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DISTRIBUTION OF MULTIPLICATIVE FUNCTIONS:
THE SYMMETRIC CASE

J. Galambos (Philadelphia, PA, USA)
I. Simonelli (Commerce, TX, USA)

To Professor Imre Kátai on his 65th birthday

Abstract. We conclude our sequence of papers on proving by purely

probabilistic arguments the existence of limiting distributions for arith-

metical functions. In the present paper we cover multiplicative functions

in which the emphasis is on the case of symmetric distributions. The fact

that we can proceed without analytic methods and sieve arguments is made

possible by our recent proof for a special case of Wirsing’s theorem and,

on the probability side, we again apply Simonelli’s theorem on products

of independent random variables. In our concluding remarks an extension

is indicated to the behavior of arithmetical functions on subsequences of

integers.

1. Introduction

Let ΩN denote the first N positive integers, FN the collection of all subsets
of ΩN , and PN the probability measure that assigns a mass of 1/N to each
element of ΩN . An arithmetical function g(m) can be viewed as a random
variable on the probability space (ΩN ,FN , PN ), with distribution function
FN (x) given by

FN (x) = PN

(
{m ≤ N | g(m) ≤ x}

)
.

The arithmetical function g(m) is said to have a limit distribution function
if there is a distribution function F (x) such that lim

N→+∞
FN (x) = F (x), for
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all continuity points of F (x). The distribution function F (x) is said to be
symmetric about zero (or simply symmetric) if F (x) = 1 − F (−x) for all
continuity points of F (x).

An arithmetical function g(m) is called multiplicative if for any coprime
integers m and n,

g(mn) = g(n)g(m).

Let sp(m) denote the exponent of p in the unique prime factorization of
m. Then a multiplicative function g(m) can be represented as

g(m) =
∏
p

g(psp(m)),

and for any fixed N the distribution function of g(m) is determined by the
distribution of the random variables spi(m), as pi ranges over all prime integers
such that spi

(m) ≤ (log N)/ log pi, which both in formula (1) below, and in all
subsequent applications, can be changed to spi(m) ≤ N . By using the definition
of PN we obtain

(1) PN

(
m

∣∣∣ spi(m) ≥ ki, 1 ≤ i ≤ t
)

=
1
N

[
N

pk1
1 · · · pkt

t

]
,

where [y] denotes the integer part of the real number y, from which we
immediately get the asymptotic relation

(2) PN

(
m

∣∣∣ spi(m) ≥ ki, 1 ≤ i ≤ t
)

=
1

pk1
1 · · · pkt

t

+ O

(
1
N

)
·

In some abstract probability space let epi(ω) = epi , i = 1, 2, · · ·, be
independent random variables, epi = 0, 1, · · ·, and

P (epi ≥ k) =
1
pk

i

·

Hence for arbitrary nonnegative integers ki, 1 ≤ i ≤ t, and arbitrary prime
integers pj1 , · · · , pjt ,

(3) lim
N→+∞

PN

(
spji

(m) = ki, i = 1, · · · , t
)

= P
(
epji

= ki, i = 1, · · · , t
)
.
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Our basic tools in the present paper are the following theorems. For
arbitrary N we define

GN (ω) =
∏

p≤N

g(pep(ω)).

Since GN (ω) is a product of independent random variables, a theorem of
Simonelli (2001) immediately gives the following result.

Theorem 1. Let g(m) be a multiplicative function, g(m) 6= 0 for all m,
and assume ∑

p: g(p)<0

1
p

= +∞.

Then
(i) GN (ω) converges weakly to a symmetric random variable continuous at

zero if, and only if, |GN (ω)| converges weakly to a random variable continuous
at zero;

(ii) GN (ω) converges weakly to a random variable discontinuous at zero if,
and only if, GN (ω) converges to zero almost surely.

