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ON THE ABSOLUTE CESÀRO SUMMABILITY

L. Leindler (Szeged, Hungary)

Dedicated to Professor Imre Kátai on his 65th birthday

Abstract. The traditional monotonity assumption on the coefficients of

orthogonal series is weakened to locally almost monotonicity condition.

1. Let {ϕn(x)} be an orthonormal system defined on the finite interval
(a, b). We consider the orthogonal series

(1.1)
∞∑

n=0

cnϕn(x) with
∞∑

n=0

c2
n < ∞.

The (C, α)-means of (1.1) are

σ(α)
n (x) :=

1

A
(α)
n

n∑
ν=0

A
(α)
n−νcνϕν(x), α > −1,

and A
(α)
n :=

(
n + α

n

)
. The series (1.1) is said to be absolute (C, α)-summable

or briefly |C, α|-summable if

∞∑
n=0

∣∣∣σ(α)
n+1(x)− σ(α)

n (x)
∣∣∣ < ∞.
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K. Tandori [2] proved that the condition

(1.2)
∞∑

m=0





2m+1∑
n=2m+1

c2
n





1/2

< ∞

is necessary and sufficient that the series (1.1) for every orthonormal system
{ϕn(x)} should be absolute (C, 1)-summable almost everywhere in (a, b).

We ([1]) showed that the condition (1.2) is also necessary and sufficient
that the series (1.1) for every orthonormal system {ϕn(x)} be absolute (C, α)-
summable with α > 1/2 almost everywhere.

In [1] we also gave conditions implying the
∣∣∣∣C,

1
2

∣∣∣∣- and |C, α|-summability

with −1 < α < 1/2, respectively.

Our result reads as follows

Theorem A. In order that the series (1.1) for every orthonormal system
{ϕn(x)} should be |C,α|-summable almost everywhere:

(i) for α = 1/2 the condition

(1.3)
∞∑

m=1

√
m





2m+1∑
n=2m+1

c2
n





1/2

< ∞,

(ii) for −1 < α < 1/2 the condition

(1.4)
∞∑

m=0

2
m
2 (1−2α)





2m+1∑
n=2m+1

c2
n





1/2

< ∞

is sufficient; for monotone coefficients {cn} these conditions are also necessary
if the summability is claimed for the all orthonormal systems.

In this note was shall verify that the conditions (1.3) and (1.4) not only for
monotone decreasing sequences {cn} are necessary, but a wider set of sequences
as well, more precisely they are also necessary if the sequence {cn} is only locally
almost monotone decreasing.

A nonnegative sequence c := {cn} is called locally almost monotone
decreasing if there exists a constant K(c), depending on the sequence c only,
such that

(1.5) cn ≤ K(c)cm
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holds for all m and m ≤ n ≤ 2m. Such a sequence will be denoted by c ∈
∈ LAMS.

2. To demonstrate the necessity of the conditions (1.3) and (1.4) we
establish the following theorem.

Theorem. If the Rademacher series

(2.1)
∞∑

n=0

cnrn(x) (rn(x) := sign sin 2nπx)

with a locally almost monotone decreasing sequence {cn} is |C, α|-summable
almost everywhere, then the conditions (1.3) and (1.4) hold according α = 1/2
or −1 < α < 1/2.

3. To the proof we employ the following known lemma (see e.g. A.
Zygmund [3], p. 213).

Lemma. If
∞∑

n=0
c2
n < ∞ then

(3.1) A

{ ∞∑
n=0

c2
n

}1/2

≤
1∫

0

|h(x)|dx ≤ B

{ ∞∑
n=0

c2
n

}1/2

,

where A and B are positive and finite constants, furthermore h(x) denotes the
sum of the series (2.1).

We shall use the following notations and estimations.

