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Abstract. The integral equation method is frequently used for the solution

of problems following from an electromagnetic sounding. Important element

of using the integral equation method is a denoting of the Green tensor

function. In the paper the algorithm for calculating the Green tensor is

developed for the stratified space.

For the calculation of the hypersingular integrals in the Green tensor

a formula is obtained for the principle value of the singular integral in a

parallelepipedon.

1. Introduction

In our days among the different geophysical methods of the ore explo-
ration the electromagnetic soundig method plays an important part. An
electromagnetic field which can be measured on the surface of the Earth
depends from the distribution of the electric conductivity inside a medium.
A measured electromagnetic field gives information about the structure of
upper layers of the Earth and specifically about the presence of inhomogeneities
who give marks for ores. The efficiency of the electromagnetic sounding used
depends on the elaboration of the fast methods for computer modelling of the
electromagnetic fields in an inhomogeneous conductive media.



72 V.I. Dmitriev and R.H. Farzan

These scientific researches play an important role in the scientific co-
operation of the Moscow’s and Budapest’s universities. The initiators of this co-
operations were Prof. I.Kátai (from Hungarian side) and Prof. A.N.Tikhonov
(from Russian side) (see [10]).

In our age special systems exist for the mathematical modelling of the prop-
agation of electromagnetic fields in stratified media with local inhomogeneities,
in those the electric conductivity is an arbitrary function. In this case a basic
model is a stratified medium (with electric conductivity σ(z) depending only
on depth) which contains a local inhomogeneous domain V with an arbitrary
electric conductivity σ(x, y, z).

For this problem the integral equation method is frequently used ([5, 4, 9]).
For reducing this problem to the solution of an integral equation in the local
domain V we need know the Green tensor for the vector Maxwell equation in the
stratified medium. Therefore an efficient algorithm is needed, which is adapted
to using in the integral equation method, where values of the Green tensor can
be computed fastly in many number of points of the domain V. Moreover, the
singular part of the Green function must be separated analytically, because
the integral equation, which is equivalent to a boundary-value problem for the
Maxwell equations, is hypersingular (i.e. contains a non-integrable singularity)
([7]). Therefore beyond numerical solving of the integral equation a singularity
of a kernel of the integral equation must be integrated analytically.

2. Formulation of the problem

The propagation of the electromagnetic waves is described by a system of
Maxwell equations. The Maxwell equations formulated in frequency variables
in the three-dimensional Euclidean space <3 are ([2])

(1) rotH = −iωµ0E + j, rotE = iωµ0H,

where E , H are the vectors of the electric and magnetic fields, correspondingly,
ω is the frequency. The medium is assumed to be stratified, magnetically
homogeneous, i.e. a permeability is constant and equals to its value in vacuum:
µ = µ0, the conductivity σ(z) is a piecewise continuous function of the depth
only:

(2)
σ(z) =σm, zm−1 < z < zm, m = 1, 2, . . . N − 1;

σ(z) =σ0 = const, z < z0 = 0; σ(z) = σN = const, zN−1 < z.
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For an arbitrary source function the vectors of electric and magnetic fields can
be written in the integral form with the fundamental solutions, which are Green
tensor functions of electric E(R,R′) and magnetic H(R,R′) types:

(3) E(R) =
∫

V

E(R,R′)j(R′)dR′, R = (x, y, z), R′ = (x′, y′, z′);

(4) H(R) =
∫

V

H(R,R′)j(R′)dR′,

where V is a support of j.

The Green tensor function is an analogue of the Green function for the
case of the vector differential equation. E and H satisfy the equations

(5) rotH = σ(z)E +D, rotE = iωµ0H;

where

(6) D = δ(R−R′)I.

is the unit tensor, δ(R−R′) = δ(x−x′)δ(y−y′)δ(z−z′) the three-dimensional
scalar Dirac delta-function.

The Green tensors E ,H can be represented by using the tensor-potential
function A(R,R′) (see [5, 7]) as

(7) H(R,R′) =
1

iωµ0
rotA,

(8) E(R,R′) = A+∇
(

1
k2

divA
)

, k2 = iωµ0σ.

