MULTIPLICATIVE FUNCTIONS CLOSE TO THE DIVISOR FUNCTION ON SHIFTED PRIMES

K.-H. Indlekofer (Paderborn, Germany)
N.M. Timofeev †

Dedicated to Professor Imre Kátai on his 65th birthday

Abstract. We consider complex-valued multiplicative arithmetical functions which are close to 2 on the set of primes and analyse the asymtotic behaviour of the sum

$$\sum_{p \le x} f(p+1).$$

In particular we prove

Corollary 1. Let $f: \mathbb{N} \to \mathbb{C}$ be multiplicative. Let $c_1 \geq 4$ and $c_2 > 0$ be constants such that the inequality

$$\sum_{|f(p)| \le c_1} \frac{|f(p)^2| \log^2 p}{p} + \sum_p \sum_{r \le 2} \frac{|f(p^r)|^2}{p^r} \le c_2$$

holds, and assume that the series

$$\sum_{p} \frac{|2 - f(p)|}{p}$$

converges. Then

$$\sum_{p \le x} f(p+1) = x \prod_{p} \left(1 - \frac{2}{p} + \left(1 - \frac{1}{p} \right) \sum_{r=1}^{\infty} \frac{f(p^r)}{p^r} \right) + o(x).$$

1. There are many results concerning the mean behaviour of multiplicative arithmetical functions f on the set $\{p+1\}$ of shifted primes, especially in the case when the values f(p) are close to 1 for "almost all" primes p. As a typical result we mention a theorem of I. Kátai [1].

Proposition 1 (see [1]). If $|f| \le 1$ and if the series

$$\sum_{p} \frac{1 - f(p)}{p}$$

converges then the mean-value

$$m_p(f) := \lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p < x} f(p+1)$$

exists.

The wish to abandon the restriction on the size of f led to the investigation of multiplicative functions which belong to the class \mathcal{L}^q , $q \geq 1$. Here, for $1 \leq q < \infty$,

$$\mathcal{L}^q := \{ f : I\!N \to \mathbb{C}, ||f||_q < \infty \}$$

denotes the linear space of arithmetic functions with bounded seminorm

$$||f||_q := \left\{ \limsup_{x \to \infty} x^{-1} \sum_{n \le x} |f(n)|^q \right\}^{\frac{1}{q}}.$$

Many results in this context are due to K.-H. Indlekofer - N.M. Timofeev ([2], [3], [4]) and A. Hildebrand [5].

The following proposition describes a typical situation.

Proposition 2 (see [2]). Suppose that

$$\limsup_{x \to \infty} \frac{1}{x} \sum_{n \le x} |f(n)|^2 < \infty, \quad \sum_{p \le x} |f(p)|^2 \ll x \log^{-\rho} x$$

where $0 < \rho \le 1$. If there is a Dirichlet-character $\chi_d \mod d$ such that

$$M(f\chi_d) := \lim_{x \to \infty} \frac{1}{x} \sum_{n < x} f(n) \chi_d(n)$$

exists and is different from zero, then $m_p(f)$ exists, too. If the mean-value M(|f|) exists, then the same is true for the mean-value $m_p(|f|)$.

We shall extend this result to a further class of functions. For this let us consider the *divisor function* τ , i.e. $\tau(n)$ denotes the number of divisors of n. It is well known that

$$\sum_{n \le x} \tau(n) = x \log x + (2\gamma - 1)x + R(x)$$

 (γ) : Euler's constant) where R(x) can easily be estimated by $O(\sqrt{x})$, and the question of finding better bounds for R(x) is referred to as *Dirichlet's divisor problem*.

Concerning the average order of τ on the set of shifted primes it is known (see, for example [6], Theorem 3.9) that

$$\sum_{p \le x} \tau(p+1) = \prod_{p} \left(1 + \frac{1}{p(p-1)} \right) x + O\left(\frac{x \log \log x}{\log x} \right).$$

This result motivated the present investigations. Observe that τ is multiplicative and $\tau(p)=2$ for all primes p. In this paper we deal with multiplicative functions f the values f(p) of which are close to 2 for "almost all" primes p, and analyse the asymptotic behaviour of the sum

$$\sum_{p \le x} f(p+1).$$

We prove

Theorem. Let f be a complex-valued multiplicative arithmetical function. Let $c_1 \geq 4$ and c_2 be positive constants such that the inequality

(1)
$$\sum_{|f(p)| > c_1} \frac{|f(p)|^2 \log^2 p}{p} + \sum_{p} \sum_{r \ge 2} \frac{|f(p^r)|^2}{p^r} \le c_2$$

holds. Suppose further that

(2)
$$\lim_{x \to \infty} \frac{1}{\log x} \sum_{p \le x} \frac{|f(p) - 2|}{p} \log p = 0.$$

Then

$$\sum_{p \le x} f(p+1) = x \prod_{p \le x} \left(1 - \frac{2}{p} + \left(1 - \frac{1}{p}\right) \sum_{r=1}^{\infty} \frac{f(p^r)}{p^r}\right) +$$

$$+o\left(x\prod_{p\leq x}\left(1-\frac{2}{p}+\left(1-\frac{1}{p}\right)\sum_{r=1}^{\infty}\frac{|f(p^r)|}{p^r}\right)\right)$$

as $x \to \infty$.

Immediate consequences of the Theorem are the following corollaries.