If g(m) is a multiplicative function, then sign(g(m)) is also multiplicative.
The next result is a special case of a theorem of Wirsing (1967), for which a
purely probabilistic proof is given in Galambos and Simonelli (2003).

Theorem 2. Let g(m) be a multiplicative function, g(m) 6= 0 for all
m. Then sign(g(m)) always has a limit distribution function, and this limit is
symmetric if, and only if, either sign(g(2k)) = − for all k ≥ 1, or

∑

p: g(p)<0

1
p

= +∞.

2. Results

Our aim is to give a new proof for the following theorem of Galambos
(1971), see also Timofeev, Tuliaganov and Levin (1973) and Elliott (1979), p.
280.

Theorem 3. Let g(m) be a multiplicative function, g(m) 6= 0 for all m,
and assume ∑

p:g(p)<0

1
p

= +∞.
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Then g(m) has a limit symmetric distribution function F (x) continuous at
zero, if, and only if, |g(m)| has a limit distribution function continuous at zero.
Equivalently, g(m) has a limit symmetric distribution function continuous at
zero, if, and only if, for arbitrary M , 0 < M < +∞, the three series

(i)
∑

p:|ln|g(p)||>M

1
p
, (ii)

∑

p:|ln|g(p)||<M

ln|g(p)|
p

,

(iii)
∑

p:|ln|g(p)||<M

ln2|g(p)|
p

converge. Moreover g(m) has a limit distribution function discontinuous at
zero if, and only if, g(m) has a limit distribution function degenerate at zero.

In the case
∑

p: g(p)<0

1/p converges to a finite value, a theorem of Bakstys’

gives necessary and sufficient conditions for a multiplicative function g(m) to
have a limit distribution function. Recently Galambos and Simonelli (2002)
gave a purely probabilistic proof for this theorem. With minor changes
their proof can be used to show that |g(m)| converges weakly to a random
variable continuous at zero if, and only if, |GN (ω)| does, and that this holds
independently of the convergence or divergence of the sum

∑
p: g(p)<0

1/p. In fact

from their proof one obtains the validity of the following result, which is itself
new in this form.

Theorem 4. Let g(m) 6= 0. Then |g(m)| has a limit distribution function
continuous at zero, if, and only if, |GN (ω)| does. Equivalently, |g(m)| has a
limit distribution function continuous at zero, if, and only if, for arbitrary M ,
0 < M < +∞, the three series

(i)
∑

p:|ln|g(p)||>M

1
p
, (ii)

∑

p:|ln|g(p)||<M

ln|g(p)|
p

,

(iii)
∑

p:|ln|g(p)||<M

ln2|g(p)|
p

converge. Moreover |g(m)| has a limit distribution function discontinuous at
zero if, and only if, |g(m)| has a limit distribution function degenerate at zero.

Proof. See Galambos and Simonelli (2002, pp. 180-185).

To simplify the proof of Theorem 3 we prove the following result.



Distribution of multiplicative functions: the symmetric case 87

Lemma 1. Let g(m) be a multiplicative function, g(m) 6= 0 for all m.
Then for any finite collection of prime integers q1, q2, · · · , qt, and arbitrary
nonnegative integers ki, i = 1, · · · , t

lim
N→+∞

PN




∏
p≤N
p6=qj

g(psp(m)) < 0, sqj (m) = kj , j = 1, · · · , t


 =

(4)

= lim
N→+∞

PN




∏
p≤N
p 6=qj

g(psp(m)) < 0


 lim

N→+∞
PN

(
sqj (m) = kj , j = 1, · · · , t

)
.