The tensor A satisfies the equation

(9) ∆A+ k2A+Q = − iωµ0D, Q = k2∇
(

1
k2

divA
)
−∇divA,

where for the differential operators a variable is R.
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If k2 is the function of z only we obtain for tensors Q and A:

(10) Q =




0 0 0
0 0

Qx
z Qy

z Qz
z


 ;

and

(11) A =




G1(R,R′) 0 0
0 G1(R,R′) 0

∂g(R,R′)
∂x

∂g(R,R′)
∂y

G2(R,R′)


 ;

where the scalar functions G1, G2 and g satisfy the following equations:

∆G1 + k2G1 = −iωµ0δ(R−R′),

(12) k2div
(

1
k2
∇G2

)
+ k2G2 = −iωµ0δ(R−R′),

k2div
(

1
k2
∇g

)
+ k2g = −k2 ∂

∂z

(
1
k2

)
G1.

On the surfaces z = zi, i = 0, 1, . . . N−1 (see (2)) the coefficients σ(z) and
k(z) are discontinuous, and from the general conditions, that in the surfaces of
discontinuity the tangential components of the electric and magnetic fields are
continuous, we have for G1, G2 and g the conjugate conditions in the form

(13) G1, G2, g,
∂G1

∂z
,

1
σ

∂G2

∂z
,

1
σ

(
∂g

∂z
+ G1

)
are continuous.

Now let us suppose that σ(z) is a piecewise constant function, i.e. in (2)
σm = const, m = 1, 2, . . . N − 1. In this case equations (12) are reduced to the
following forms

(14)

∆G1 + k2(z)G1 = −iωµ0δ(R−R′),

∆G2 + k2(z)G2 = −iωµ0δ(R−R′),

∆g + k2g = 0,

and the conjugate conditions

[G1]zm−1 = 0,

[
∂G1

∂z

]

zm−1

= 0,
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(15) [G2]zm−1 = 0,

[
1
σ

∂G2

∂z

]

zm−1

= 0,

[g]zm−1 = 0,

[
1
σ

∂g

∂z

]

zm−1

= −
[

1
σ

]

zm−1

G1,

where for ∀φ [φ]zm−1 = φ(zm−1 + 0)− φ(zm−1 − 0), m = 1, . . . , N − 1.
At infinity the radiation conditions are satisfied.

3. Numerical algorithms for the Green tensor

Let us introduce the cylindrical co-ordinates

{r, θ, z}, r =
√

(x− x0)2 + (y − y0)2.

From the equations (14) and conditions (15) one can see that the functions
G1, G2, g are independent of θ. Therefore it is useful to apply some integral
transformations. We use the Hankel-transformation (see [5]).

Let the Bessel-operator

(16) I0(f) =

∞∫

0

J0(tr)f(z, t)tdt,

where J0 is zero-order Bessel function of the first kind.

Let us define the representations

(17)

G1(r, z, z′) =
iωµ0

4π
· I0(V1),

G2(r, z, z′) =
iωµ0

4π
· I0(V2),

g(r, z, z′) =
iωµ0

4π
· I0(v).

After that for V1, V2, v we obtain the boundary value problem for ordinary
differential equations

(18)
d2V1

dz2
− η2(z)V1 = −2δ(z − z′),
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[V1]zm−1
= 0,

[
dV1

dz

]

zm−1

= 0, zm−1 6= z′, m = 1, . . . , N − 1;

(19)
d2V2

dz2
− η2(z)V2 = −2δ(z − z′),

[V2]zm−1
= 0,

[
1
σ

dV2

dz

]

zm−1

= 0, zm−1 6= z′, m = 1, . . . , N − 1;

(20)
d2v

dz2
− η2(z)v = 0,

[v]zm−1
= 0,

[
1
σ

dv

dz

]

zm−1

= −
[

1
σ

]

zm−1

V1, zm−1 6= z′, m = 1, . . . , N − 1,

where η2 = t2 − k2, Re(η) > 0.

The problem (20) can be reduced to a simpler one if we define the new
function

(21) W (z, t) = t2v(z, t) +
dV1

dz
.

This function satisfies the problem

(22)
d2W

dz2
− η2(z)W = −2δ(z − z′),

[W ]zm−1
= 0,

[
1
σ

dW

dz

]

zm−1

= 0, zm−1 6= z′, m = 1, . . . , N − 1.

Now since (17) and (21) we have

(23) g(r, z, z′) =
iωµ0

4π

(
I0

(
W

t2

)
− I0

(
1
t2

dV1

dz

))
.