Corollary 1. Let the multiplicative arithmetical function f satisfy condition (1), and assume that the series

$$(3) \sum_{p} \frac{|2 - f(p)|}{p}$$

converges. Then

$$\lim_{x \to \infty} \frac{1}{x} \sum_{p \le x} f(p+1) = \prod_{p} \left(1 - \frac{2}{p} + \left(1 - \frac{1}{p} \right) \sum_{r=1}^{\infty} \frac{f(p^r)}{p^r} \right).$$

Corollary 2. Let f be multiplicative. Suppose that $|f(p)| \leq 2$ and the two series

$$\sum_{p} \sum_{r>2} \frac{|f(p^r)|^2}{p^r}, \quad \sum_{p} \frac{2 - f(p)}{p}$$

converge. Then

$$\lim_{x \to \infty} \frac{1}{x} \sum_{p \le x} f(p+1) = \prod_{p} \left(1 - \frac{2}{p} + \left(1 - \frac{1}{p} \right) \sum_{r=1}^{\infty} \frac{f(p^r)}{p^r} \right).$$

Proof of Corollary 1. An application of Cauchy's inequality gives

$$\sum_{p \le x} \frac{|f(p) - 2|}{p} \log p \le \sum_{p \le y} \frac{(2 + c_1) \log p}{p} + \sum_{\substack{|f(p)| \le c_1, \\ p > y}} \frac{|f(p) - 2|}{p} \log x +$$

$$+ \left(\sum_{|f(p)| \ge c_1} \frac{4|f(p)|^2}{p} \sum_{p \le y} \frac{\ln^2 p}{p} \right)^{\frac{1}{2}} + \left(\sum_{\substack{|f(p)| \ge c_1, \\ p \ge y}} \frac{4|f(p)|^2}{p} \sum_{p \le x} \frac{\log^2 p}{p} \right)^{\frac{1}{2}}.$$

Letting $y(x) \to \infty$ such that $\frac{\log y(x)}{\log x} \to 0$ as $x \to \infty$, and making use of the hypothesis (3) and (1) we establish (2). If the series (3) converges then the series

$$\sum_{p} \frac{|2 - |f(p)||}{p}$$

converges, too. Hence both products occuring in the assertion of Theorem are convergent, and this ends the proof of Corollary 1.

Proof of Corollary 2. The hypothesis of Corollary 2 implies (1). Using Cauchy's inequality we conclude

$$\sum_{p \le x} \frac{|f(p) - 2|}{p} \log p \le 4 \sum_{p \le y} \frac{\log p}{p} + \left(2 \sum_{p \ge y} \frac{2 - \text{Re}f(p)}{p} \sum_{p \le x} \frac{\log^2 p}{p} \right)^{\frac{1}{2}}.$$

In the same way as above we complete the proof of Corollary 2.

2. First we establish some preliminary results.

Lemma 1. (see [3], Theorem 1) Let f_i , (i = 1, 2, ..., k), be complex-valued multiplicative functions satisfying the conditions

(4)
$$A(n) := \sum_{i=1}^{k} \alpha_i f_i(n) \ge 0 \quad (n = 1, 2, ...)$$

where $\alpha_i \in C$ for i = 1, ..., k. Further, assume that there are constants $c_3 > 0$, $c_4 \ge 0$, $c_5 > 0$ and $0 < \rho \le 1$ such that the inequalities

(5)
$$\sum_{n \le x} |f_i(n)|^2 \le c_3 x (\log x)^{c_4} \quad (i = 1, \dots, k)$$

and

(6)
$$\sum_{p \le x} |f_i(p)|^2 \le c_5 x (\log x)^{-\rho} \quad (i = 1, \dots, k)$$

hold. Then for $u = (\log x)^A$ with $A \ge 8(9c_4 + 8 \cdot 3^4 + 150)$ we have

$$\frac{1}{\pi(x)} \sum_{p \le x} A(p+1) \ll \frac{\log u}{x} \sum_{\substack{n \le x, \\ (n-1, P(u)) = 1}} A(n) + (\log \log x)^{1 + \frac{c_4}{2}} (\log x)^{-\frac{\rho}{2}},$$

where $P(u) := \prod_{p \le u} p$. The constant implied in \ll depends at most on c_3 and c_5 .

Lemma 2. Let f be multiplicative. Further, let $c_1 \ge 4$ and $c_2 > 0$ be constants so that (1) holds, i.e.

$$\sum_{|f(p)| \ge c_1} \frac{|f(p)|^2 \log^2 p}{p} + \sum_{p} \sum_{r \ge 2} \frac{|f(p^r)|^2}{p^r} \le c_2 \quad .$$

Then, with Euler's φ -function,

(7)
$$\sum_{n \le x} \frac{|f(n)|^2}{\varphi(n)} \ll (\log x)^{c_1^2}$$

and

(8)
$$\sum_{n \le x} |f(n)| \ll \frac{x}{\log x} \sum_{n \le x} \frac{|f(n)|}{n},$$

where the constants implied in \ll depend at most on c_1 and c_2 .

Proof. It is easy to see that

$$\sum_{n \le x} \frac{|f(n)|^2}{\varphi(n)} \le \prod_{p \le x} \left(1 + \sum_{r=1}^{\infty} \frac{|f(p^r)|^2}{\varphi(p^r)} \right) \ll \exp\left(\sum_{p \le x} \sum_{r=1}^{\infty} \frac{|f(p^r)|^2}{p^r} \right),$$

and using (1) we obtain (7). As an immediate consequence we deduce

$$\sum_{n \le x} |f(n)|^2 \le x \sum_{n \le x} \frac{|f(n)|^2}{n} \ll x (\log x)^{c_1^2}.$$

Application of the Cauchy inequality and (1) show that

$$\sum_{p^r \le x} |f(p^r)| \log p^r \le$$

$$\leq c_1 \sum_{p \leq x} \log p + x \left(\sum_{p} \sum_{r \geq 2} \frac{|f(p^r)|^2}{p^r} \right)^{\frac{1}{2}} \left(\sum_{p} \sum_{r \geq 2} \frac{(\log p^r)^2}{p^r} \right)^{\frac{1}{2}} +$$

$$+x \sum_{|f(p)| > c_1} \frac{|f(p)|^2}{p} \log p \ll x.$$

Combining the last two estimates gives

$$\sum_{n \le x} |f(n)| \ll$$

$$\ll \sqrt{x} + \frac{1}{\log x} \sum_{n \le x} |f(n)| \log n \ll \sqrt{x} + \frac{1}{\log x} \sum_{n \le x} |f(n)| \sum_{p^r \le \frac{x}{n}} |f(p^r)| \log p^r \ll$$

$$\ll \frac{x}{\log x} \sum_{n \le x} \frac{|f(n)|}{n}.$$

This completes the proof of Lemma 2.

