet series has the Euler factoriza-
tion ∑

n

f(n)n−s =
∏
p

(
1 +

∑
n

f(pn)p−ns
)
.

We recall that f(pn) is independent of p and define

f(pn) = an (n = 1, 2, . . .); f(1) = 1.

Using the representation in (2.5) we have

∑
n

f(n)n−s =
∏
p

(
1 +

∑
n

anp−ns
)

=

=
∏
p

∏
n

(
1− p−ns

)b(n) =

=
∏
n

(
ζ(ns)

)b(n)
.

Since an, and hence b(n), are integers, the proof is complete.
For a given f(n) ∈ S, to represent its Dirichlet series in the form (2.1),

one can determine b(1), b(2), . . . recursively from the relation (2.5), where
an = f(pn). But there are easier methods of doing this for special forms of∑

f(n)n−s. One such case is the following.

Theorem 3. Let A be an absolute constant. Then

∏
p

(1−Ap−s)−1 =
∏
n

(
ζ(ns)

)b(n)
,

where
b(n) =

1
n

∑

d|n
Adµ(n/d) (n = 1, 2, . . .).

Proof. Let
1−Ax =

∏
n

(1− xn)b(n).

Taking logarithms of both sides and expanding in series and equating the
coefficients of xn we get

An

n
=

∑

d|n
b(d)(d/n).
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Using the Möbius inversion formula, we get

b(n) =
1
n

∑

d|n
Adµ(n/d).

The theorem now follows easily.

(2.6) Remark. It is easily seen that Theorem 3 can be extended as
follows: ∏

p

∏

j

(1−Ajp
−s) =

∏
n

(
ζ(ns)

)b(n)
,

where

b(n) =
1
n

∑

d|n


∑

j

Ad
j


 µ(n/d),

j varying over a finite or infinite sequence of natural numbers.

3. Some applications and examples

(i) Let µk(n) be the function defined in Section 1. An application of
Theorem 3 shows that

(3.1)
∑

n

µk(n)n−s =
∏
n

(
ζ(ns)

)bk(n)
,

where

(3.2) bk(n) =
1
n

∑

d|n
kdµ(n/d).

(ii) Next, we refer to the definitions of d∗(n) and apply Theorem 3 to
obtain

1 +
∑

n

(
d∗(pn)

)k
p−ns = 1 + 2kx + 2kx2 + . . . (x = p−s)

= (1− x)−1
(
1− (1− 2k)x

)
.
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Hence

(3.3)
∑ (

d∗(n)
)k

n−s = ζ(s)
∏
n

(
ζ(ns)

)b1−2k(n)
,

where bk(n) is given by (3.2). The corresponding formula for d(n) was given
by Ramanujan [7] for k = 2 and by Grotze [4] for general k.

(iii) From the definition of µ∗(n) given in (1.3), we have

∑
n

µ∗(n)n−s =
∏
p

(1− p−s − p−2s − . . .) =

=
∏
p

(1− 2p−s)(1− p−s)−1.

From (2.6) we see that

∑
n

µ∗(n)n−s = ζ3(s)
∞∑

n=2

(
ζ(ns)

)b2(n)
,

where b2(n) is as given in (3.2).

(3.4) Let δ(e)(n) be the multiplicative function for prime powers pk defined as
follows:

δ(e)(pk) =





1 if k is a triangular number,
i.e. is of the form m(m + 1)/2,

0 otherwise.

Then
∑

δ(e)(n)n−s =
∞∏

n=1

ζ(2n− 1)s
ζ(2ns)

.

This follows from the famous identity of Gauss [MacMahon, 6, p. 24]:

(3.5)
(1− x2)(1− x4)(1− x6) . . .

(1− x)(1− x3)(1− x5) . . .
= 1 + x + x3 + x6 + . . . + xn(n−1)/2 + . . .

(3.6) Let β(n) be the number of abelian groups of order n. Then, as is well
known, ∑

β(n)n−s =
∏
n

ζ(ns).
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This follows from the fact that β(n) is multiplicative and β(pn) = p(n), where
p(n) is the number of partitions of n so that

1 +
∑

p(n)xn =
∏
n

(1− xn)−1.

(3.7) Let γ(n) be the multiplicative function for which

γ(pk) = p2(k), the number of planar partitions of n.

Then ∑
γ(n)n−s =

∏
n

(
ζ(ns)

)n
.

This follows from MacMahon’s result [6, p. 175] that

1 +
∑

n

p2(n) =
∏
n

(1− xn)−n.

The interested reader would find many such examples that could be
constructed from identities in Combinatorial Analysis.

Thus on combining one of Jacobi’s famous identities [6]:

(1 + x + x3 + . . .)4 = σ(1) + σ(3)x + σ(5)x2 + . . . + σ(2n + 1)xn + . . .