L(α)
n,ν :=

A
(α)
n+1−ν

A
(α)
n+1

− A
(α)
n−ν

A
(α)
n

=
A

(α)
n−ν

A
(α)
n

να

(n + 1− ν)(n + 1 + α)
,

(3.2)
A

(α)
m

mα
≤ c(α) (m > 0, α > −1),

(3.3)
∣∣∣L(α)

n,ν

∣∣∣ ≥ d(α)
(n + 1− ν)α−1ν

nα+1
(α > −1, α 6= 0),

where c(α) and d(α) are positive constants.
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4. Let us assume that the series (2.1) is
∣∣∣∣C,

1
2

∣∣∣∣-summable almost every-

where, and let ε = A2/4. Then by Egoroff’s theorem there exists a constant
M and a measurable set G(⊂ (0, 1)) with measure µ(G) > 1− ε, such that for
any x ∈ G

(4.1)
∞∑

n=0

∣∣∣σ( 1
2 )

n+1(x)− σ
( 1
2 )

n (x)
∣∣∣ < M

holds. Denote CG := (0, 1)\G.
Employing our Lemma, by (3.3) and (4.1), we obtain that

(4.2)

Mµ(G) ≥
∞∑

n=0




1∫

0

−
∫

CG




∣∣∣σ( 1
2 )

n+1(x)− σ
( 1
2 )

n (x)
∣∣∣ dx ≥

≥
∞∑

n=0




1∫

0

∣∣∣σ( 1
2 )

n+1(x)− σ
( 1
2 )

n (x)
∣∣∣ dx−

− µ(CG)1/2





1∫

0

(
σ

( 1
2 )

n+1(x)− σ
( 1
2 )

n (x)
)2

dx





1/2

 ≥

≥
∞∑

n=0

(
A− ε1/2

) {
n∑

ν=0

(
L

( 1
2 )

n,ν

)2

c2
ν + c2

n+1

(
A

( 1
2 )

n+1

)−2
}1/2

≥

≥ A

2
d(α)

∞∑
n=0

{
n∑

ν=0

n−3(n + 1− ν)−1ν2c2
ν

}1/2

≥

≥ A

2
d(α)

∞∑
m=0

2m+1∑
n=2m+1

{
n∑

ν=2m+1

n−3(n + 1− ν)−1ν2c2
ν

}1/2

=: S1,

say. Since {cn} ∈ LAMS, thus

(4.3)

S1 ≥ A

22K(c)

∞∑
m=0

c2m+1

2m+1
2

2m+1∑
n=2m+1

{
n∑

ν=2m+1

(n + 1− ν)−1

}1/2

≥

≥ A

25K(c)

∞∑
m=1

2
m+1

2
√

m + 1c2m+1 ≥

≥ A

25K(c)2

∞∑
m=2

√
m





2m+1∑
ν=2m+1

c2
ν





1/2

.
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The estimations (4.2) and (4.3) yield that if the series (2.1) is
∣∣∣∣C,

1
2

∣∣∣∣-summable

and {cn} ∈ LAMS then the condition (1.3) maintains.

If the series (2.1) is |C,α|-summable
(
−1 < α <

1
2

)
then a similar arguing

leads to
(4.4)

Mµ(G) ≥
∞∑

n=0

(
A− ε1/2

) {
n∑

ν=0

(
L(α)

n,ν

)2

c2
ν + c2

n+1

(
A

(α)
n+1

)−2
}1/2

=: S2.

Now we can omit the sum in the curly bracket, thus

(4.5)

S2 ≥ A

2c(α)K(c)

∞∑
n=2

cn

nα
=

A

2c(α)K(c)

∞∑
m=0

2m+1∑
n=2m+1

cn

nα
≥

≥ A

2c(α)K(c)

∞∑
m=0

2−(m+1)α
2m+1∑

n=2m+1

cn ≥

≥ A

4c(α)K(c)2

∞∑
m=0

2−(m+1)α2
m+1

2





2m+2∑

ν=2m+1+1

c2
ν





1/2

=

=
A

4c(α)K(c)2

∞∑
m=1

2
m
2 (1−2α)





2m+1∑
ν=2m+1

c2
ν



 .

It is clear that (4.4) and (4.5) verify that (1.4) holds.
Herewith the proof is complete.
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