CHARACTERIZATION OF ALMOST–PERIODIC q–MULTIPLICATIVE FUNCTIONS

Yi-Wei Lee (Paderborn, Germany)

Dedicated to Prof.Dr. Dr.h.c.mult. K.-H. Indlekofer on his 60th birthday

Abstract. We give a complete characterization of *q*-multiplicative functions that are almost-periodic.

1. Introduction and results

The starting point of the definition of (classical) multiplicative functions is the unique representation of the natural numbers

$$n = \prod_{p \in \mathbb{P}} p^{\alpha_p(n)}, \quad \alpha_p(n) = \max\{\alpha : p^{\alpha} | n\}$$

as a product of prime numbers. Then $f: \mathbb{N} \to \mathbb{C}$ is called *multiplicative* in case

$$f(n) = \prod_{p \in \mathbb{P}} f(p^{\alpha_p(n)}).$$

Now, let $q \ge 2$ be an integer and $\mathbb{A} = \{0, 1, \dots, q-1\}$. The *q*-ary expansion of some $n \in \mathbb{N}_0$ is defined as the unique sequence $\varepsilon_0(n), \varepsilon_1(n), \dots$ for which

(1)
$$n = \sum_{j=0}^{\infty} \varepsilon_j(n) q^j, \quad \varepsilon_j(n) \in \mathbb{A}$$

holds. $\varepsilon_0(n), \varepsilon_1(n), \ldots$ are called the *digits* in the *q*-ary expansion of *n*. A function $f : \mathbb{N}_0 \to \mathbb{C}$ is called *q*-multiplicative if f(0) = 1, and for every $n \in \mathbb{N}_0$,

(2)
$$f(n) = \prod_{j=0}^{\infty} f(\varepsilon_j(n)q^j).$$

For $f : \mathbb{N}_0 \to \mathbb{C}$ define, for any real number $\alpha \geq 1$,

(3)
$$||f||_{\alpha} := \left(\limsup_{N \to \infty} \frac{1}{N} \sum_{0 \le n < N} |f(n)|^{\alpha}\right)^{\frac{1}{\alpha}},$$

and let

$$\mathcal{L}^{\alpha} := \{ f : \mathbb{N}_0 \to \mathbb{C}, \quad \|f\|_{\alpha} < \infty \}.$$

An arithmetical function¹ $f : \mathbb{N}_0 \to \mathbb{C}$ is called *uniformly summable* in case

$$\lim_{K \to \infty} \sup_{N \ge 1} \frac{1}{N} \sum_{\substack{n \le N \\ |f(n)| \ge K}} |f(n)| = 0.$$

The set of all uniformly summable functions, denoted \mathcal{L}^* , is a proper subset of \mathcal{L}^1 . Obviously $(\alpha > 1)$

$$\mathcal{L}^{lpha} \underset{
eq}{\subset} \mathcal{L}^{*} \underset{
eq}{\subset} \mathcal{L}^{1}.$$

Let $e(\beta) := \exp(2\pi i\beta)$. f is called α -almost-periodic, if for every $\varepsilon > 0$ there is a linear combination h of exponential functions² $e_{\beta}, \beta \in \mathbb{R}$, such that $||f - h||_{\alpha} \le \varepsilon$. The linear space of α -almost-periodic functions is denoted by \mathcal{A}^{α} . If h can always be chosen to be periodic then f is called α -limit-periodic. The linear space of α -limit-periodic functions is denoted by \mathcal{D}^{α} . We have the inclusions

$$\mathcal{D}^1 \underset{\neq}{\subset} \mathcal{A}^1 \underset{\neq}{\subset} \mathcal{L}^*.$$

For every function $f \in \mathcal{A}^1$, the mean value

$$M(f) := \lim_{N \to \infty} \frac{1}{N} \sum_{0 \le n < N} f(n)$$

¹ If f is defined on \mathbb{N} we may extend f to \mathbb{N}_0 by putting f(0) = 0.

² $e_{\beta} : \mathbb{N} \to \mathbb{C}$ with $e_{\beta}(n) = e(\beta n)$ is a *q*-multiplicative function.

and, for every $\beta \in \mathbb{R}$, the Fourier coefficient

$$\hat{f}(\beta) := \lim_{N \to \infty} \frac{1}{N} \sum_{0 \le n < N} f(n) e_{-\beta}(n)$$

exist (see, for example, W. Schwarz and J. Spilker [7] Chap. IV and VI).

