Annales Univ. Sci. Budapest., Sect. Comp. 23 (2004) 3-23

MULTIPLICATIVE FUNCTIONS CLOSE
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Abstract. We consider complex-valued multiplicative arithmetical func-
tions which are close to 2 on the set of primes and analyse the asymtotic

behaviour of the sum
> fp+1).
p<z

In particular we prove
Corollary 1. Let f: IN — C be multiplicative. Let ¢y > 4 and
ca > 0 be constants such that the inequality

£ (p)?|log® p f@eP _
> Uelleds s UOP

1 (p)|<ex p b r<2

holds, and assume that the series

9_
Z\ f(p)|

p

converges. Then
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1. There are many results concerning the mean behaviour of multiplicative
arithmetical functions f on the set {p 4+ 1} of shifted primes, especially in the
case when the values f(p) are close to 1 for “almost all” primes p. As a typical
result we mention a theorem of 1. Katai [1].

Proposition 1 (see [1]). If |f| < 1 and if the series

1—f(p)
2

p

converges then the mean-value

mp(f) = lim —— 3" f(p+1)

roe 7(2)

exists.

The wish to abandon the restriction on the size of f led to the investigation
of multiplicative functions which belong to the class £%, ¢ > 1. Here, for
1<g <o,

LY:={f:IN — C,]|f]lg < oo}

denotes the linear space of arithmetic functions with bounded seminorm

Q=

[1£llq := § limsupa™! > 1)

n<zx
Many results in this context are due to K.-H. Indlekofer - N.M. Timofeev ([2],
[3], [4]) and A. Hildebrand [5].
The following proposition describes a typical situation.

Proposition 2 (see [2]). Suppose that

1
li < 2 - , 2 log™"
lfisipxg f()P <00, D If()] < zlog™’x

n<x p<z

where 0 < p < 1. If there is a Dirichlet-character xq mod d such that

M(fxa) = Jim + 57 Fln)xa(n)

n<z

exists and is different from zero, then m,(f) exists, too. If the mean-value
M(|f]) exists, then the same is true for the mean-value m,(|f]).
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We shall extend this result to a further class of functions. For this let us
consider the divisor function 7, i.e. T(n) denotes the number of divisors of n.
It is well known that

Z 7(n) =zlogz + (2y — 1)z + R(x)

n<lz

(v: Euler’s constant) where R(x) can easily be estimated by O(y/z), and
the question of finding better bounds for R(x) is referred to as Dirichlet’s
divisor problem.

Concerning the average order of 7 on the set of shifted primes it is known
(see, for example [6], Theorem 3.9) that

Zr(p+1)=H<1+p(p1_l)>x+O<xllcfgﬁgx>.

p<z P

This result motivated the present investigations. Observe that 7 is
multiplicative and 7(p) = 2 for all primes p. In this paper we deal with
multiplicative functions f the values f(p) of which are close to 2 for “almost
all” primes p, and analyse the asymptotic behaviour of the sum

> fp+1).

p<z

We prove

Theorem. Let f be a complex-valued multiplicative arithmetical function.
Let ¢1 > 4 and co be positive constants such that the inequality

(1) Z |f(p)|210g2p+zz|f(§:)|2 < e

/()2 e p b o2

holds. Suppose further that

(2) lim ! Z |f(p;— 2 logp = 0.

z—o0 log x

Then
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o IH<1_p+< )Z'f )

p<z

as x — oo .
Immediate consequences of the Theorem are the following corollaries.

Corollary 1. Let the multiplicative arithmetical function f satisfy condi-
tion (1), and assume that the series

(3) Z ‘2 _pf(p)

converges. Then

JLfgloiZf<p+1>=H<1—§+ (1—;)21”(?”).

