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THE STRUCTURE
OF THE BOOLEAN–ZHEGALKIN TRANSFORM

J. Gonda (Budapest, Hungary)

Dedicated to Professor I. Kátai on his 65th birthday

Abstract. In [6] a linear algebraic aspect is given for the transformation

of a Boolean function to its Zhegalkin-representation. In this article, we

investigate the linear-algebraic structure of that transform.

In this article the elements of the field with two elements are denoted by
0 and 1;N0 denotes the non-negative integers, and N the positive ones.

In [6] we pointed out that if we consider the coefficients of a Boolean
function of n variables and the coefficients of the Zhegalkin polynomial of n
variables, respectively, as the components of an element of a 2n-dimensional
linear space over F2, then the relation between the vectors belonging to the
two representations of the same Boolean function of n variables could be
given by k = A(n)α. Here k is the vector containing the components of the
Zhegalkin polynomial, α is the vector, composed by the coefficients of the
Boolean representation of the given function, and A(n) is the matrix of the
transform in the natural basis. In the article mentioned above is proved that

A(n) =





(1), if n = 0,

(
A(n−1) 0(n−1)

A(n−1) A(n−1)

)
, if n ∈ N,

and as a consequence that
A(n)2 = I(n),

where I(n) and 0(n) denote the 2n-dimensional identity and zero matrix,
respectively. From this follows that if k = A(n)α, then α = A(n)k.
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In the following part of our article, we consider the transform given above
by A(n).

Theorem 1.

A(n) + λI(n) ≡





(1 + λ)I(n), if n = 0,

(
I(n−1) 0(n−1)

0(n−1) (1 + λ2)I(n−1)

)
, if n ∈ N,

where U(λ) ≡ V(λ) means that the two λ-matrices are equivalent, that is there
are invertible λ-matrices R(λ) and L(λ) so, that V(λ) = L(λ)U(λ)R(λ).

Proof. If n = 0, then

A(n)+λI(n) = A(0)+λI(0) = (1)+λ(1) = (1+λ)(1) = (1+λ)I(0) = (1+λ)I(n).

Now let n ∈ N0,

(
0(n) A(n)

I(n) I(n) + λA(n)

)
= L(n+1)(λ),

(
I(n) A(n) + λI(n)

0(n) A(n)

)
= R(n+1)(λ)

and let C(n+1)(λ) denote
(

I(n) 0(n)

0(n) (1 + λ2)I(n)

)
, then

L(n+1)(λ)A(n+1)R(n+1)(λ) =
(

0(n) A(n)

I(n) I(n) + λA(n)

)
×

×
(

A(n) + λI(n) 0(n)

A(n) A(n) + λI(n)

)(
I(n) A(n) + λI(n)

0(n) A(n)

)
=

=
(

I(n) 0(n)

0(n) (1 + λ2)I(n)

)
= C(n+1)(λ),

(
A(n)

)2
= I(n), so 1 = det

(
I(n)

)
= det

((
A(n)

)2
)

=
(
det

(
A(n)

))2
,

and then det
(
A(n)

)
= 1. As det

(
L(n+1)(λ)

)
= det

(
A(n)

)
, we get that

det
(
L(n+1)(α)

)
= 1. With a similar calculation we can get that

det
(
R(n+1)(α)

)
= 1,

so L(λ) and R(λ) are invertible matrices, and

C(n+1) = L(n+1)(λ)
(
A(n+1) + λI(n+1)

)
R(n+1)(λ),
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i.e. the two matrices are equivalent.

From the previous theorem, we can get many results. First, we can read
out the minimal polynomial and characteristic polynomial of A(n).

Corollary 2. If µ(n) denotes the minimal polynomial of A(n), and c(n)

denotes its characteristic polynomial, then

µ(n) =

{
λ + 1, if n = 0,

λ2 + 1, if n ∈ N,

c(n) = λ2n

+ 1.