The problems (18), (19), (22) can be reduced to a single problem for the
common fundamental function Uα

a (z, t). For this function we can write ([2])

d2Uα
a

dz2
− η2(z)Uα

a = 0, z ∈ (−∞, z′)
⋃

(z′,∞),
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[Uα
a ]zm−1

= 0,

[
1

a(z)
dUα

a

dz

]

zm−1

= 0, zm−1 6= z′, m = 1, . . . , N − 1,

(24) [Uα
a ]z′ = −2a,

[
d2Uα

a

dz2

]

z′
= −2(1− α),

Uα
a → 0 if |z| → ∞,

where α = 0, 1; a = 1, σ. Now using the fundamental function Uα
a we get

(25) V1 = U0
1 ; V2 = U0

σ ; W = U1
σ ,

and, because of (17) and (23),

(26) G1 =
iωµ0

4π
I0(U0

1 ); G2 =
iωµ0

4π
I0(U0

σ);

g =
iωµ0

4π

(
I0

(
U1

σ

t2

)
− I0

(
1
t2

dU0
1

dz

))
.

After that for the components of the tensor E we obtain

(27)

Ex
x =

iωµ0

4π
I0(U0

1 ) +
1

4πσ(z)
∂2

∂x2
I0

(
1
t2

(
k2U0

1 +
dU1

σ

dz

))
;

Ex
y = Ey

x =
1

4πσ(z)
∂2

∂x∂y
I0

(
1
t2

(
k2U0

1 +
dU1

σ

dz

))
;

Ey
y =

iωµ0

4π
I0(U0

1 ) +
1

4πσ(z)
∂2

∂y2
I0

(
1
t2

(
k2U0

1 +
dU1

σ

dz

))
;

Ex
z =

iωµ0

4π

∂

∂x
I0(U1

σ); Ey
z =

iωµ0

4π

∂

∂y
I0(U1

σ);

Ez
x =

iωµ0

4π

∂

∂x
I0

(
∂U0

σ

∂z

)
; Ez

y =
iωµ0

4π

∂

∂y
I0

(
∂U0

σ

∂z

)
; Ez

z =
iωµ0

4π
I0(t2U0

σ).

For the derivatives of the Bessel operator I0(φ) we can write

(28)

∂

∂x
I0(φ) = −x− x′

r
I1(tφ);

∂

∂y
I0(φ) = −y − y′

r
I1(tφ);

∂2

∂x2
I0(φ) = − (x− x′)2

r2
I0(t2φ) +

(x− x′)2 − (y − y′)2

r3
I1(tφ);

∂2

∂y2
I0(φ) = − (y − y′)2

r2
I0(t2φ) +

(y − y′)2 − (x− x′)2

r3
I1(tφ);

∂2

∂x∂y
I0(φ) = − (x− x′)(y − y′)

r

(
I0(t2φ)− 2

r
I1(tφ)

)
;
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where operator

(29) I1(tφ) =

∞∫

0

J1(tr)φ(t)t2dt.

So the calculating problem for the electric Green tensor E have been reduced
to solving the boundary-value problem for the ordinary differential equation
(24) and integrating the Bessel integrals with fundamental function Uα

a .

Note that in [1] the algorithm is given for computing the Bessel integrals.

For the components of the magnetic Green tensor H we have from (7) and
(11)

(30)

Hx
x =

1
iωµ0

∂2g

∂x∂y
; Hx

y =
1

iωµ0

(
∂2g

∂y2
− ∂G1

∂z

)
; Hx

z =
1

iωµ0

∂G1

∂y
;

Hy
x =

1
iωµ0

(
∂G1

∂z
− ∂2g

∂x2

)
; Hy

y = − 1
iωµ0

∂2g

∂x∂y
; Hy

z =
1

iωµ0

∂G1

∂x
;

Hz
x =

1
iωµ0

∂G1

∂y
; Hz

y =
1

iωµ0

∂G1

∂x
; Hz

z = 0.

The functions G1, G2, g can be computed from (26) as above.

4. Analysis of the singularity of the Green tensor

For an analysis of the singularitiy of the electric Green tensor in stratified
media it is very important (and fortunational) that the singularity in any space
is the same as it is in the homogeneous space. In the homogeneous space the
Green function can be written in analytical form (see [5], [9]).