T
p<x r=1 p

Corollary 2. Let f be multiplicative. Suppose that |f(p)| < 2 and the two

9 _
Zz\f Z f(p)

p r>2 P p

converge. Then

ngoiZf<p+1>—H<1;+ (1;>ZW)>-

-
p<zx r=1 p

Proof of Corollary 1. An application of Cauchy’s inequality gives

Z|f log <Z 2+01)10gp+ Z f(PL—210g$+

p [f(p)<eqr,
P>y

p<z p<y

N
N

S 4\f(p>|221n2p S 4|f(p)|2zlog2p

[f(p)|=c1 Py P If(p)|>e1, pooo P

P>y
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log y(x)
log x
hypothesis (3) and (1) we establish (2). If the series (3) converges then the

2~ ()]
- p
2,

converges, too. Hence both products occuring in the assertion of Theorem are
convergent, and this ends the proof of Corollary 1.

Letting y(z) — oo such that — 0 as ¢ — 00, and making use of the

Proof of Corollary 2. The hypothesis of Corollary 2 implies (1). Using
Cauchy’s inequality we conclude

1
2

2
Zlf logp<4z ]g);er 222 Ref()zlogp

p<z Py P>y P p<z P
In the same way as above we complete the proof of Corollary 2.

2. First we establish some preliminary results.

Lemma 1. (see [3], Theorem 1) Let f;, (i = 1,2,..., k), be complez-valued
multiplicative functions satisfying the conditions

k
(4) A(n):=> a;fin) >0 (n=12,...)
i=1
where a; € C fori=1,..., k. Further, assume that there are constants cg > 0,

4 >0,c5 >0 and 0 < p <1 such that the inequalities

(5) S Ifin)]? < esz(logz) (i=1,....k)
and
(6) S < csz(logz)™” (i=1,....k)

hold. Then for u = (logz)4 with A > 8(9cs + 8 - 3* + 150) we have

1 cq
T2 AW <= YD A+ (ogloga) T (log )%,

<z n<x,
p= (n—1,P(u))=1

(
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where P(u) := [ p. The constant implied in < depends at most on cs and
p<u
Cs.

Lemma 2. Let f be multiplicative. Further, let ¢; > 4 and co > 0 be
constants so that (1) holds, i.e.

3 |f (p)[? log® P+Zz|f

[f(P)|=cr p r>2

Then, with FEuler’s o-function,
|2

(7) Z ‘f ) < (log :r)

n<z

0 Sl < o 3

n<z

where the constants implied in < depend at most on ¢; and ca.

Proof. It is easy to see that

Zf§§H< Z” ) ZZ“

n<lz p<z p<zx r=1

and using (1) we obtain (7). As an immediate consequence we deduce

S i <o Y 0L < aogaye.

n<zx n<zx

Application of the Cauchy inequality and (1) show that

> 1f@)|logp” <

pr<x

Nl=

gclzlongr:U ZZ'f ZZ(IO& +

p<zx p r>2 p r>2
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+x Z Mlogp <L .

[f(p)|=e1
Combining the last two estimates gives

S 1fn)] <

n<lz

<<f+72|f |logn<<f+—z|f IS @) gy <

n<x n<z pr<Z

—n

z £ (n)
< log x ; n

This completes the proof of Lemma 2.

Lemma 3. Let f1, fo be complex-valued multiplicative functions such that
the squares fZ, f2 satisfy the condition of Lemma 2. Then

2 1 |f1(n) = fa(n)[?
ﬁg\ﬁ(p*‘l)—fﬂp‘Fm < logzg - (p(n)z

1 |f1(p) — fa(p)|? |f2(n)
I
+loggc pz<::v P ogpr?g;( log 2t Z o(n)

1 /1) + | f2(n) 1
+(logas)1+5 r; n +

(logz)?’

where § > 0 and the implied constant depends at most on c1, co and §.

Proof. We first apply Lemma 1 with

An) =1fi(n) = o()I* = 1AW = fi(n) f2(n) = fr(n) fa(n) + | f2(n)]*.

The condition (6) of Lemma 1 is satisfied with p = 1, and hypothesis (5) follows
directly from (7). So, we deduce from Lemma 1 that

9)

1 1
T D)=L+ < T 3 ()= fa(n) P+ oga)
= (n— I’L;(Lu)) 1
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where u = logA x. Since (5) holds for f; and fy we conclude in the same way

as above
S 1AM - Re)P <

n<az,
(n—1,P(u))=1

SVItEs X AWAG) — R LG)R g

npT <z,
(np"—1,P(u))=1
Now we split the last sum into three parts > ;, > 5, >4, where >, is the sum
over np” < x with p” <y, >, is the sum over np” < z such that p” > y,
r>2and p >y, |fi(p)| > c1 or |fa(p)| > c1 and ), contains the remaining
summands, respectively.