Proof. The minimal polynomial of a quadratic matrix is its last invari-
ant factor, in our case the abovementioned polynomials. The characteristic
polynomial is the product of the invariant factors. If n = 0, then the
only invariant factor is λ + 1, and λ20

+ 1 = λ + 1. In the case, when
n ∈ N, that is when n ≥ 1, then there are 2n−1 invariant factors equal
to 1, and each of the further 2n−1 invariant factors is equal to λ2 + 1, so
c(n) = (λ2 + 1)2

n−1
= (λ2)2

n−1
+ 1 = λ2n

+ 1.

The results mentioned above are not surprising. A(0) + λI(0) = (1 + λ)
and det((1 + λ)) = λ + 1, so λ + 1 ∈ F2[λ] is the characteristic polynomial of
A(0). The degree of that polynomial is equal to 1, which is the order of the
matrix A(0). As there is no nonzero polynomial of degree less than 1, of which
A(0) is the root, λ + 1 is the minimal polynomial of A(0), as well.

Now let n > 0, then A(n) 6= I(n) and A(n) 6= 0(n), so neither λ nor λ + 1
can be the minimal polynomial of the matrix. On the other hand, A(n)2 =
= I(n) shows, that A(n) is the root of the monic polynomial λ2 + 1, and the
minimal polynomial of a matrix is uniquely determined. Now let us consider
the characteristic polynomial of A(n). The degree of that polynomial is equal
to 2n, and the set of the roots of the characteristic polynomial is equal to the
set of the roots of the minimal polynomial. As λ2 + 1 = (λ + 1)2 over F2, the
only root of the minimal polynomial is 1. From this follows the characteristic
polynomial of A(n) is a polynomial of degree 2n with exactly one root, namely
1. The only (monic) polynomial with these properties is (λ + 1)2

n

= λ2n

+ 1,
and then the characteristic polynomial of A(n) is λ2n

+ 1.
Another simple way to prove λ2n

+ 1 is the minimal polynomial of A(n) is
as follows. We saw above, that c(0) = λ + 1 = λ20

+ 1. If c(n−1) = λ2n−1
+ 1,

then
c(n) =
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= det
(
A(n) + λI(n)

)
= det

((
A(n−1) + λI(n−1) 0(n−1)

A(n−1) A(n−1) + λI(n−1)

))
=

=
(
det

(
A(n−1) + λI(n−1)

))2

= c(n−1)2 =
(
λ2n−1

+ 1
)2

=
(
λ2n−1

)2

+ 1 =

= λ2n

+ 1,

so for any nonnegative integer n c(n) = λ2n

+ 1.

Corollary 3. For any n ∈ N0 the 2n+1 dimensional linear space over F2

is a direct sum of 2n two-dimensional cyclic subspaces invariant with respect to
A(n+1).

Proof. The only invariant factor of A(n+1) is equal to λ2 + 1 and
the multiplicity of that invariant factor is equal to 2n. From this two facts
immediately follows the statement above.

Let A ∼ B denote that the matrices A and B are similar, that is there is
an invertible matrix T so, that B = T−1AT.

Corollary 4.

A(n) ∼





B(0) = (1) = A(0),

B(1) =
(

0 1
1 0

)
,

B(n) =
(

B(n−1) 0(n−1)

0(n−1) B(n−1)

)
, 1 < n ∈ N,

where for any nonnegative integer n B(n) is the Jordan matrix of A(n).

Proof. c(0)(λ) = λ + 1 = µ(0)(λ) and c(1)(λ) = λ2 + 1 = µ(1)(λ), that is
the 20- and the 21-dimensional linear spaces over F2 are cyclic and invariant
with respect to A(0) and A(1), respectively. In such a case the Jordan matrix of
A(0) and A(1) is equal to the companion matrix of their minimal polynomial,

and then B(0) = (1) and B(1) =
(

0 1
1 0

)
.

Now if n > 1, then by Corollary 3 the 2n-dimensional linear space over
F2 is the direct sum of 2n−1 two-dimensional cyclic spaces invariant to the
transform represented by A(n) in the canonical basis of the space. The Jordan
matrix of such a transform is the hypermatrix containing 2n−1 blocks equal
to B(1) in the main diagonal, and the zero matrix of order two in the other
positions of that matrix. But the structure of B(1) corresponds to that form,
and if the structure of B(n), where n ∈ N, satisfies this rule, then B(n+1)

satisfies, too.
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Corollary 5.