For $f \in \mathcal{L}^1$ the Fourier-Bohr spectrum $\sigma(f)$ is defined as

$$\sigma(f) = \left\{ \beta \in \mathbb{R}/\mathbb{Z} : \limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n \le N} f(n) e_{-\beta}(n) \right| > 0 \right\}.$$

If $f \in \mathcal{A}^1$ then $\beta \in \sigma(f)$ if and only if $\hat{f}(\beta) \neq 0$.

In his paper [4] K.-H. Indlekofer gives s complete characterization of α -almost-periodic multiplicative functions. He proved the following results.

Proposition 1. ([4], Theorem 1) Let $f \in \mathcal{A}^1$ be multiplicative. Then M(|f|) = 0 if and only if $\sigma(f) = \emptyset$.

Proposition 2. ([4], Theorem 2) Let $f \in \mathcal{A}^{\alpha}$ be multiplicative. Then f is α -limit-periodic.

Proposition 3. ([4], Corollary 1) Let $f : \mathbb{N} \to \mathbb{C}$ be multiplicative. Then the following assertions are equivalent.

- (*i*) $f \in \mathcal{A}^{\alpha}$ and $||f||_1 > 0$.
- (ii) $f \in \mathcal{A}^{\alpha}$ and the spectrum $\sigma(f)$ of f is non-empty.
- (iii) $f \in \mathcal{L}^{\alpha} \cap \mathcal{L}^*$ and there exists a Dirichlet-character χ such that the meanvalue $M(f\chi)$ of $f\chi$ exists and is different from zero.
- (iv) There exists a Dirichlet-character χ such that the series

(4)
$$\sum_{p} \frac{f(p)\chi(p) - 1}{p}, \quad \sum_{|f(p)| \le 3/2} \frac{|f(p)\chi(p) - 1|^2}{p}$$

and

(5)
$$\sum_{\substack{p \\ ||f(p)|-1| > 1/2}} \frac{|f(p)|^{\lambda}}{p}, \quad \sum_{p} \sum_{k \ge 2} \frac{|f(p^k)|^{\lambda}}{p^k}$$

converge for all λ with $1 \leq \lambda \leq \alpha$.

Remark 1. The equivalence of (ii) and (iv) was proved by H. Daboussi [1]. The equivalence of (ii), (iii) and (iv) was shown by K.-H. Indlekofer in [5], Corollary 7.

The aim of this paper is to find corresponding characterizations for qmultiplicative functions belonging to \mathcal{D}^1 and \mathcal{A}^1 , respectively. A first step in this direction was done recently by J. Spilker [8] who proved the following

Proposition 4. ([8], Theorem 4) Let f be q-multiplicative and the following two series

(6)
$$\sum_{r=0}^{\infty} \sum_{a=0}^{q-1} (f(aq^r) - 1)$$

and

(7)
$$\sum_{r=0}^{\infty} \sum_{a=0}^{q-1} |f(aq^r) - 1|^2$$

converge. Then

(i) $f \in \mathcal{D}^{\alpha}, \ \alpha \ge 1.$

(*ii*)
$$M(f) = \prod_{r=0}^{\infty} \left(\frac{1}{q} \sum_{a=0}^{q-1} f(aq^r) \right).$$

$$(iii) \qquad \hat{f}(\beta) = \begin{cases} \prod_{r=0}^{\infty} \left(\frac{1}{q} \sum_{a=0}^{q-1} f(aq^r) e_{-\frac{c}{b}}(aq^r) \right) & \text{if } \beta = \frac{c}{b}, \\ 0 & \text{if } \beta \text{ irrational.} \end{cases}$$

Remark 2. Assertion (iii) of Proposition 4 is not correct as it stands. Choose, for example, f = 1 and $\beta = \frac{1}{p}$, where p is a prime which does not divide q. Then $\hat{f}(\beta) = 0$ and for all $r \in \mathbb{N}_0$, $\sum_{a=0}^{q-1} f(aq^r)e_{-\frac{1}{p}}(aq^r) = \frac{1 - e(q^{r+1}/p)}{1 - e(q^r/p)} \neq 0$, i.e. the infinite product $\prod_{r=0}^{\infty} \left(\frac{1}{q}\sum_{a=0}^{q-1} f(aq^r)e_{-\frac{1}{p}}(aq^r)\right)$ does not converge in this case.

We shall characterize the q-multiplicative functions $f \in \mathcal{D}^1$ and $f \in \mathcal{A}^1 \setminus \mathcal{D}^1$ by their respective spectrum $\sigma(f)$. First we show that the spectrum is empty only in the trivial case. We prove **Theorem 1.** Let $f \in \mathcal{A}^1$ be q-multiplicative. Then M(|f|) = 0 if and only if $\sigma(f) = \emptyset$.