By (8) and (1) the sum ), can be estimated by

Z <Y | f1(p")]? +\f2( )\ Z|f1 +\f2( )|? <

pr<y y n<lx

logy Z | f1(n +\f2( )|? .

IOg Y n<lz

From the Cauchy inequality we deduce that

n2 277,2 : 2 9
Z2<<wz|f1( )l :|f( ) Z Z |f(]7)9)| log? p +

n<x =1 |fi(p)|>c1

[N

Zz|f1 Dl +|f2( ik Sy IOgP

r>2 p r>2pr>y

Putting y = exp(log® z), 0 < a < %, we obtain

1(n)]? + | f2
Zl+22 < 1ogx Z|f \ (n)[? .

The contribution of ), is bounded by

23 < 231 + 232 * 233’
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where
SIS SUGETACTIND S tes
=v (np pl<P<u>> 1
Yo, =2 lkmPF Y logp
n<t p<E,
(np—1,P(u))=1
and
o= > I -fmleep Y LM
y<p<z/t, n<z/p,
fig?;)lgglx (np—1,P(u))=1

respectively. Here ¢ is given by logt = logu - logy. To estimate ) 4, and ).,
we employ Selberg’s sieve (see [6]). Choosing z = u, £ = {/Z > ¢y > u in
Theorem 6.2 of [6] we obtain

xT

| e R
(10) {p - ¢(n)logulog £

,(np—l,P(u))le <

Hence

z [fi(n) = 2()]* | = |f2(n)[?
231 +Zs2 < log u g o(n) * log u nzgt o(n) -

Lemma 2 shows that the second summand is O ( (log t)cf>. Turning to

x
logu
(9) we arrive at

1 filn) = fa(n)|? 1
Z A+~ e+ )P < logz Z A (n)2(n)| +x(l)§gux Zg3+

p<z n<x ¥

L
m(x)

ac?-1 - 1 logu |f1 | +|f2( )‘
(11) +z(log )1 (log u): logxw; .

1
Let 0 < a< 32" We are now ready to give an upper bound for ) ... First

S Ifz(n)|2<<\/f+10glm S B P logd"

n<z/p, p q"n<z/p,
(np—1,P(u))=1 (q"np—1,P(u))=1
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The three parts of the last sum where ¢" < y or ¢" > y, r > 2 or q > v,
|f(q)] > c1, respectively, can be estimated in the same way as >, and > _,.
The contribution of these parts are

a:logy Z \f2 T Z \f2(:)|2<< € Z |f2(:)|2_

pl 08 by py n<z/p plogy n<z/p plOgU n<z/p

Recall that p < x/t, logt = logulogy, u = logA x, logy > logu.
For the remaining summands we use Selberg’s sieve as above (see (10)).
Thus .
log - Yo 1km)P <

n<z/p
(np—1,P(u))=1

<« Z |f2(r7:)|2+ Z | fa(n)? Z logg <

logu
plog n<z/p n< L q< L

=pu =mnp’

(gnp—1,P(§u))=1

) [f2(n)]

plogu £~ = o(n)

and

x |f1(p) — fa(p)|? 1 | fa(n)[?
233 < logupgzgg p logplogg Z W

P n<lz/p
Combining this estimate with (11) gives the assertion of Lemma 3.

Lemma 4. Let f be a complex-valued multiplicative function satisfying
the condition of Lemma 2, and put

H(f,a?) = H <1+if$f>>

p<z

Then

(12) [0s10) = exp | 32 22

p<zx

If, in addition, f satisfies condition (2) then

(13) pax o= T < o TT0AL2)
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Proof. Hypothesis (1) implies the convergence of the product

- | (")l 1)l
1;[(1—1—; o >exp<— » )

Thus (12) holds. If \/z <y < z then (1) and (2) yield

M o | 2 0N o) = (122) 4 o)

[1(f1 ) 2P logy
If(p)i<ey
Hence
0fLe) logy 1 [0fLo) logye 3

1
loge [1(fLy) ~2 0 logz I/l va) ~ 2

for /x <y <z if x > xy. This implies (13), which ends the proof of Lemma
4.