Lemma 3. Let f_1 , f_2 be complex-valued multiplicative functions such that the squares f_1^2 , f_2^2 satisfy the condition of Lemma 2. Then

$$\frac{1}{\pi(x)} \sum_{p \le x} |f_1(p+1) - f_2(p+1)|^2 \ll \frac{1}{\log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{1}{\log x} \sum_{p \le x} \frac{|f_1(p) - f_2(p)|^2}{p} \log p \max_{t \le x} \frac{1}{\log 2t} \sum_{n \le t} \frac{|f_2(n)|^2}{\varphi(n)} + \frac{1}{(\log x)^{1+\delta}} \sum_{n \le x} \frac{|f_1(n)|^2 + |f_2(n)|^2}{n} + \frac{1}{(\log x)^{\delta}},$$

where $\delta > 0$ and the implied constant depends at most on c_1 , c_2 and δ .

Proof. We first apply Lemma 1 with

$$A(n) = |f_1(n) - f_2(n)|^2 = |f_1(n)|^2 - \overline{f_1}(n)f_2(n) - f_1(n)\overline{f_2}(n) + |f_2(n)|^2.$$

The condition (6) of Lemma 1 is satisfied with $\rho = 1$, and hypothesis (5) follows directly from (7). So, we deduce from Lemma 1 that

$$\frac{1}{\pi(x)} \sum_{p \le x} |f_1(p+1) - f_2(p+1)|^2 \ll \frac{\log u}{x} \sum_{\substack{n \le x, \\ (n-1, P(u)) = 1}} |f_1(n) - f_2(n)|^2 + (\log x)^{-\frac{1}{2} + \varepsilon}$$

where $u = \log^A x$. Since (5) holds for f_1 and f_2 we conclude in the same way as above

$$\sum_{\substack{n \le x, \\ (n-1, P(u)) = 1}} |f_1(n) - f_2(n)|^2 \ll$$

$$\ll \sqrt{x} + \frac{1}{\log x} \sum_{\substack{np^r \le x, \\ (np^r - 1, P(u)) = 1}} |f_1(n)f_1(p^r) - f_2(n)f_2(p^r)|^2 \log p^r.$$

Now we split the last sum into three parts \sum_1, \sum_2, \sum_3 , where \sum_1 is the sum over $np^r \leq x$ with $p^r \leq y$, \sum_2 is the sum over $np^r \leq x$ such that $p^r > y$, $r \geq 2$ and $p \geq y$, $|f_1(p)| \geq c_1$ or $|f_2(p)| \geq c_1$ and \sum_3 contains the remaining summands, respectively.

By (8) and (1) the sum \sum_{1} can be estimated by

$$\sum_{1} \ll x \sum_{p^{r} \leq y} \frac{|f_{1}(p^{r})|^{2} + |f_{2}(p^{r})|^{2}}{p^{r}} \log p^{r} \frac{1}{\log \frac{x}{y}} \sum_{n \leq x} \frac{|f_{1}(n)|^{2} + |f_{2}(n)|^{2}}{n} \ll x \frac{\log y}{\log \frac{x}{y}} \sum_{n < x} \frac{|f_{1}(n)|^{2} + |f_{2}(n)|^{2}}{n}.$$

From the Cauchy inequality we deduce that

$$\sum_{1} \ll x \sum_{n \le x} \frac{|f_1(n)|^2 + |f_2(n)|^2}{n} \left(\frac{1}{\log y} \sum_{i=1}^2 \sum_{|f_i(p)| \ge c_1} \frac{|f_i(p)|^2}{p} \log^2 p + \left(\sum_{r \ge 2} \sum_{p} \frac{|f_1(p^r)|^4 + |f_2(p^r)|^4}{p^r} \right)^{\frac{1}{2}} \left(\sum_{r \ge 2} \sum_{p^r \ge y} \frac{(\log p^r)^2}{p^r} \right)^{\frac{1}{2}} \right).$$

Putting $y = \exp(\log^{\alpha} x)$, $0 < \alpha < \frac{1}{2}$, we obtain

$$\sum_{1} + \sum_{2} \ll \frac{x}{(\log x)^{\alpha}} \sum_{n < x} \frac{|f_{1}(n)|^{2} + |f_{2}(n)|^{2}}{n}.$$

The contribution of \sum_3 is bounded by

$$\sum\nolimits_{3} \ll \sum\nolimits_{31} + \sum\nolimits_{32} + \sum\nolimits_{33},$$

where

$$\sum_{31} = \sum_{n \le \frac{x}{y}} |f_1(n) - f_2(n)|^2 \sum_{\substack{p \le \frac{x}{n}, \\ (np-1, P(u)) = 1}} \log p,$$

$$\sum_{32} = \sum_{n \le t} |f_2(n)|^2 \sum_{\substack{p \le \frac{x}{n}, \\ (np-1, P(u)) = 1}} \log p$$

and

$$\sum_{\substack{33 \\ f_1(p) \le c_1, \\ i=1,2}} |f_1(p) - f_2(p)| \log p \sum_{\substack{n \le x/p, \\ (np-1, P(u)) = 1}} |f_2(n)|^2,$$

respectively. Here t is given by $\log t = \log u \cdot \log y$. To estimate \sum_{31} and \sum_{32} we employ Selberg's sieve (see [6]). Choosing z = u, $\xi^2 = \sqrt[4]{\frac{x}{n}} \ge \sqrt[4]{y} > u$ in Theorem 6.2 of [6] we obtain

(10)
$$\left| \left\{ p \le \frac{x}{n}, (np-1, P(u)) = 1 \right\} \right| \ll \frac{x}{\varphi(n) \log u \log \frac{x}{n}}.$$

Hence

$$\sum_{31} + \sum_{32} \ll \frac{x}{\log u} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{x}{\log u} \sum_{n \le t} \frac{|f_2(n)|^2}{\varphi(n)}.$$

Lemma 2 shows that the second summand is $O\left(\frac{x}{\log u}(\log t)^{c_1^2}\right)$. Turning to (9) we arrive at

$$\frac{1}{\pi(x)} \sum_{p \le x} |f_1(p+1) - f_2(p+1)|^2 \ll \frac{1}{\log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{33} + \frac{1}{\log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} = \frac{1}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{\log u}{x \log x} + \frac{\log u}{x \log$$

$$(11) +x(\log x)^{\alpha c_1^2-1}(\log u)^{c_1^2-1} + \frac{\log u}{(\log x)^{1+\alpha}} \sum_{n \le x} \frac{|f_1(n)|^2 + |f_2(n)|^2}{n}.$$