A(n) ∼





C(0) = (1) = A(0),

C(1) =
(

1 1
0 1

)
,

(
C(n−1) 0(n−1)

0(n−1) C(n−1)

)
, 1 < n ∈ N,

where C(n) is the classical canonical matrix of A(n).

Proof. c(0)(λ) = λ + 1 = µ(0)(λ), and then the classical canonical matrix
of A(0) is the identity matrix of order 1, that is C(0) = (1).

Over F2 µ(2)(λ) = λ2 + 1 = (λ + 1)2, so the classical canonical matrix of

A(1) is C(1) =
(

1 1
0 1

)
, and for n > 1 we can argue similarly as we do it in the

proof of Corollary 4, substituting the Jordan matrix by the classical canonical
matrix, and B(1), B(n) and B(n+1) by C(1), C(n) and C(n+1), respectively.

Now we can give a basis of the 2n-dimensional linear space over F2, in
which the matrix of the transform represented by A(n) in the canonical basis
of the space is equal to B(n). For n ∈ N and 2n > i ∈ N0 let e(n;i) be the i-th
vector of the canonical basis of the 2n-dimensional linear space over F2, that
is the j-th component of e(n;i), where 2n > j ∈ N0, is equal to

e
(n;i)
j = δi,j =

{
1, if i = j,
0, if i 6= j.

Let us denote the i-th column of an arbitrary matrix M either by M i or by
(M)i, and let U(n) be that 2n by 2n matrix, in which for 2n > i ∈ N0

U
(n)
i =

{
e(n;i), if i ≡ 0 (2)
A

(n)
i , if i ≡ 1 (2).

Theorem 6. The matrix of the transform represented by A(n) in the
canonical basis of the 2n-dimensional linear space over F2 is equal to B(n) in
the basis given by the columns of U(n).

Proof. For any two quadratic matrices M(1) and M(2) of order 2n, where
n is a nonnegative integer, and for any 2n > i ∈ N0,

(
M(1)M(2)

)
i
=

(
M(1)M(2)

)
e(n;i) = M(1)

(
M(2)e(n;i)

)
= M(1)M

(2)
i ,
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(
A(n)

)2
= I(n), so A(n)A

(n)
j =

(
A(n)A(n)

)
j

=
(
I(n)

)
j

= e(n;j). Let us consider

the columns of B(n). B(1) =
(

0 1
1 0

)
, so B

(1)
0 = e(1;1) and B

(1)
1 = e(1;0), that

is for any nonnegative integer i less than 21−1 = 1 B
(1)
2i = e(1;2i+1) and

B
(1)
2i+1 = e(1;2i). Now suppose if n ∈ N, then for any 2n−1 > i ∈ N0

B
(n)
2i = e(n;2i+1) and B

(n)
2i+1 = e(n;2i), or with an ε equal to either 0 or 1,

B
(n)
2i+ε = e(n;2i+(1−ε)).

B
(n+1)
2i+ε = B(n+1)e(n+1;2i+ε) =

(
B(n) 0(n)

0(n) B(n)

)
e(n+1;2i+ε),

where 2n > i ∈ N0. If 2n−1 > i ∈ N0, then

(
B(n) 0(n)

0(n) B(n)

)
e(n+1;2i+ε) =

=
(

B(n)0(n)

0(n)B(n)

)(
e(n;2i+ε)

0(n)

)
=

(
B(n)

0(n)

)
e(n;2i+ε) =

=
(

B(n)e(n;2i+ε)

0(n)e(n;2i+ε)

)
=

(
B

(n)
2i+ε

0(n)

)
=

(
e(n;2i+(1−ε))

0(n)

)
= e(n+1;2i+(1−ε))

and if i is an integer so, that 2n−1 ≤ i < 2n, that is if 2n−1 > i − 2n−1 ∈ N0,
then (

B(n) 0(n)

0(n) B(n)

)
e(n+1;2i+ε) =

=
(

B(n) 0(n)

0(n) B(n)

)(
0(n)

e(n;2i−2n−1+ε)

)
=

(
0(n)

B(n)

)
e(n;2i−2n−1+ε) =

=
(

0(n)e(n;2i−2n−1+ε)

B(n)e(n;2i−2n−1+ε)

)
=

(
0(n)

B
(n)
2i+ε

)
=

(
0(n)

e(n;2i−2n−1+(1−ε))

)
=

= e(n+1;2i+(1−ε)).