Proof. We start our proof by observing that the two limits in (4) exist.
The first limit exists by Theorem 2 (see the paragraph after (6) for details),
whereas the second exists because of (3). For any fixed N , qi ≤ N for i =
= 1, · · · , t, let p1, · · · , pl denote all prime integers less than or equal to N
different from the qis. By applying the inclusion exclusion principle one can
express

(5) PN




∏
p≤N
p 6=qj

g(p) < 0, sqj (m) = kj , j = 1, · · · , t




as sums or differences of terms of the type

[
N

QiPj

]

N
,

where Qi = qi1
1 · · · qit

t , ij = kj or kj + 1, and Pj = pj1
1 · · · pjl

l , jk ≥ 0. If one
writes each of these terms as

[
N

QiPj

]

N
=

[
N
Qi

]

N

[[
N
Qi

]
Pj

]

[
N
Qi

] ,

and let Ai,N be the collection of all terms in the inclusion exclusion expansion
of (5) containing Qi, then it is easy to see that
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(6) lim
N→+∞

Ai,N =
1
Qi

lim
N→+∞

P[
N
Qi

]




∏

p≤
[

N
Qi

]
p6=qj

g(psp(m)) < 0




.

Let g̃(m) be such that g̃(psp(m)) = g(psp(m)), if p 6= qi, i = 1, · · · , t, and
g̃(psp(m)) = |g(psp(m))|, if p = qi, for some i. Then g̃(m) is a multiplicative
function, g̃(m) 6= 0 for all m, and

P[
N
Qi

]




∏

p≤
[

N
Qi

]
p 6=qj

g(psp(m)) < 0




= P[
N
Qi

]



∏

p≤
[

N
Qi

] g̃(psp(m)) < 0


 .

This and Theorem 2 imply that

lim
N→+∞

Ai,N =
1
Qi

lim
N→+∞

PN


 ∏

p≤N

g̃(psp(m)) < 0


 =

=
1
Qi

lim
N→+∞

PN




∏
p≤N
p6=qj

g(psp(m)) < 0


 .

If we repeat the above calculations for every Qi, and then combine the obtained
limits, we obtain that

lim
N→+∞

PN




∏
p≤N
p6=qj

g(psp(m)) < 0, sqj (m) = kj , j = 1, · · · , t


 =

= lim
N→+∞

PN




∏
p≤N
p 6=qj

g(psp(m)) < 0


 lim

N→+∞
PN

(
sqj (m) = kj , j = 1, · · · , t

)
,

thus proving the lemma.
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It is interesting to note that Lemma 1 implies that for any finite collection
of q1, q2, · · · , qt, and arbitrary nonnegative integers ki, i = 1, · · · , t,

lim
N→+∞

PN




∏
p≤N
p 6=qj

g(psp(m)) < 0
∣∣∣ sqj

(m) = kj , j = 1, · · · , t


 =

= lim
N→+∞

PN




∏
p≤N
p 6=qj

g(psp(m)) < 0


 ,

from which we obtain the following result, which will be used in the proof of
Theorem 3.

Lemma 2. Let g(m) be a multiplicative function, g(m) 6= 0 for all m,
and for an arbitrary collection of prime integers q1, q2, · · · , qt, and arbitrary
nonnegative integers ki, i = 1, · · · , t, let A = {sqj (m) = kj , j = 1, · · · , t}.
Then sign(g(m))|A always has a limit distribution function, and this limit is
symmetric if, and only if, either sign(g(2k)) = − for all k ≥ 1 and qi 6= 2 for
i = 1, · · · , t, or ∑

p: g(p)<0

1
p

= +∞.

We now turn to the proof of Theorem 3.

Proof of Theorem 3. Let

gN (m) =
∏

p≤N

g(psp(m)).