Let $0 < \alpha < \frac{1}{2c_1^2}$. We are now ready to give an upper bound for \sum_{33} . First

$$\sum_{\substack{n \leq x/p, \\ (np-1, P(u)) = 1}} |f_2(n)|^2 \ll \sqrt{\frac{x}{p}} + \frac{1}{\log \frac{x}{p}} \sum_{\substack{q^r n \leq x/p, \\ (q^r np-1, P(u)) = 1}} |f_2(q^r)|^2 |f_2(n)|^2 \log q^r.$$

The three parts of the last sum where $q^r \leq y$ or $q^r \geq y$, $r \geq 2$ or q > y, $|f(q)| \geq c_1$, respectively, can be estimated in the same way as \sum_1 and \sum_2 . The contribution of these parts are

$$\ll \frac{x \log y}{p \log \frac{x}{py}} \sum_{n \leq x/p} \frac{|f_2(n)|^2}{n} + \frac{x}{p \log y} \sum_{n \leq x/p} \frac{|f_2(n)|^2}{n} \ll \frac{x}{p \log u} \sum_{n \leq x/p} \frac{|f_2(n)|^2}{n}.$$

Recall that $p \le x/t$, $\log t = \log u \log y$, $u = \log^A x$, $\log y > \log u$.

For the remaining summands we use Selberg's sieve as above (see (10)). Thus

$$\log \frac{x}{p} \cdot \sum_{\substack{n \le x/p \\ (np-1,P(u))=1}} |f_2(n)|^2 \ll$$

$$\ll \frac{x}{p \log u} \sum_{n \le x/p} \frac{|f_2(n)|^2}{n} + \sum_{\substack{n \le \frac{x}{pu}}} |f_2(n)|^2 \sum_{\substack{q \le \frac{x}{np}, \\ (qnp-1,P(\sqrt[g]{u}))=1}} \log q \ll$$

$$\ll \frac{x}{p \log u} \sum_{\substack{n \le x/p}} \frac{|f_2(n)|^2}{\varphi(n)}$$

and

$$\sum_{33} \ll \frac{x}{\log u} \sum_{p < x} \frac{|f_1(p) - f_2(p)|^2}{p} \log p \frac{1}{\log \frac{x}{p}} \sum_{n < x/p} \frac{|f_2(n)|^2}{\varphi(n)}.$$

Combining this estimate with (11) gives the assertion of Lemma 3.

Lemma 4. Let f be a complex-valued multiplicative function satisfying the condition of Lemma 2, and put

$$\prod(f,x) := \prod_{p \le x} \left(1 + \sum_{r=1}^{\infty} \frac{f(p^r)}{p^r} \right).$$

Then

(12)
$$\prod(|f|, x) \approx \exp\left(\sum_{p \le x} \frac{|f(p)|}{p}\right).$$

If, in addition, f satisfies condition (2) then

(13)
$$\max_{2 \le t \le x} \frac{1}{\log t} \prod (|f|, x) \ll \frac{1}{\log x} \prod (|f|, x).$$

Proof. Hypothesis (1) implies the convergence of the product

$$\prod_{p} \left(1 + \sum_{r=1}^{\infty} \frac{|f(p^r)|}{p^r} \right) \exp\left(-\frac{|f(p)|}{p} \right).$$

Thus (12) holds. If $\sqrt{x} \le y \le x$ then (1) and (2) yield

$$\frac{\prod(|f|, x)}{\prod(|f|, y)} = \exp\left(\sum_{\substack{y$$

Hence

$$\frac{\prod(|f|,x)}{\log x}\frac{\log y}{\prod(|f|,y)} \geq \frac{1}{2} \quad \text{and} \quad \frac{\prod(|f|,x)}{\log x}\frac{\log \sqrt{x}}{\prod(|f|,\sqrt{x})} \geq \frac{3}{2}$$

for $\sqrt{x} \le y \le x$ if $x \ge x_0$. This implies (13), which ends the proof of Lemma 4

Lemma 5. (see [7], Theorem 5) Let $z \le \sqrt{x}$. For any positive constant A there is a constant B = B(A) such that with $Q = \sqrt{x}(\log x)^{-B}$

$$\sum_{d < Q} \max_{y \le x} \max_{(a,d) = 1} ||\{n : n \le y, (n, P(z)) = 1, n \equiv a \pmod{d}\}| - 1$$

$$-\frac{1}{\varphi(d)} |\{n : n \le y, (n, P(z)d) = 1\}|| \ll x(\log x)^{-A}.$$

Lemma 6. Let $d \le x^2$, $z \le \sqrt[4]{x}$, $y \le \sqrt[4]{x}$. Then

$$|\{n: n \le x, (n, P(z)) = 1, (dn - 1, P(y)) = 1\}| \ll \frac{d}{\varphi(d)} \frac{x}{\log z \log y} + \frac{x \log^3 x}{z}.$$

Proof. By Selberg's sieve (see [6], Theorem 6.2) we get

$$|\{n: n \le x, (n, P(z)) = 1, (dn - 1, P(y)) = 1\}| \ll \prod_{\substack{p \le y, \\ n \mid \theta}} \left(1 - \frac{1}{p}\right) \sum_{\substack{n \le x, \\ (n, P(z)) = 1}} 1 +$$

$$+ \sum_{\substack{\delta \le \xi^2, \\ (\delta, d) = 1}} 3^{\omega(\delta)} \mid |\{n : n \le x, (n, P(z)) = 1, nd \equiv 1 \pmod{\delta}\}| - 1$$

(14)
$$-\frac{1}{\varphi(\delta)} |\{n : n \le x, (n, P(z)) = 1\}| ,$$

where $\xi^2 = \sqrt[3]{x}$. Now,

$$\sum_{\delta < \varepsilon^2} \frac{3^{\omega(\delta)}}{\varphi(\delta)} \left| \left| \left\{ n : n \le x, (n, P(z)) = 1 \right\} \right| - \left| \left\{ n : n \le x, (n, P(z)\delta) = 1 \right\} \right| \right| \ll 1$$

$$\ll x \sum_{p>z} \frac{1}{p^2} \sum_{\delta < \varepsilon^2} \frac{3^{\omega(\delta)}}{\varphi(\delta)} \ll \frac{x(\log x)^3}{z}.$$