Recently K.-H. Indlekofer, Y.-W. Lee and R. Wagner [6] could describe the mean behaviour of uniformly summable q-multiplicative functions. In the special case that the mean value exists and is different from zero their results can be summarized in the following

Proposition 5. (see [6], Corollary 1) Let f be q-multiplicative. Then the following assertions hold.

(i) Let $f \in \mathcal{L}^*$. If the mean value M(f) exists and is different from zero then the series (6) and (7) converge and

$$\sum_{a=1}^{q-1} f(aq^r) \neq 0 \quad for \; each \; r \in \mathbb{N}_0$$

(ii) If the series (6) and (7) converge then $f \in \mathcal{L}^*$, the mean value M(f) exists,

$$M(f) = \prod_{r=0}^{\infty} \left(\frac{1}{q} \sum_{a=0}^{q-1} f(aq^r) \right)$$

and $||f - f_R||_1 \to 0$ as $R \to \infty$, where

$$f_R(n) = \prod_{r \le R} f(\varepsilon_r(n)q^r).$$

(iii) Let $f \in \mathcal{L}^*$. If the mean value M(f) exists and is different from zero then the mean value $M(|f|^{\alpha})$ of $|f|^{\alpha}$ exists for each $\alpha \geq 1$ (and is different from zero).

Using Proposition 5 we shall obtain

Theorem 2. For every q-mutiplicative function f, the following assertions are equivalent:

- (a) $f \in \mathcal{D}^1$ and the mean value M(f) is nonzero.
- (b) The series (6) and (7) are both convergent and $\sum_{a=1}^{q-1} f(aq^r) \neq 0$ for each

 $r \in \mathbb{N}_0.$

(c) $f \in \mathcal{L}^*$ and the mean value M(f) exists and is nonzero.

- (d) $f \in \mathcal{D}^{\alpha}$ for all $\alpha \geq 1$ and the mean value M(f) is nonzero.
- (e) $f \in \mathcal{A}^1$ and the mean-value M(f) is nonzero.
- (f) $f \in \mathcal{A}^{\alpha}$ for all $\alpha \geq 1$ and the mean value M(f) is nonzero.

(g) $f \in \mathcal{L}^{\alpha}$ for all $\alpha \geq 1$ and the mean value M(f) exists and is nonzero.

Concerning the description of the spectrum $\sigma(f)$ for q-multiplicative functions $f \in \mathcal{D}^1$ or $f \in \mathcal{A}^1 \setminus \mathcal{D}^1$ we establish

Theorem 3. Let $f \in \mathcal{D}^1$ be q-multiplicative with non-empty spectrum $\sigma(f)$.

(a) If $M(f) \neq 0$ then

$$\sigma(f) = \left\{ \begin{array}{l} \beta \mid \beta = \frac{c}{b} \mod 1, \quad \frac{c}{b} \in \mathbb{Q}; \ p \ prime, \ p|b \Rightarrow p|q; \\ \\ \sum_{a=0}^{q-1} f(aq^r)e_{-\beta}(aq^r) \neq 0 \quad for \ all \quad r \in \mathbb{N}_0 \end{array} \right\}.$$

(b) If M(f) = 0 then there exists some $\beta_0 \in \mathbb{Q}/\mathbb{Z}$ such that

$$\sigma(f) = \left\{ \begin{array}{ll} \beta \mid \beta = \beta_0 + \frac{c}{b} \mod 1, & \frac{c}{b} \in \mathbb{Q}; \quad p \text{ prime}, \quad p|b \Rightarrow p|q; \\ \\ \sum_{a=0}^{q-1} f(aq^r) e_{-\beta}(aq^r) \neq 0 \quad for \ all \quad r \in \mathbb{N}_0 \end{array} \right\}.$$

Corollary 1. Let $f \in \mathcal{A}^1 \setminus \mathcal{D}^1$ be q-multiplicative with non-empty spectrum $\sigma(f)$. Then there exists some $\beta_0 \in (R \setminus \mathbb{Q})/\mathbb{Z}$ such that

$$\sigma(f) = \left\{ \begin{array}{l} \beta \mid \beta = \beta_0 + \frac{c}{b} \mod 1, \quad \frac{c}{b} \in \mathbb{Q}; \quad p \text{ prime}, \quad p|b \Rightarrow p|q; \\ \sum_{a=0}^{q-1} f(aq^r)e_{-\beta}(aq^r) \neq 0 \quad for \ all \quad r \in \mathbb{N}_0 \end{array} \right\}.$$

Example. Let $f = e_{\beta}$ where $\beta \in (R \setminus \mathbb{Q})/\mathbb{Z}$. Then, obviously, the mean value M(f) equals zero and $\sigma(f) = \{\beta\}$.