For the homogeneous medium

(31) U0
10 = U0

σ0 =
1
ηp

e−ηp|z−z′|; U1
σ0 =

dU0
σ0

dz
;

dU1
σ0

dz
= ηpe

−ηp|z−z′|;
1
t2

(
k2

pU0
10 +

dU1
σ0

dz

)
= U0

10 =
1
ηp

e−ηp|z−z′|,

where ηp = const is the value of η in the pole R′.
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Let us denote

(32) A0(R,R′) = I0

(
1
ηp

e−ηp|z−z′|
)

=

∞∫

0

J0(tr)e−ηp|z−z′| tdt

ηp
=

eikpR

R
,

where R =
√

r2 + (z − z′)2. Note, that the last equality in (32) is the well-
known Sommerfeld formula. After that we can write the singular part of E
as

(33) E0 =
iωµ0

4π
A0(R,R′)I +

1
4πσp

(∇ · ∇T )A0(R,R′),

where the matrix differential operator

(34) (∇ · ∇T ) =




∂2

∂x2

∂2

∂x∂y

∂2

∂x∂z
∂2

∂x∂y

∂2

∂y2

∂2

∂y∂z
∂2

∂x∂z

∂2

∂y∂z

∂2

∂z2




.

So in (32), (33) we obtain the analytical form for singular parts of the
components of the tensor E .

As it was mentioned above the Green tensor function is important in the
theory of the integral equation method, where the solution of the Maxwell
vector equation in an infinite space with bounded inhomogenuous domains can
be reduced to the solution of the singular integral equations in the bounded
domains. The kernel of the integral equations is a Green tensor.

The obtained hypersingular integral equation can be solved numerically.
The local domain V is decomposed into subdomains Vi, where subdomains are
assumed so small, that inside Vi the regular function can be taken for constant
one:

(35)
∫

Vi

E(R,R′)f(R′)dR′ '
∫

Vi

E(R,R′)dR′ · f(R′
0), R′

0 ∈ Vi.

If R ∈ Vi, the integral in (35) will be singular with non-integrable singularity.
Let us rewrite this integral as

∫

Vi

(E − E0)dR′ +
∫

Vi

E0dR′.
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The integrand in the first integral is bounded or has a weak singularity and can
be integrated numerically for example in spherical or cylindrical co-ordinates.

Let us write E0 (33) in the form

(36) E0 =
iωµ0

4π

eikpR

R
I +

1
4πσp

(∇ · ∇T )
eikpR − 1

R
+

1
4πσp

(∇ · ∇T )
1
R

.

The first term has the first order singularity and can be integrated easily. In
the second term (eikpR − 1)/R for small R is analytical function.

Let the subdomain Vi be symmetrical and let be

G0 =
∫

Vi

1
4πσp

(∇ · ∇T )
1
R

dR′.

It is easy to see that the terms in G0 with non-diagonal differential operators
from (34) are equal to zero, and we have

(37) G0 =
1

4πσp




ax 0 0
0 ay 0
0 0 az


 ,

where

(38) aα =
∫

Vi

∂2

∂α2

(
1
R

)
dR′, α = x, y, z.

Note the other peculiarity of the integrand

(∇R · ∇T
R)

1
R

= (∇R′ · ∇T
R′)

1
R

.

For an analytical calculation of the integral (37) a usual method is using
Cauchy’s principal value for a singular integral, where for integrating a small
domain is separated in the form of ball with centre in R. However this
choice is not convenient, because for a numerical solution the domain usually
is decomposed into small parallelepipeds.

We give an analytical formula for a principle value of the hypersingular
integral in the parallelepiped with sides hx, hy, hz. We have

ax =

hz/2∫

−hz/2

dz

hy/2∫

−hy/2

dy

hx/2∫

−hx/2

∂2

∂x2

(
1√

x2 + y2 + z2

)
dx =
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(39) = −hx

hz/2∫

−hz/2

dz

hy/2∫

−hy/2

dy

(h2
x/4 + y2 + z2)3/2

=

= −8hxhy

hz/2∫

−hz/2

dz

(h2
x + z2)

√
h2

x + h2
y + 4z2

= −8arctg
hyhz

hx

√
h2

x + h2
y + h2

z

.

Analogously,

ay = −8arctg
hxhz

hy

√
h2

x + h2
y + h2

z

, az = −8arctg
hxhy

hz

√
h2

x + h2
y + h2

z

.

For the cube (hx = hy = hz = h) we obtain

(40) ax = ay = az = −8arctg
1√
3

= −4π

3
.

Note, that the formula (40) does not depend on h and so it is the same for
arbitrary small h. Note, farther, that this last result is the same as it for ball,
i.e. for Cauchy’s principle value ([3]).

The above stated algorithm can be used efficiently for a fast calculation of
the Green tensor in the subdomains which are more suitable for numerical cal-
culations in parallelepipeds and cubes, therefore the integral equation method
can be used more widely and successfully.
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