Joining together these two results we get that B
(n+1)
2i+ε = e(n+1;2i+(1−ε)) is true,

too. Applying the equations A(n)A
(n)
j = e(n;j) and B

(n+1)
2i+ε = e(n+1;2i+(1−ε))

for 2n−1 > i ∈ N0, where n is an arbitrary positive integer,

(
A(n)U(n)

)
2i

= A(n)U
(n)
2i = A(n)e(n;2i) = A

(n)
2i =

= U
(n)
2i+1 = U(n)e(n;2i+1) = U(n)B

(n)
2i = (U(n)B(n))2i
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and
(
A(n)U(n)

)
2i+1

= A(n)U
(n)
2i+1 = A(n)A

(n)
2i = e(n;2i) =

= U
(n)
2i = U(n)e(n;2i) = U(n)B

(n)
2i+1 =

(
U(n)B(n)

)
2i+1

.

This means that for any n ∈ N and 2n > i ∈ N0 (A(n)U(n))i = (U(n)B(n))i,
and then A(n)U(n) = U(n)B(n). We have to prove that U(n) is a regular matrix
for every positive integer n.

We shall see that the set
{

U
(n)
i

∣∣ 0 ≤ i < 2n
}

spans the 2n-dimensional

linear space over F2. If it is true, then this set is a generator system of the
2n-dimensional linear space over F2, and the cardinality of this set is less than
or equal to 2n. In this case the vectors of this set, so the columns of U(n),
are pairwise linearly independent, so U(n) is regular, and the above-mentioned
set is the basis of our space. Then with the preceding result, namely that
A(n)U(n) = U(n)B(n), we get that in that basis the transform determined by
A(n) in the canonical basis is equal to B(n).

We put now to use that if 0 ≤ i < 2j < 2n, then Ai,2j = 0, A2j,2j = e,

and A2j+1,2j = e. By the definition of U(n) given above, we get that U
(n)
2n−2 =

= e(n;2n−2), and U
(n)
2n−2 +U

(n)
2n−1 = e(n;2n−2) +A

(n)
2n−2 = e(n;2n−1). Now suppose

that for an integer k, for which 2n−1−1 > k ∈ N0,
〈
U

(n)
i | 2k + 1 < i < 2n

〉
=

=
〈
e(n;i) | 2k + 1 < i < 2n

〉
, where the angle brackets denote the space spanned

by the vectors in the angle brackets. Then U
(n)
2k = e(n;2k) and U

(n)
2k+1 = A

(n)
2k ,

and

U
(n)
2k + U

(n)
2k+1 +

2n−1∑

i=2k+2

A
(n)
i,2ke(n;i) = e(n;2k) + A

(n)
2k +

2n−1∑

i=2k+2

A
(n)
i,2k + e(n;i) =

= A
(n)
2k +

2n−1∑
i=0

i 6=2k+1

A
(n)
i,2ke(n;i) = e(n;2k+1),

that is 〈
U

(n)
i | 2k ≤ i < 2n

〉
=

〈
e(n;i) | 2k ≤ i < 2n

〉

and from this follows that
{

U
(n)
i | 0 ≤ i < 2n

}
=

〈
e(n;i) | 0 ≤ i < 2n

〉
.

For n ∈ N we can give a recursive form for generating the sequence of the
matrices U(n) as follows.
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Theorem 7. Let V(1) =
(

0 1
0 1

)
and V(n+1) =

(
V(n) 0(n)

V(n) V(n)

)
for

n ∈ N. Then U(1) =
(

1 1
0 1

)
and for any positive integer n U(n+1) =

=
(

U(n) 0(n)

V(n) U(n)

)
.

Proof. The first column of U(1) is e(0), and the second column of the

matrix is apparently A
(1)
0 , so U(1) =

(
1 1
0 1

)
.