Lemma 5. (see [7], Theorem 5) Let z < \/z. For any positive constant A
there is a constant B = B(A) such that with Q = \/z(logx)~ 8

Z max max |[{n:n <y, (n,P(z))=1,n=a (modd)}| —
<0 y<z (a,d)=1

1
———Hn:n<y,(n,P(z)d) =1 < z(logz) 4.
sa(d)H (n, P(z)d) = 1} | (logx)
Lemma 6. Let d < 2%, 2 < V/x, y < {/x. Then

x zlog® x

d
{n:n <z (n,P(z)) =1,(dn—1,P(y)) = 1}| < o(d) log zlogy z

Proof. By Selberg’s sieve (see [6], Theorem 6.2) we get

|{n:n<$7(n7P(2)):1v(dn_1’P(y)):l}|<<H(1_117> 2

Py, n<w,
pld (n,P(2))=1
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+ 3 30 [{n:n <o, (0, P(2) = Lnd =1 (mod 6)}] -

5<e?,
(5,d)=1

(14) {n:n <a,(n,P(2) = 1],

_ b
©(9)

where ¢2 = {/z. Now,

D

= 00

w(9)
’ I{n:n <z (n, P(2)) = 1} = {n:n <z, (n, P(2)0) = 1}|| €

ey L o 3w<6>  slloss)’

p>z P 5<§2

Hence, using Cauchy’s inequality and Lemma 5, we obtain that the second sum
on the right-hand side of (14)

9w(5)

< xZ—

= ©(9)

X max |[{n:n <z, (n,P(z))=1,n=a (mod §)} —
6S§2(a,d):1
1 * a(loga)? (log )°
z(logx x z(logx
———Hn:n<z,(n,dP(z) =1 + < + )
el (nap(e) = 1)+ LBt 28

where A is an arbitrary positive constant. Now, again by Selberg’s sieve,

{n:n <z (n,P(z) =1} < é.

Substituting these results into (14) yields Lemma 6.

3. Proof of Theorem. For y > 1 define the multiplicative function f,
by
f") ifp" =y,
fy (pT> =
r+1 ifp" >uy.
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1
Assume that y = y(z) — oo and % — 0 as ¢ — oo. The function f,
ogw
satisfies hypothesis (1). Let f; and fo be multiplicative functions such that
filp") = Vf(p") and fo(p") = /fy(p"), r = 1,2,..., respectively, where
VzZ = /7] exp( iarg z) The functions f; and f satisfy the hypothesis of
Lemma 3. Applying Lemma 3 gives
X0 AU < S Aln) S0l
m(x) =
|filp f2 p)|? 1 £ (n)]
Z log p max Z +
logqu i<z log2t = (n)
1 1 |f ()] + |fy(n)]
g P logn o 2 e

From (2) we conclude that there is a function ¢ such that e(z) | 0 but
e(z)v/log  tends to infinity as © — oo and

(15) Z ‘2;& logp < e(x)log .

p<z

Let logy > /e(z)logx. Then

y<p<2 p logy

3 10 =20 < @)

and therefore [[(|f)],z) =< [1(|fy], ). Note that |\/f(p) + V2| > V2. Then,
by (1) and (2) we obtain

2
Z |1 gp < = Z £ () gp < %s(x) log z+
p<z p<x
+ Z logp<<5( )log x.
[f(p)|Zc1

Applying Lemma 4 shows that

(17) %Z|fl(p+1)—f2(p+1)|2 <
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1 |f1(n) — fa(n)
<z 2 MO (1o TI070)

Next we prove

(18) 3 ) B (T f1,)).

n<x

no

For this we divide the sum on the left into two parts ] and Y5, where >
denotes the sum over n < z such that p"|n, r > 2, p" > y or p|ln, p > vy,
|f(p)| > c1 and ), contains the remaining summands, respectively. By (1) we
have

S| o D s VO Y10 < o (TT0710).