Clearly, the weak convergence of gN (m) and GN (ω) imply the weak convergence
of |gN (m)| and |GN (ω)|, respectively. This and Theorem 4 imply that in what
follows we can assume that |gN (m)| and |GN (ω)| both converge weakly, and
that their limits are continuous at zero. Under this assumption, Theorem 1
further gives that GN (ω) converges weakly to a random variable X. Let

νi,j = sign


 ∏

i<p≤j

g(psp(m))


 , νj = sign


∏

p≤j

g(psp(m))


 ,

and for arbitrary continuity point a of X we consider

L = lim
T→+∞

lim
N→+∞

EN

[
1{|gT (m)|≤a}1{νN=−}

]
.
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We claim that the above quantity is well defined. That is, each of the above
limits exists. Let

Aη =



m : 1{|gT (m)|≤a}1{νT =η}

∏

p≤T

1{sp(m)≤k}



 ,

η = +,−. Then

L = lim
k→+∞

lim
T→+∞

lim
N→+∞

EN


1{|gT (m)|≤a}1{νN=−}

∏

p≤T

1{sp(m)≤k}


 =

= lim
k→+∞

lim
T→+∞

lim
N→+∞

(
EN

[
1{νT,N=−}

∣∣∣ A+

]
PN

(
A+

)
+

+EN

[
1{νT,N=+}

∣∣∣A−
]
PN

(
A−

))
.

Since

lim
N→+∞

PN

(
Aη

)
= E


1{|GT (ω)|≤a}1{sign(GT (ω))=η}

∏

p≤T

1{ep(ω)≤k}


 ,

and by Theorem 1 the right hand side of the above equation has a limit as T
and K go to infinity, then to prove our claim it suffices to show that

lim
N→+∞

EN

[
1{νT,N=η}

∣∣∣ A−η

]
=

1
2
.

This and Theorem 1 will further imply that

∏

p≤T

g(psp(m)) and
∏

p≤T

|g(psp(m))|νN

have the same limiting distribution (as N , T , and K go to infinity, in this
order).

By utilizing the prime factorization of the elements in Aη we are going
to partition Aη into a finite number of subsets, say Aη,i, i = 1, 2, · · · , l. The
sets Aη,i are defined as follows. Let p1 < p2 < · · · < pt denote the collection
of all prime integers less than or equal to T , and consider the collection of all
t-element sequences of the form {(pj , lj)}t

j=1, 0 ≤ lj ≤ k. For each sequence
Ii = {(pj , lj)}t

j=1, i = 1, 2, · · · , (k + 1)t, we define Aη,i to be the collection of
all m ∈ Aη such that spj (m) = lj , 1 ≤ j ≤ t. Clearly the collection of the
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nonempty Aη,i constitutes a partition of Aη, and hence we only need to show
that for any nonempty Aη,i,

lim
T→+∞

lim
N→+∞

EN

[
IνT,N=−1

∣∣ Ai

]
=

1
2
.

But this immediately follows from Lemma 2. Hence our claim holds.

The above discussion and

lim
T→+∞

lim sup
N→+∞

EN

[∣∣|gT (m)|1{νN=η} − |gN (m)|1{νN}=η

∣∣ ≥ a
] ≤

≤ lim
T→+∞

lim sup
N→+∞

EN

[∣∣|gT (m)| − |gN (m)|
∣∣ ≥ a

]
= 0,

which follows from the proof Theorem 4 (see Galambos and Simonelli, 2002, p.
191), complete the proof of the theorem.

3. Concluding remarks

Our method both in the present paper and in the previous ones on the
distribution of arithmetical functions is applicable in a more general situation
than just considering the sequence of consecutive integers. In fact, if we choose
ΩN as a finite set of N integers with PN the uniform distribution on all subsets
of ΩN , then the distribution PN (g(n) ≤ x) now becomes an investigation of
the behavior of g(n) where n is running through the members of ΩN , that
is, on specified subsequences of the integers. If on such subsequences an
asymptotic formula similar to (2) is valid, that is, if the major term in (2) has
a multiplicative character, and thus an asymptotic independence is implicit in
such a formula, then all of our estimates remain valid (we should add here
that the Kubilius-Turán inequality is valid whenever (2) is replaced by another
asymptotic formula which expresses almost independence; see a discussion in
Indlekofer and Kátai (2001) and their references). However, the end result
cannot be claimed to be a purely probabilistic proof, because the estimates
leading to the formula replacing (2) involves (some time) deep number theoretic
results. A good representative of such a direction of investigation is a work of
Kátai (1968), when one chooses the special sequence p+1, where p runs through
the prime numbers.