V
(1)
2i = V

(1)
0 = 0(1) and V

(1)
2i+1 = V

(1)
1 = A

(1)
0 = U

(1)
1 , if n = 1 and

21−1 > i ∈ N0. Suppose for an n ∈ N with any 2n−1 > i ∈ N0 V
(n)
2i = 0(n)

and V
(n)
2i+1 = U

(n)
2i+1. Then for any 2n > i ∈ N0

(
U(n) 0(n)

V(n) U(n)

)
e(n+1;i) =

(
U(n)e(n;i)

V(n)e(n;i)

)
=

(
U

(n)
i

V
(n)
i

)
=

=





(
e(n;2j)

0(n)

)
= e(n+1;2j) = U

(n+1)
2j , if i = 2j,

(
A

(n)
2j

A
(n)
2j

)
= A

(n+1)
2j = U

(n+1)
2j+1 , if i = 2j + 1,

and if 2n ≤ i < 2n+1, that is if 2n > i− 2n ∈ N0, then

(
U(n) 0(n)

V(n) U(n)

)
e(n+1;i) =

(
0(n)e(n;i−2n)

U(n)e(n;i−2n)

)
=

(
0(n)

U
(n)
i−2n

)
=

=





(
0(n)

e(n;2j−2n)

)
= e(n+1;2j) = U

(n+1)
2j , if i = 2j,

(
0(n)

A
(n)
2j−2n

)
= A

(n+1)
2j = U

(n+1)
2j+1 , if 2j + 1,

so for an arbitrary positive integer n and for any 2n+1 > i ∈ N0

(
U(n) 0(n)

V(n) U(n)

)
e(n+1;i) = U

(n+1)
i .

This means that every column of
(

U(n) 0(n)

V(n) U(n)

)
is equal to the column of the

same index of U(n+1), that proves that
(

U(n) 0(n)

V(n) U(n)

)
= U(n+1).
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Similarly, if 2n > i ∈ N0 or 2n > i− 2n ∈ N0, then

V
(n+1)
i =

(
V(n) 0(n)

V(n) V(n)

)
e(n+1;i) =

(
V(n)e(n;i)

V(n)e(n;i)

)
=

(
V

(n)
i

V
(n)
i

)
=

=





(
0(n)

0(n)

)
= 0(n+1), if i = 2j,

(
A

(n)
2j

A
(n)
2j

)
= A

(n+1)
2j = U

(n+1)
2j+1 , if i = 2j + 1,

and

V
(n+1)
i =

(
V(n) 0(n)

V(n) V(n)

)
e(n+1;i) =

(
0(n)e(n;i−2n)

V(n)e(n;i−2n)

)
=

(
0(n)

V
(n)
i−2n

)
=

=





(
0(n)

0(n)

)
= 0(n+1), if i = 2j,

(
0(n)

A
(n)
2j

)
= A

(n+1)
2j = U

(n+1)
2j+1 , if i = 2j + 1,

respectively, so for any 2n+1 > i ∈ N0,

V
(n+1)
i =





0(n+1), if i = 2j,

U
(n+1)
2j+1 , if i = 2j + 1.

The next Corollary is a consequence of Theorem 1 again.

Corollary 8. For any n ∈ N0, A(n) has one and only one eigenvalue,
which is equal to 1.

Proof. The characteristic polynomial of A(n) is c(n) = λ2n

+ 1, and over
F2 this polynomial is equal to (λ + 1)2

n

.

Now we deal with the eigenvectors belonging to the only eigenvalue 1 of
the transform given by A(n).

Theorem 9. A(0) + I(0) = 0(0), and if n > 0, then A(n+1) + I(n+1) ≡
≡

(
I(n) A(n) + I(n)

0(n) 0(n)

)
. The only eigenvector of A(0) is e(0;0), and the

eigenvectors of A(n), if n > 0, are all of the vectors of the 2n−1-dimensional

linear space spanned by the columns of the matrix
(

A(n−1) + I(n−1)

I(n−1)

)
.
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Proof. A(0) + I(0) = 0(n) is obvious. If n > 0, then

(
0(n) A(n)

I(n) A(n) + I(n)

)(
A(n) + I(n) 0(n)

A(n) A(n) + I(n)

)
=

(
I(n) A(n) + I(n)

0(n) 0(n)

)
,

so

A(n+1) + I(n+1) ≡
(

I(n) A(n) + I(n)

0(n) 0(n)

)
,

and (
I(n) A(n) + I(n)

0(n) 0(n)

)(
A(n) + I(n)

I(n)

)
=

(
0(n)

0(n)

)
.