Hence, using Cauchy's inequality and Lemma 5, we obtain that the second sum on the right-hand side of (14)

$$\ll \left(x \sum_{\delta \le \xi^2} \frac{9^{\omega(\delta)}}{\varphi(\delta)} \right)^{\frac{1}{2}} \times$$

$$\times \left(\sum_{\delta \le \xi^2} \max_{(a,d)=1} \left| \left| \left\{ n : n \le x, (n, P(z)) = 1, n \equiv a \pmod{\delta} \right\} \right| - \right. \right.$$

$$-\frac{1}{\varphi(d)} \left| \{ n : n \le x, (n, \delta P(z)) = 1 \} \right| \right|^{\frac{1}{2}} + \frac{x(\log x)^3}{z} \ll \frac{x}{\log^A x} + \frac{x(\log x)^3}{z},$$

where A is an arbitrary positive constant. Now, again by Selberg's sieve,

$$|\{n: n \le x, (n, P(z)) = 1\}| \ll \frac{x}{\log z}.$$

Substituting these results into (14) yields Lemma 6.

3. Proof of Theorem. For $y \ge 1$ define the multiplicative function f_y by

$$f_y(p^r) = \begin{cases} f(p^r) & \text{if } p^r = y, \\ r+1 & \text{if } p^r > y. \end{cases}$$

Assume that $y = y(x) \to \infty$ and $\frac{\log y}{\log x} \to 0$ as $x \to \infty$. The function f_y satisfies hypothesis (1). Let f_1 and f_2 be multiplicative functions such that $f_1(p^r) = \sqrt{f(p^r)}$ and $f_2(p^r) = \sqrt{f_y(p^r)}$, r = 1, 2, ..., respectively, where $\sqrt{z} = \sqrt{|z|} \exp\left(\frac{1}{2}i \arg z\right)$. The functions f_1 and f_2 satisfy the hypothesis of Lemma 3. Applying Lemma 3 gives

$$\frac{1}{\pi(x)} \sum_{p \le x} |f_1(p+1) - f_2(p+1)|^2 \ll \frac{1}{\log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + \frac{1}{\log x} \sum_{p \le x} \frac{|f_1(p) - f_2(p)|^2}{p} \log p \max_{t \le x} \frac{1}{\log 2t} \sum_{n \le x} \frac{|f(n)|}{\varphi(n)} + \frac{1}{(\log x)^{\delta}} + \frac{1}{(\log x)^{1+\delta}} \sum_{n \le x} \frac{|f(n)| + |f_y(n)|}{\varphi(n)}.$$

From (2) we conclude that there is a function ε such that $\varepsilon(x) \downarrow 0$ but $\varepsilon(x)\sqrt{\log x}$ tends to infinity as $x \to \infty$ and

(15)
$$\sum_{p \le x} \frac{|2 - f(p)|}{p} \log p \le \varepsilon(x) \log x.$$

Let $\log y \ge \sqrt{\varepsilon(x)} \log x$. Then

(16)
$$\sum_{y$$

and therefore $\prod(|f)|, x) \simeq \prod(|f_y|, x)$. Note that $|\sqrt{f(p)} + \sqrt{2}| \geq \sqrt{2}$. Then, by (1) and (2) we obtain

$$\sum_{p \le x} \frac{|f_1(p) - f_2(p)|^2}{p} \log p \le \frac{1}{2} \sum_{p \le x} \frac{|f(p) - 2|^2}{p} \log p \le \frac{c_1 + 2}{2} \varepsilon(x) \log x +$$

$$+ \sum_{|f(p)| \ge c_1} \frac{|f(p)|^2}{p} \log p \ll \varepsilon(x) \log x.$$

Applying Lemma 4 shows that

(17)
$$\frac{1}{\pi(x)} \sum_{p \le x} |f_1(p+1) - f_2(p+1)|^2 \ll$$

$$\ll \frac{1}{\log x} \sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} + o\left(\frac{1}{\log x} \prod (|f|, x)\right).$$

Next we prove

(18)
$$\sum_{n \le x} \frac{|f_1(n) - f_2(n)|^2}{\varphi(n)} = o\left(\prod(|f|, x)\right).$$

For this we divide the sum on the left into two parts \sum_{1}' and \sum_{2}' , where \sum_{1}' denotes the sum over $n \leq x$ such that $p^{r}|n, r \geq 2, p^{r} \geq y$ or p||n, p > y, $|f(p)| \geq c_1$ and \sum_{2} contains the remaining summands, respectively. By (1) we have

$$\sum\nolimits_1' \ll \left(\sum_{pr \geq y, \atop r \geq 2} \frac{|f(p^r)| + (r+1)}{p^r} + \sum_{pr \geq y, \atop |f(p) \geq c_1} \frac{|f(p)|}{p} \right) \prod (|f|, x) = o\left(\prod (|f|, x)\right).$$

Now write each number n occurring in $\sum_{i=1}^{n} f_i$ in the form $n = n_1 p_1 \dots p_t$, where n_1 has only prime divisors $\leq y$ and $p_i > y$ with $|f(p_i)| \leq c_1$. Then

$$|f_1(n) - f_2(n)| = |f_1(n_1)| \left| f_1(p_1) \dots f_1(p_t) - \left(\sqrt{2}\right)^t \right| \le$$

$$\le |f_1(n_1)| c_1^{t-1} \left(|f_1(p_1) - \sqrt{2}| + \dots + |f_1(p_t) - \sqrt{2}| \right).$$