">y, ">y,
r>2 [f(p)=cy

Now write each number n occuring in Z; in the form n = nip;y ...p;, where
n1 has only prime divisors < y and p; > y with |f(p;)| < ¢1. Then

[f1(n) = fa(n)| = [ f1(n1)]

A Al - (v2) | <

< 1Al (1) Vel + ..+ i) — V2).

This gives

[f1(n) = F2(m)* < [f(n)led"t (1 (p1) — 20+ .+ [f(p) — 2D),

and therefore

glogz ] ) —2 1
Z < 110“12?’; Z |f(p) . | Z|f Z

y<p<z p<y y<p<z p
1 1
Choosing y > 2Ve(®), log z < log , we obtain by (15)
"logy ~ 4logcy e(x)

Y <R (10“) (o) TT(1f12) < VBl [T )

logy



Multiplicative functions close to the divisor function 17

Thus, (18) holds. Using (17) and Lemmas 3 and 4 we see

[N

Z|f1p+1 —f3p+1) < 7Z|flp+1 — L+ | x

p<z p<1:

2

7 S )+ el P ~o (s I0r0)).

Therefore

1) =Y et = s S Ao (o [T0ra) )

p<lx p<lx

log y(x)

— 0 as x — oo. The last sum in (19) can be
log x

where y(z) — oo and

written in the form

(200 Y fulp+ )= Y fla)r(nz) +0 > fm)lrne) |,

p<z pt+l=niny<wz, p+l=niny<w,
- n1<y1 n1>y1
where (ng, P(y)) = 1 and where n; denotes an even number whose prime

divisors are not larger than y. Let us apply Lemma 3 for f; and fo where
f2(n) = f(n) and fZ(n) =0 if n > 1. Then

1 f(n
o T < g ¥ 2l

p+l=n1<zx ni <z

1 |f(p) 1 )
-Hogx;! » 10gplogx H(|f|»$) + WH(UL@

Choose logy > +/e(z)logz. Using Lemma 4 together with (1) and (16) we see

that )
If log y
> ) < (22) T0s1.0)

n1<:c

1 logy 1
@) g 3 el gt o TI0 = o (o T0710))
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and

1 2
S S y1<ni<z/y

xS (Hn;ng v ,(ngn(nlngnl),P(\%j))IH+\7§>.

namny
na< /75

1

Applying Selberg’s sieve (see [6], Theorem 6.2) gives

T T
n:n< , (nan(ningn — 1), P(J =1,k .
{ T ngng (nan(minz ) ) }’ <p(n2)<p(n1)1og2y
Therefore
1 log (n1)]
(22) —/— |f(n1)|7(n2) <
W(I) P+1:;"2§’”v 10g2 y y1<§§x/y 90( TLQZ<’6 n2

n1>y1,n2>y

By Cauchy’s inequality and the hypothesis (1) we get

|f(n1) 1 |f (n1)|
Z (n1) = log y1 Z ¢(n1) togm =

y1<ni<z

A

1 |f(p")] . |f(n1)]
]
= logy p;y o) BT 2 -

1 log p™)?
Z|f Z(gp) Z|f

lo
g Y1 r>2,p "2y, n1 <z

log 41 oo and log 41

— 0 as x — co0. Then
logy log x

Now, let

|f(n)]  logy If If
Z < Z logn1+\flogy1 Z

oo, plna)  logy logy1 =,
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log y1

Thus, by (22
log ) uS, y( )7

1f\f_(

1 log = [f(n 1
- [f(n1)|7(n2) < <
71'(1') p+1=§1;2§w, 10g yl nz<::r n;:r QD(TLQ)
n1>y1,ng>y -

log z 2 logy 1 B 1
< (1Ogy1) log z log = H(|f|,:17) =0 (logx H(f|739)>

log x < log y

if Substituting this result and (21) into (20) shows
log y1 logx”
1 Z fu(p+1) =
w(e) 27T
p<z
1 T
= @ Z f(n1) Z <2I(z,n1n2,y) - I("znu/nl,nlnz,y)) +
n1<y1 na<, /ﬁ
o (o TT0f12)
log = ’ ’
where