As rank
(
A(n+1) + I(n+1)

)
= rank

((
I(n) A(n) + I(n)

0(n) 0(n)

))
= rank

(
I(n)

)
=

= 2n, and A(n+1) is a regular quadratic matrix of order 2n+1, so the nullspace of

A(n+1)+I(n+1) is a 2n-dimensional linear space. But rank
((

A(n) + I(n)

I(n)

))
=

= rank
(
I(n)

)
= 2n, and this proves the second half of the statement.

Corollary 10. For n > 0 the eigenvectors of A(n) are of the form((
A(n−1) + I(n−1)

)
ν

ν

)
, where ν is an arbitrary vector of the 2n−1-dimensional

linear space.

Proof.
((

A(n−1) + I(n−1)
)
ν

ν

)
=

(
A(n−1) + I(n−1)

I(n−1)

)
ν,

so
((

A(n−1) + I(n−1)
)
ν

ν

)
is a linear combination of the columns of

(
A(n) + I(n)

I(n)

)
.

The form of the eigenvectors given above by
((

A(n−1) + I(n−1)
)
ν

ν

)

shows, that if ν =
(

ν(0)

ν(1)

)
is an eigenvector of A(n), then ν(0) is an eigenvector

of A(n−1). The details are in the next corollary.
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Corollary 11. Let n ∈ N, and ν =
(

ν(0)

ν(1)

)
and ν̃ =

(
ν̃(0)

ν̃(1)

)
two

eigenvectors of A(n). Then ν(0) = ν̃(0) if and only if ν(1) − ν̃(1) belongs to the
nullspace of A(n−1).

Proof.
(
A(n−1) + I(n−1)

)
ν(1) = ν(0) = ν̃(0) =

(
A(n−1) + I(n−1)

)
ν̃(1) is

true if and only if
(
A(n−1) + I(n−1)

) (
ν(1) − ν̃(1)

)
= 0, that is if and only if

ν(1) − ν̃(1) is an eigenvector of A(n−1).

Earlier we saw that the 2n-dimensional space is the direct sum of 2n−1 two-
dimensional cyclic subspaces invariant to the transform of the space determined
by A(n) in the canonical basis of the space. We saw as well, that each element
of the set of the vectors e(n;2i), where 0 ≤ i < 2n−1, belongs to different
components of these subspaces, and these vectors are cyclic with respect to
A(n) in the subspaces containing them. Let P(n) denote the nullspace of A(n)+
+I(n). As we have altogether 2n−1 different vectors of the form e(n;2i), and
these vectors are pairwise linearly independent, the set of all of the linear
combinations of these vectors, denoted by E(n), is a 2n−1-dimensional linear
space over F2, containing therefore 22n−1

vectors. Let T (n) denote the 2n-
dimensional linear space over F2. Then we get the following theorem.

Theorem 12. E(n) is a direct complementary subspace of P(n).

Proof. Suppose u is a common element of the two subspaces. Then on

one hand u =
2n−1−1∑

i=0

λie
(n;2i), and on the other hand

(
A(n) + I(n)

)
u = 0, so

0 =
(
A(n) + I(n)

)
u =

(
A(n) + I(n)

) 2n−1−1∑

i=0

λie
(n;2i) =

=
2n−1−1∑

i=0

λi

((
A(n) + I(n)

)
e(n;2i)

)
=

2n−1−1∑

i=0

λi

((
A(n) + I(n)