This gives

$$|f_1(n) - f_2(n)|^2 \le |f(n_1)|c_1^{2t}t(|f(p_1) - 2| + \ldots + |f(p_t) - 2|),$$

and therefore

$$\sum_{2}' \ll c_1^{2\frac{\log x}{\log y}} \frac{\log x}{\log y} \sum_{y$$

Choosing
$$y \ge x^{\sqrt{\varepsilon(x)}}$$
, $\frac{\log x}{\log y} \le \frac{1}{4 \log c_1} \log \frac{1}{\varepsilon(x)}$, we obtain by (15)

$$\sum\nolimits_2' \ll c_1^{2\frac{\log x}{\log y}} \left(\frac{\log x}{\log y}\right)^3 \varepsilon(x) \prod (|f|, x) \ll \sqrt{[3]} \varepsilon(x) \prod (|f|, x).$$

Thus, (18) holds. Using (17) and Lemmas 3 and 4 we see

$$\frac{1}{\pi(x)} \sum_{p \le x} |f_1^2(p+1) - f_2^2(p+1)| \le \left(\frac{1}{\pi(x)} \sum_{p \le x} |f_1(p+1) - f_2(p+1)|^2\right)^{\frac{1}{2}} \times \left(\frac{1}{\pi(x)} \sum_{p \le x} |f_1(p+1) + f_2(p+1)|^2\right)^{\frac{1}{2}} = o\left(\frac{1}{\log x} \prod(|f|, x)\right).$$

Therefore

(19)
$$\frac{1}{\pi(x)} \sum_{p \le x} f(p+1) = \frac{1}{\pi(x)} \sum_{p \le x} f_y(p+1) + o\left(\frac{1}{\log x} \prod (|f|, x)\right),$$

where $y(x) \to \infty$ and $\frac{\log y(x)}{\log x} \to 0$ as $x \to \infty$. The last sum in (19) can be written in the form

$$(20) \sum_{p \le x} f_y(p+1) = \sum_{\substack{p+1 = n_1 n_2 \le x, \\ n_1 \le y_1}} f(n_1)\tau(n_2) + O\left(\sum_{\substack{p+1 = n_1 n_2 \le x, \\ n_1 > y_1}} |f(n_1)|\tau(n_2)\right),$$

where $(n_2, P(y)) = 1$ and where n_1 denotes an even number whose prime divisors are not larger than y. Let us apply Lemma 3 for f_1 and f_2 where $f_1^2(n) = f(n)$ and $f_2^2(n) = 0$ if n > 1. Then

$$\frac{1}{\pi(x)} \sum_{p+1=n_1 \le x} |f(n_1)| \ll \frac{1}{\log x} \sum_{n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)} + \frac{1}{\log x} \sum_{p \le y} \frac{|f(p)|}{p} \log p \frac{1}{\log x} \prod (|f|, x) + \frac{1}{(\log x)^{1+\delta}} \prod (|f|, x).$$

Choose $\log y \ge \sqrt{\varepsilon(x)} \log x$. Using Lemma 4 together with (1) and (16) we see that

$$\sum_{n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)} \ll \left(\frac{\log y}{\log x}\right)^2 \prod (|f|, x).$$

Hence

(21)
$$\frac{1}{\pi(x)} \sum_{p+1=n_1 \le x} |f(n_1)| \ll \frac{\log y}{\log x} \cdot \frac{1}{\log x} \prod (|f|, x) = o\left(\frac{1}{\log x} \prod (|f|, x)\right)$$

and

$$\frac{1}{\pi(x)} \sum_{\substack{p+1=n_1 n_2 \leq x, \\ n_1 > y_1, n_2 > y}} |f(n_1)| \tau(n_2) \leq \frac{2}{\pi(x)} \sum_{y_1 < n_1 \leq x/y} |f(n_1)| \times \\
\times \sum_{n_2 \leq \sqrt{\frac{x}{n_1}}} \left(\left| \left\{ n : n \leq \frac{x}{n_2 n_1}, (n_2 n(n_1 n_2 n - 1), P(\sqrt[8]{y})) = 1 \right\} \right| + \sqrt[8]{y} \right).$$

Applying Selberg's sieve (see [6], Theorem 6.2) gives

$$\left| \left\{ n : n \le \frac{x}{n_2 n_1}, (n_2 n(n_1 n_2 n - 1), P(\sqrt[8]{y})) = 1 \right\} \right| \ll \frac{x}{\varphi(n_2) \varphi(n_1) \log^2 y}.$$

Therefore

$$(22) \quad \frac{1}{\pi(x)} \sum_{\substack{p+1=n_1 n_2 \le x, \\ n_1 \ge n}} |f(n_1)| \tau(n_2) \ll \frac{\log x}{\log^2 y} \sum_{y_1 < n_1 \le x/y} \frac{|f(n_1)|}{\varphi(n_1)} \sum_{n_2 \le x} \frac{1}{\varphi(n_2)}.$$

By Cauchy's inequality and the hypothesis (1) we get

$$\sum_{y_1 < n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)} \le \frac{1}{\log y_1} \sum_{y_1 < n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)} \log n_1 \le$$

$$\le \frac{1}{\log y_1} \sum_{p^r \le 2y} \frac{|f(p^r)|}{\varphi(p^r)} \log p^r \sum_{\frac{y_1}{2y} < n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)} +$$

$$+ \frac{1}{\log y_1} \left(\sum_{r \ge 2, p} \frac{|f(p^r)|^2}{\varphi(p^r)} \right)^{\frac{1}{2}} \left(\sum_{p^r \ge y, \atop r \ge 2} \frac{(\log p^r)^2}{p^r} \right)^{\frac{1}{2}} \sum_{n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)}.$$