1
I(xananay) = ‘{p S $7p+ 1=0 (HlOd n1n2)? <p+ 7P(y)> = 1}‘ .

ningz
log @
Now, let @ = Q(x) such that — 0 as z — 0o. By Lemma 6 we have
og
[x
Z |f(n1) Z I <n2n1 an1n27y> <
n1<y1 no< "

< (1)2|f i ;ﬁ(’{nng \/Z,m,P(y» -1,
(nning — 1, P (Yx)) =1 H +%)<<
)

1 | f(n
< Vrlogy Z ¢(n1)

n1<y1 no< /2
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PR TR § (1)

log x logm
Therefore
1
me (p+1)= Z fn) > I(w,mng,y)+
p<z n1<y1 ne<Q-t /7=

1
(23) T Z |f(n1) Z I(z,ning,y) | +
n1Sy1 \/ﬁQ’ISTDS\/ﬁ

) ()]

Using Lemma 6 shows that the second term may be estimated by

1
<o L el X
n1=y1 VEQ <N <\ [

(nnins = 1,P (V7)) =1 || +\8/5><<

1 |f(”1)| 1
2 ) Z )

logy = w(m JEQ-imme =
We have
1 2(d 1 1 1
St T g X=X eo(E).
no<zm QQ(TLQ) d,(d,P(y))=1 QO( ) nao<z/d 2 na<w "2 Yy

Applying the Fundamental Lemma of sieve theory (see [6], Theorem 2.6) we

(Y o))

no<u p<y

Then, by partial summation,

(24) 3 @(22) :g<1—p> 1ogz<1+0<<$§gyc)2>>.

no<z
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This shows that the first remainder term on the right side in (23) can be

estimated by
1 1 1
< $ |f ()] <0gQ+ ogy) <
logy = ¢(m) \logy  logw

< logy (logQ n logy> 1

1
2y (B9 ) T = o (5 T
Hence
1
(%) =@ 2=
2 s 1
@m@lf(m) <QX; ] (m,mnz,y)JrO(long(f|,x)>.

Now, Selberg’ sieve (see [6], Theorem 7.1) gives

I(z,n1na,y) = S{%g (1 - M) (1+0 (exp (_logf))) N

logy
+0 Z 3¢ \x(x, =1, n1nad) — Lm:‘
= w(ninad)
d[P(y)

Q
Set £2 = @

. Then nidns <
og” x og
to

T
i Applying Cauchy’s inequality leads

Li
St Y Y 3@ w(x,_l,nmzd)_w‘«
< - 2 p(ninad)

n1sY1 ne<Q-1,/E d<e?,
"1 d|P(y)
2\ 3 3

d w(d) B _ Liz

< Zn< S I > et - 2
n<z nidns=n d<

—logA x
The first sum is less than

>l 5 Ly MO $2 90 gyt

n<x n<zx n<lz n<x
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The second sum can be estimated by the Vinogradov-Bombieri theorem and is

dominated by O(z logf(cﬂw) x) if A > Ap. Recall that ny is an even number.
Therefore
-1
%0(”1712)) 1 ( 1 ) ( 1) ( 1 )
M- = I (t-— ) [] (-2 (1-—) =
o<y ( plnanap) ) 2,22 p—1 iy p p—1
A 60 5
ny o o P/, D p—1 p—2)"
Py <p<y plng,

p#2

Substituting these results into (25) we arrive at

p ) () I 5 5

p<9c pF#2 p<y n1<y1
X H <1+> Z L X
o < =01 ¢(na)
P2 nz_\/HQ

(ol (53) (o () o (o).

Recall that log 41 — 0 and log @
log x ogx

log & S log @ _ Aloglogz
logy ~ logy logy

1
Let y > exp (v/Iogz) and % — 00 as ¥ — oo. By (24) we see that

2 1. = f(p"
nyerl H<1p+(1p)z 22,)>10gz+

p<w p<y

Choosing y > zV®) gives
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as  — oo, which, together with (19), proves the assertion of the Theorem.

1]
2]
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