(where σ(n) denotes the sum of the divisors of n) with (3.5) and recalling the
definition of δ(e)(n) given in (3.4), we obtain

∞∏
n=1

(
ζ(2n− 1)

ζ(2n)

)4

=
∑

n

σ′(n)n−s

and ∑

d1d2d3d4=n

δ(e)(d1)δ(e)(d2)δ(e)(d3)δ(e)(d4) = σ′(n),

where σ′(n) is the multiplicative function defined by σ′(n) = σ(2a + 1).
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4. Segal’s theorem and consequences

For prime-independent multiplicative real-valued – but not necessarily in-
teger – valued-functions, it is possible to obtain a theorem somewhat analogous
to Theorem 2. It can also be derived using the following theorem of Segal [8].

Theorem (Segal). Suppose h(n) is an additive arithmetic function such
that h(pk) (p prime) depends only on k. Then there is a function f(k) such
that in some half-plane

∞∑
n=1

h(n)n−s = ζ(s)
∞∑

k=1

f(k) log ζ(ks) (s = σ + it),

provided the left-hand side series converges in some half plane (and so absolutely
in some half place). Actually the f(k) in the theorem is given by

f(k) =
∑

d|k

µ(d)
d

(
h(pr/d)− hp(r/d)−1)

,

µ being the Möbius function, and the prime p being arbitrary. Note that h is
rational valued, so is f.

Remark. Write H(n) = exph(n). Suppose h(n) is prime-independent,
additive and rational valued. Then H(n) is prime-independent and multi-
plicative, but not necessarily rational integer-valued. The following theorem
indicates when this happens.

Theorem. Let h(n) be a prime-independent, additive and rational valued.
Set H(n) = exph(n). Then H(n) is prime-independent and multiplicative and
rational integer valued if and only if for all k ≥ 1, we have

∑

rs=k

rh(pr)µ(s) ≡ 0 (mod k)

where µ is the Möbius function.

This can be proved directly or immediately deduced from the following

Theorem (Carlitz [1]). Let a1, a2, . . . be a sequence of rational numbers
and set

exp

( ∞∑
m=1

amxm

)
=

∞∑
n=1

cnxn



Remarks on prime-independent multiplicative functions 103

the power series being formal. A necessary and sufficient condition that all the
coefficients cn be rational integers is that for all k ≥ 1

∑

rs=k

rarµ(s) ≡ 0 (mod k).

We shall not go into the details of such a representation. Segal also proved
the following asymptotic estimate:

Theorem II (Segal). If h(n) is additive and h(pk) depends only on k and
h(pm) ≡ O(2m/2), then

∑

n≤x

h(n) = h(p)x log log x + Ax + O(x/ log x),

where A is a constant.

5. Concluding remarks

(5.1) The function δ(e)(n) defined in (3.4) does not seem to have been studied
in the literature so far. We can show that, c being an absolute constant

∑

n≤x

δ(e)(n) = cx + O
(
x1/2e−(log3/5 x)(log log x)−1/5

)
.

Note that these δ(e) numbers, which we also call exponential delta numbers,
that is those n for which δ(e)(n) = 1, numbers include square-free numbers and
their cubes or sixth powers, etc. Their distribution among residue class (mod k)
for any given k and the number of representations of n as a sum of k exponential
delta numbers are among the many problems that the author hopes to study
in a subsequent paper.

(5.2) Let ∆(e)(n) be defined as the additive function representing the number
of exponents ai in the canonical form of n = pa1

1 . . . par
r that are triangular

numbers. Segal’s Theorem II shows

∑

n≤x

∆(e)(n) = x log log x + Ax + O(x/ log x),

where A is a constant.
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(5.3) If we apply Segal’s theorem to log τ (e)(n), we get

∑

n≤x

log τ (e)(n) = Ax + O(x/ log x), x →∞,

where A is a constant.

In contrast, Fabrykowski and the author proved in [3] that

∑

n≤x

τ (e)(n) = A1x + O(x1/2 log x), x →∞.

This was improved by Wu [10] to

∑

n≤x

τ (e)(n) = A1x + A2

√
x + O(x2/9 log x),

where A1 and A2 are constants.

Very recently, Kátai and the author proved [5], among other results, that if,
as usual, ω(n) (respectively Ω(n)) denote the number of distinct prime factors
of n (respectively, total number of prime factors of n, multiple factors counted
multiply), then, as x →∞, we have

1
x

∑

n≤x

ω
(
τ (e)(n)

)
= A + O

(
log log x√

x

)

and
1
x

∑

n≤x

Ω
(
τ (e)(n)

)
= B + O

(
log log x√

x

)
,

where A and B are absolute constants.

The first of these results slightly improves an earlier result of Smati and
Wu [9]. The second result is believed to be new.

Note. I just noticed after finishing this paper that J. Knopfmacher and
J.N. Ridley, in their paper, Prime-independent arithmetical functions, Ann.
Mat. Pure Applied 101 (1974), 153-169, have proved in their Theorem 2.1
a result somewhat similar to my Theorem 2, using a different terminology.
But their entire approach is different from mine and there is really nothing in
common between their subsequent results and mine. In particular, they have
not even referred to Segal’s theorem that I used here in my paper. Further, my
results in Section 3, 4 and 5 do not appear at all in their paper.
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