Now, let $\frac{\log y_1}{\log y} \to \infty$ and $\frac{\log y_1}{\log x} \to 0$ as $x \to \infty$. Then

$$\sum_{y_1 < n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)} \ll \frac{\log y}{\log y_1} \frac{1}{\log y_1} \sum_{n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)} \log n_1 + \frac{1}{\sqrt[8]{y} \log y_1} \sum_{n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)} \ll \left(\frac{\log y}{\log y_1}\right)^2 \sum_{n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)}$$

if
$$\sqrt[8]{y} \ge \frac{\log y_1}{(\log y)^2}$$
. Thus, by (22),

$$\frac{1}{\pi(x)} \sum_{\substack{p+1=n_1 n_2 \le x, \\ n_1 > y_1, n_2 > y}} |f(n_1)| \tau(n_2) \ll \frac{\log x}{(\log y_1)^2} \sum_{n_1 \le x} \frac{|f(n_1)|}{\varphi(n_1)} \sum_{n_2 \le x} \frac{1}{\varphi(n_2)} \ll$$

$$\ll \left(\frac{\log x}{\log y_1}\right)^2 \frac{\log y}{\log x} \frac{1}{\log x} \prod (|f|, x) = o\left(\frac{1}{\log x} \prod (|f|, x)\right)$$

if $\frac{\log x}{\log y_1} \le \sqrt[4]{\frac{\log y}{\log x}}$. Substituting this result and (21) into (20) shows

$$\frac{1}{\pi(x)} \sum_{p \le x} f_y(p+1) =$$

$$= \frac{1}{\pi(x)} \sum_{n_1 \le y_1} f(n_1) \sum_{n_2 \le \sqrt{\frac{x}{n_1}}} \left(2I(x, n_1 n_2, y) - I(n_2 n_1 \sqrt{\frac{x}{n_1}}, n_1 n_2, y) \right) +$$

$$+ o\left(\frac{1}{\log x} \prod (|f|, x) \right) ,$$

where

$$I(x, n_1 n_2, y) = \left| \left\{ p \le x, p + 1 \equiv 0 \pmod{n_1 n_2}, \left(\frac{p+1}{n_1 n_2}, P(y) \right) = 1 \right\} \right|.$$

Now, let Q = Q(x) such that $\frac{\log Q}{\log x} \to 0$ as $x \to \infty$. By Lemma 6 we have

$$\frac{1}{\pi(x)} \sum_{n_1 \le y_1} |f(n_1)| \sum_{n_2 \le \sqrt{\frac{x}{n_1}}} I\left(n_2 n_1 \sqrt{\frac{x}{n_1}}, n_1 n_2, y\right) \le
\le \frac{1}{\pi(x)} \sum_{n_1 \le y_1} |f(n_1)| \sum_{n_2 \le \sqrt{\frac{x}{n_1}}} \left(\left| \left\{ n : n \le \sqrt{\frac{x}{n_1}}, (n, P(y)) = 1, \right. \right. \right.
\left. \left(n n_1 n_2 - 1, P\left(\sqrt[8]{x}\right) \right) = 1 \right\} \right| + \sqrt[8]{x} \right) \le
\le \frac{1}{\sqrt{x} \log y} \sum_{n_1 \le y_1} \frac{|f(n_1)\sqrt{n_1}}{\varphi(n_1)} \sum_{n_2 \le \sqrt{\frac{x}{n_1}}} \frac{n_2}{\varphi(n_2)} \le$$

$$\ll \frac{\log y}{\log x} \frac{1}{\log x} \prod (|f|, x).$$

Therefore

$$\frac{1}{\pi(x)} \sum_{p \le x} f_y(p+1) = \frac{2}{\pi(x)} \sum_{n_1 \le y_1} f(n_1) \sum_{n_2 \le Q^{-1} \sqrt{\frac{x}{n_1}}} I(x, n_1 n_2, y) +$$

(23)
$$+O\left(\frac{1}{\pi(x)} \sum_{n_1 \leq y_1} |f(n_1)| \sum_{\sqrt{\frac{x}{n_1}} Q^{-1} \leq n_2 \leq \sqrt{\frac{x}{n_1}}} I(x, n_1 n_2, y)\right) + o\left(\frac{1}{\log x} \prod (|f|, x)\right).$$

Using Lemma 6 shows that the second term may be estimated by

$$\leq \frac{1}{\pi(x)} \sum_{n_1 \leq y_1} |f(n_1)| \left(\sum_{\sqrt{\frac{x}{n_1}} Q^{-1} \leq n_2 \leq \sqrt{\frac{x}{n_1}}} \left| \left\{ n : n \leq \frac{x}{n_1 n_2}, (n, P(y)) = 1, \right. \right. \right. \\ \left. \left(n n_1 n_2 - 1, P\left(\sqrt[8]{x}\right) \right) = 1 \right\} \left| + \sqrt[8]{x} \right. \right) \ll \\ \ll \frac{1}{\log y} \sum_{n_1 \leq y_1} \frac{|f(n_1)|}{\varphi(n_1)} \sum_{\sqrt{\frac{x}{x}} Q^{-1} \leq n_2 \leq \sqrt{\frac{x}{x}}} \frac{1}{\varphi(n_2)}.$$

We have

$$\sum_{n_2 \le x} \frac{1}{\varphi(n_2)} = \sum_{d, (d, P(y)) = 1} \frac{\mu^2(d)}{d\varphi(d)} \sum_{n_2 \le x/d} \frac{1}{n_2} = \sum_{n_2 \le x} \frac{1}{n_2} + O\left(\frac{\log x}{y}\right).$$

Applying the Fundamental Lemma of sieve theory (see [6], Theorem 2.6) we conclude

$$\sum_{n_2 \le u} 1 = u \prod_{p \le y} \left(1 - \frac{1}{p} \right) \left(1 + O\left(\left(\frac{\log y}{\log u} \right)^2 \right) \right).$$

Then, by partial summation,

(24)
$$\sum_{n_2 \le x} \frac{1}{\varphi(n_2)} = \prod_{p \le y} \left(1 - \frac{1}{p} \right) \log x \left(1 + O\left(\left(\frac{\log y}{\log x} \right)^2 \right) \right).$$

This shows that the first remainder term on the right side in (23) can be estimated by

$$\ll \frac{1}{\log y} \sum_{n_1 \le y_1} \frac{|f(n_1)|}{\varphi(n_1)} \left(\frac{\log Q}{\log y} + \frac{\log y}{\log x} \right) \ll$$

$$\ll \frac{\log y}{\log x} \left(\frac{\log Q}{\log y} + \frac{\log y}{\log x} \right) \frac{1}{\log x} \prod (|f|, x) = o\left(\frac{1}{\log x} \prod (|f|, x) \right).$$

Hence

(25)
$$\frac{1}{\pi(x)} \sum_{p \le x} f_y(p+1) =$$

$$= \frac{2}{\pi(x)} \sum_{n_1 \le y_1} f(n_1) \sum_{n_2 < Q^{-1} \sqrt{\frac{x}{x}}} I(x, n_1 n_2, y) + o\left(\frac{1}{\log x} \prod (|f|, x)\right).$$