Another direction of using purely probabilistic methods for the investiga-
tion of arithmetical functions is a ‘random truncation’ method, well developed
within probability theory. We start with a special case initiated by Kátai



92 J. Galambos and I. Simonelli

(1969); see also Elliott (1970). Take the probability space as before on the
consecutive integers. Let P be an infinite set of prime numbers r1 < r2 < · · ·,
and let N = Nt = r1r2 · · · rt. We use these special N ’s in the probability
space for N . With preassigned values f(rj), j ≥ 1, we introduce additive

functions ft(n) = f(n) =
t∑

j=1

εj(n)f(rj), where εj(n) = 1 if rj divides n, and

= 0 otherwise. Note that, on our probability space, the εj are independent
(not just asymptotically), since in (1) the ‘fractions’ inside the integer part
sign are always integers. Hence, classical results are readily available. Assume
that the choice of the sequence f(rj) is such that, with proper normalization,
(ft(n)−At)/Bt is asymptotically normally distributed. Then, one can replace t
by a random variable Zt such that Zt/t converges to a positive random variable
ν, in which case the limiting distribution of the randomly truncated additive
function fZt

(n), with normalization, is the mixture of the normal distribution
and that of ν (see Rényi (1960) and Mogyoródi (1962)). The same idea can
be carried to a modification of the probability model of the preceding example
by considering an abstract probability space in which there are independent
random variables ηj which take the values 0 and 1 with probability 1/2 each,

and f∗(rj) = log rj . Then the sum
t∑

j=1

ηjf
∗(rj) = f∗t , say, takes the divisors

d of Nt, defined as in the previous example, each with probability 2−t, where
2t = d(Nt), the number of divisors of Nt. By Liapunov’s form of the central
limit theorem (see Galambos (1995), p.119) one gets that (f∗t −(1/2) log Nt)/Bt,
with Bt = o(log Nt) is asymptotically normal (this is the original Kátai model;
see also Galambos (1995), p.125 for details of calculation). Once again, one
can change t to a random normalization. The exact independence of the terms
are essential in the random truncation method in the preceding two examples.
Namely, if the terms are only almost independent, then in limit we get only
finitely additive set functions, for which the results of Rényi and Mogyoródi are
not directly applicable. On the extent to which their method can be extended
to finitely additive measures such as the concept of density of a sequence of
positive integers we plan to report in another paper.

We conclude by mentioning that, instead of additive functions in the last
two models in which the terms are independent one can discuss multiplicative
functions as well whose distributions reduce to the direct application of the
results of Simonelli (2001). This possibility is expanded further in our forth-
coming book Galambos and Simonelli (2004).



Distribution of multiplicative functions: the symmetric case 93

References

[1] Elliott P.D.T.A., On the mean value of f(p), Proc. London Math. Soc.,
21 (3) (1970), 28-96.

[2] Elliott P.D.T.A., Probabilistic number theory I., Springer, New York,
1979.

[3] Galambos J., Advanced probability theory, 2nd ed., Marcel Dekker, New
York, 1995.

[4] Galambos J. and Simonelli I., A purely probabilistic proof for a
theorem of Bakstys, Annales Univ. Sci. Budapest., Sectio Comp., 21
(2002), 177-186.

[5] Galambos J. and Simonelli I., Once more about Wirsing’s theorem on
multiplicative functions: a simple probabilistic proof, Annales Univ. Sci.
Budapest., Sectio Comp., 22 (2003), 103-112.

[6] Galambos J. and Simonelli I., Products of random variables with
applications to problems of physics and to arithmetical functions, Marcel
Dekker, New York, 2004.
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[8] Kátai I., On distribution of arithmetical functions on the set of prime
plus one, Compositio Math., 19 (l968), 278-289.
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