)
U

(n)
2i

)
=

=
2n−1−1∑

i=0

λi

(
A(n)U

(n)
2i + U

(n)
2i

)
=

2n−1−1∑

i=0

λi

(
U

(n)
2i+1 + U

(n)
2i

)
=

2n−1∑

i=0

µiU
(n)
i ,

where for 2n−1 > i ∈ N0 µ2i = λi = µ2i+1. But the columns of U(n) are

linearly independent, so
2n−1∑
i=0

µiU
(n)
i = 0 is possible if and only if all of the

coefficients µi, and then every λi, are equal to 0. This means that the intersec-
tion of the subspaces E(n) and P(n) contains one and only one element, the zero
vector. As both E(n) and P(n) is a 2n−1-dimensional linear space over F2, and
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the dimension of T (n) is equal to 2n = 2·2n−1 = 2n−1+2n−1, we get that T (n) =
= E(n) + P(n).

Corollary 13. For any n ∈ N

P(n) =

{((
A(n−1) + I(n−1)

)
ν

u + ν

) ∣∣∣∣∣ u ∈ P(n−1) ∧ ν ∈ E(n−1)

}
.

Proof. The elements of P(n) are vectors of the form
((

A(n−1) + I(n−1)
)
w

w

)
,

where w is an arbitrary element of T (n−1). But there is exactly one (u, ν) ∈
∈ E(n−1) × P(n−1) pair so, that w = u + ν, and then

(
A(n−1) + I(n−1)

)
w =

(
A(n−1) + I(n−1)

)
(u + ν) =

(
A(n−1) + I(n−1)

)
ν,

as
(
A(n−1) + I(n−1)

)
u = 0.

Earlier we gave a generator system of P(n) if n > 0, namely the columns

of the matrix
(

A(n−1) + I(n−1)

I(n−1)

)
. From the previous results follows, that the

following set of vectors generates P(n), too.

Corollary 14. Let G(n) a basis of P(n) for any nonnegative integer n.
Then

G(n+1) :=

{(
λ

(
U

(n)
2i + U

(n)
2i+1

)

λU
(n)
2i + µu

) ∣∣∣∣∣ 2n−1 > i ∈ N0 ∧ u ∈ G(n) ∧ λ + µ = 1

}

is a possible basis of P(n).

Proof. With the n-dimensional e(n;2i) vectors,
{
e(n;2i) | 2n−1 > i ∈ N0

}∪
∪G(n) is a basis of T (n). As

{
λe(n;2i) + µu | 2n−1 > i ∈ N0 ∧ u ∈ G(n) ∧ λ + µ = 1

}
=

=
{

e(n;2i) | 2n−1 > i ∈ N0

}
∪

{
u|u ∈ G(n)

}
=

=
{

e(n;2i) | 2n−1 > i ∈ N0

}
∪G(n),
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so
G(n+1) :=

:=

{( (
A(n) + I(n)

) (
λe(2i) + µu

)

λe(2i) + µu

) ∣∣∣∣∣ 2n−1 > i ∈ N0 ∧ u ∈ G(n) ∧ λ + µ = 1

}

is a basis of the nullspace of the 2n+1-dimensional space over F2. But e(2i) =
U

(n)
2i , and

(
A(n) + I(n)

)(
λU

(n)
2i + µu

)
= λ

(
A(n) + I(n)

)
U

(n)
2i = λ

(
U

(n)
2i + U

(n)
2i+1

)
,

that proves the statement of Corollary 14.

We give another two bases of P(n).

Theorem 15.
{

U
(n)
2i + U

(n)
2i+1

∣∣ 2n−1 > i ∈ N0

}
and the columns of

(
A(n−1) + I(n−1)

A(n−1)

)
are bases of P(n) for any positive integer n.

Proof.
(

A(n−1) + I(n−1)

A(n−1)

)
=

(
A(n−1) + I(n−1)

I(n−1)

)
A(n−1), and A(n−1) is

regular, so the second statement of the theorem is true.