Now, Selberg' sieve (see [6], Theorem 7.1) gives

$$\begin{split} I(x,n_1n_2,y) &= \frac{\pi(x)}{\varphi(n_1n_2)} \prod_{p \leq y} \left(1 - \frac{\varphi(n_1n_2)}{\varphi(n_1n_2p)}\right) \left(1 + O\left(\exp\left(-\frac{\log \xi}{\log y}\right)\right)\right) + \\ &+ O\left(\sum_{d \leq \xi^2, \atop d \mid P(y)} 3^{\omega(d)} \left|\pi(x,-1,n_1n_2d) - \frac{\operatorname{Li}x}{\varphi(n_1n_2d)}\right|\right). \end{split}$$

Set $\xi^2 = \frac{Q\sqrt{n_1}}{\log^A x}$. Then $n_1 dn_2 \leq \frac{\sqrt{x}}{\log^A x}$. Applying Cauchy's inequality leads to

$$\sum_{n_1 \le y_1} |f(n_1)| \sum_{n_2 \le Q^{-1} \sqrt{\frac{x}{n_1}}} \sum_{\substack{d \le \xi^2, \\ d \mid P(y)}} 3^{\omega(d)} \left| \pi(x, -1, n_1 n_2 d) - \frac{\text{Li}x}{\varphi(n_1 n_2 d)} \right| \ll$$

$$\ll \left(\sum_{n \le x} \frac{x}{n} \left(\sum_{n_1 d n_2 = n} |f(n_1)| 3^{\omega(d)} \right)^2 \right)^{\frac{1}{2}} \left(\sum_{d \le \frac{\sqrt{x}}{\log^A x}} \left| \pi(x, -1, d) - \frac{\operatorname{Li} x}{\varphi(d)} \right| \right)^{\frac{1}{2}}.$$

The first sum is less than

$$\sum_{n \le x} \frac{\tau_3(n)}{n} \sum_{n \le x} \frac{1}{n} \sum_{n \le x} \frac{|f(n)|^2}{n} \sum_{n \le x} \frac{9^{\omega(n)}}{n} \ll (\log x)^{c_1^2 + 13}.$$

The second sum can be estimated by the Vinogradov-Bombieri theorem and is dominated by $O(x \log^{-(c_1^2+16)} x)$ if $A \ge A_0$. Recall that n_1 is an even number. Therefore

$$\prod_{p \le y} \left(1 - \frac{\varphi(n_1 n_2)}{\varphi(n_1 n_2 p)} \right) = \frac{1}{2} \prod_{2
$$= 2 \frac{\varphi(n_1)}{n_1} \prod_{p \le y} \left(1 - \frac{1}{p} \right) \prod_{2$$$$

Substituting these results into (25) we arrive at

$$\frac{1}{\pi(x)} \sum_{p \le x} f_y(p+1) = 4 \prod_{p \ne 2} \left(1 - \frac{1}{p-1} \right) \left(1 - \frac{1}{p} \right)^{-1} \prod_{p \le y} \left(1 - \frac{1}{p} \right) \sum_{n_1 \le y_1} \frac{f(n_1)}{n_1} \times \prod_{\substack{p \mid n_1, \\ p \ne 2}} \left(1 + \frac{1}{p-2} \right) \sum_{n_2 \le \sqrt{\frac{x}{n_1}}Q^{-1}} \frac{1}{\varphi(n_2)} \times \left(1 + O\left(\exp\left(-\frac{\log \xi}{\log y}\right)\right) \right) \left(1 + O\left(\frac{1}{y}\right) \right) + O\left(\frac{1}{\log x} \prod(|f|, x)\right).$$

Recall that $\frac{\log y_1}{\log x} \to 0$ and $\frac{\log Q}{\log x} \to 0$ as $x \to \infty$ and

$$\frac{\log \xi}{\log y} \geq \frac{\log Q}{\log y} - \frac{A \log \log x}{\log y}.$$

Let $y \ge \exp\left(\sqrt{\log x}\right)$ and $\frac{\log Q}{\log y} \to \infty$ as $x \to \infty$. By (24) we see that

$$\frac{1}{\pi(x)} \sum_{p \le x} f_y(p+1) = \prod_{p \le y} \left(1 - \frac{2}{p} + (1 - \frac{1}{p}) \sum_{r=1}^{\infty} \frac{f(p^r)}{p^r} \right) \log x + o\left(\frac{1}{\log x} \prod_{p \le y} (|f|, x)\right).$$

Choosing $y \ge x^{\sqrt{\varepsilon(x)}}$ gives

$$\sum_{y$$

as $x \to \infty$, which, together with (19), proves the assertion of the Theorem.

References

- [1] **Kátai I.**, On distribution of arithmetical function on the set of prime plus one, *Compositio Math.*, **19** (1968), 278-289.
- [2] Indlekofer K.-H. and Timofeev N.M., A mean-value theorem for multiplicative functions on the set of shifted primes, *The Ramanujan Journal*, **2** (1998), 153-165.
- [3] Indlekofer K.-H. and Timofeev N.M., Estimates for multiplicative functions on the set of shifted primes, *Acta Math. Hungar.*, **81** (3) (1998), 195-221.
- [4] Indlekofer K.-H. and Timofeev N.M., Multiplicative functions with bounded seminorm on the set of shifted primes, *Analysis*, **21** (2001), 205-217.
- [5] Hildebrand A., Additive and multiplicative functions on shifted primes, Proc. London Math. Soc., 59 (3) (1989), 209-232.
- [6] Halberstam H. and Richert H.-E., Sieve methods, Academic Press, London-New York, 1974.
- [7] Levin B.V. and Timofeev N.M., Mean distribution of arithmetic functions over progressions (Theorems of Vinogradov-Bombieri type), *Math. USSR Sbornik*, **53** (2) (1986), 563-580.

(Received September 23, 2002)

K.-H. Indlekofer

Faculty of Computer Science, Electrical Engineering and Mathematics University of Paderborn Warburger Straße 100 D-33098 Paderborn, Germany