U
(n)
2i + U

(n)
2i+1 = U

(n)
2j + U

(n)
2j+1 if and only if U

(n)
2i + U

(n)
2i+1 + U

(n)
2j +

+U
(n)
2j+1 = 0. This equality is possible if and only if two of the members of

the sum on the left side are identical, and similar is true for the other two
members of the sum (of course it is possible that all the four components
are identical). Suppose i ≤ j. As in U

(n)
2i and in U

(n)
2j there is exactly

one nonzero value, and in the columns of A(n) excluding the last one there
are at least two nonzero components, U

(n)
2i 6= U

(n)
2i+1 6= U

(n)
2j 6= U

(n)
2j+1 6=

6= U
(n)
2i . In that case the only possibility is, that U

(n)
2i = U

(n)
2j and U

(n)
2i+1 =

= U
(n)
2j+1, and this is true if and only if i = j. That means, the elements of the

set given in the theorem are pairwise linearly independent. The cardinality of
that set is 2n−1, so the space spanned by these vectors is a 2n−1-dimensional
linear subspace of T (n). Finally, if we choose an arbitrary element of the set,
for instance U

(n)
2i + U

(n)
2i+1, then

A(n)
(
U

(n)
2i + U

(n)
2i+1

)
= A(n)U

(n)
2i + A(n)U

(n)
2i+1 =

= U
(n)
2i+1 + U

(n)
2i = U

(n)
2i + U

(n)
2i+1,
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so U
(n)
2i + U

(n)
2i+1 is an eigenvector of the operator determined by A(n) in the

natural basis of T (n), that is U
(n)
2i +U

(n)
2i+1 belongs to the nullspace of A(n)+I(n).

Let us consider the 2n−1 cyclic invariant subspaces of the direct sum

decomposition of A(n) in which
{

U
(n)
2i , U

(n)
2i+1

}
is a basis in the i-th subspace.

Then U
(n)
2i + U

(n)
2i+1 is an eigenvector of that subspace, and from this follows

the following corollary.

Corollary 16. A possible basis for C(n) is the set

{
U

(n)
2i , U

(n)
2i + U

(n)
2i+1 | 0 ≤ i < 2n−1

}
.

Now let us consider two properties of the eigenvectors of A(n).

Corollary 17.
1. For an arbitrary ν ∈ T (n), ν + A(n)ν is an eigenvector of A(n).
2. If n > 0, and u is an eigenvector of A(n), then u0 = 0, and if u 6= 0,

then for at least one 2n−1 ≤ i < 2n, ui = 1.

Proof.

1. A(n)
(
ν + A(n)ν

)
= A(n)ν + ν = ν + A(n)ν.

2.
{

U
(n)
2i + U

(n)
2i+1

∣∣ 0 ≤ i < 2n−1
}

is a basis of the linear space of the

eigenvectors of A(n). As for any 2n−1 > i ∈ N0, the 0-th component of U
(n)
2i +

+U
(n)
2i+1 is equal to 0, the 0-th component of every vector of the linear space of

the eigenvectors of A(n) is 0.

Any eigenvector u of A(n) is of the form
((

A(n−1) + I(n−1)
)
ν

ν

)
, where ν

is an arbitrary vector of T (n−1). If ν = 0, then
(
A(n−1) + I(n−1)

)
ν = 0, and

then u = 0.

The first part of the second statement means that every eigenvector of the
transform given by A(n) in the natural basis of T (n) lies in the subspace of
T (n) generated of the vectors of the natural basis of T (n), but e(n;0).

Finally, let us consider the eigenvectors of A(n), if 0 ≤ n ≤ 3.

1) If n = 0, then A(0) = (1) = I(n), so every vector of T (0) is the
eigenvector of A(0). T (0) has two vectors, 0(0) and e(0;0) = (1).
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2) If n = 1, then
(

A(0) + I(0)

I(0)

)
=

(
1 + 1

1

)
=

(
0
1

)
is a basis of the

space of the eigenvectors of A(1), so
(

0
0

)
and

(
0
1

)
are the eigenvectors.

3) If n = 2, then
(

A(1) + I(1)

I(1)

)
=




0 0
1 0
1 0
0 1


, and




0
0
0
0


 ,




0
1
1
0


 ,




0
0
0
1




and




0
1
1
1


 are the eigenvectors of A(2).

4) If n = 3, then
(

A(2) + I(2)

I(2)

)
=




0 0 0 0
1 0 0 0
1 0 0 0
1 1 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




, and the columns of

the matrix




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1




are the eigenvectors of A(3).
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