2. Proof of Theorem 1 and Theorem 2

We use the following well-known result.

Lemma 1. (see [7] Chap. VI.8. Proposition 8.2) For $\alpha \geq 1$ and every arithmetical function $f, f \in \mathcal{A}^{\alpha}$ if and only if $f \in \mathcal{A}^1$ and $|f| \in \mathcal{A}^{\alpha}$.

Proof of Theorem 2. The implications "(a) \Rightarrow (e) \Rightarrow (c)" are obvious and "(c) \Rightarrow (b) \Rightarrow (a)" hold by Proposition 5, (i) and (ii). Using Lemma 1 together with Proposition 5 for $|f|^{\alpha}$, $\alpha \geq 1$, gives "(c) \Rightarrow (d)", whereas the implications "(d) \Rightarrow (f) \Rightarrow (g) \Rightarrow (c)" are again obvious. This proves Theorem 2.

Proof of Theorem 1. If M(|f|) = 0 then obviously $\sigma(f) = \emptyset$. Assume that $M(|f|) \neq 0$. Then, by Theorem 2, $|f| \in \mathcal{A}^2$ and $M(|f|^2) \neq 0$, and Lemma 1 implies $f \in \mathcal{A}^2$. By Parseval's equation $M(|f|^2) = \sum_{\beta \in \sigma(f)} |M(f \cdot e_{-\beta})|^2$, and

 $\sigma(f)=\emptyset$ implies $M(|f|)=M(|f|^2)=0.$ This contradiction proves Theorem 1.

3. Proof of Theorem 3 and Corollary 1

Let $f \in \mathcal{D}^1$ be q-multiplicative and let the mean value M(f) be nonzero. Then the series (6) and (7) both converge for f. Let $\beta \in \sigma(f)$. Then $\beta \in \mathbb{R}/\mathbb{Z}$ and the mean value $M(f \cdot e_{-\beta})$ is nonzero. Putting $g = f \cdot e_{-\beta}$ implies that

(8)
$$\sum_{r=0}^{\infty} \sum_{a=0}^{q-1} |g(aq^r) - 1|^2$$

is convergent. We show that this happens if and only if $\beta = c/b$ is a rational number and each prime divisor of b divides q. We consider three cases.

• Case 1: Let β be irrational. The function $e_{-\beta}$ is q-multiplicative and its absolute value is equal to 1. By Delange's result [2] for q-multiplicative functions f of absolute value less or equal to 1, whose mean value M(f) exists, the series

(9)
$$\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=1}^{q-1} |e_{-\beta}(aq^r) - 1|^2$$

converges if and only if the representation

$$M(e_{-\beta}) = \prod_{r=0}^{\infty} \left(\frac{1}{q} \sum_{a=1}^{q-1} (e_{-\beta}(aq^r)) \right)$$

holds. Since $M(e_{\beta}) = 0$ and $\frac{1}{q} \sum_{a=1}^{q-1} (e_{-\beta}(aq^r)) \neq 0$ for all $r \in \mathbb{N}_0$ the series

(9) diverges.

• Case 2: Let $\beta = c/b$ be rational and assume there is a prime p which divides b, but does not divide q. Then for all r the numbers $\frac{c}{b}q^r$ are not integers. This implies

$$\left| e\left(-\frac{c}{b}q^{r}\right)-1 \right| \geq \left| 1-e\left(-\frac{1}{b}\right) \right|,$$

and the series

(10)
$$\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=1}^{q-1} |e_{-\frac{c}{b}}(aq^{r}) - 1|^{2}$$

diverges.

• Case 3: Let $\beta = \frac{c}{b}$ be rational, and assume that for each prime divisor of b divides q, too. Then for all $a = 1, 2, \dots, q-1$ and all $r \ge r_0$, we have $e_{-\beta}(aq^r) = 1$. Now

$$|1 - e_{-\beta}(aq^r)|^2 \ll |1 - g(aq^r)|^2 + |1 - f(aq^r)|^2.$$

Since the series (7) and (8) converge, cases 1 and 2 can not occur. Therefore, the mean value $M(f \cdot e_{-\beta})$ is zero for the cases 1 and 2. In case 3 the series

$$\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=0}^{q-1} (g(aq^r) - 1)^2$$

and

$$\sum_{r=0}^{\infty} \frac{1}{q} \sum_{a=0}^{q-1} (g(aq^r) - 1)$$

converge. Then

(11)
$$M(g) = \prod_{r=0}^{\infty} \frac{1}{q} \sum_{a=0}^{q-1} g(aq^r)$$

and the mean value M(g) is nonzero if and only if each factor of (11) is nonzero. This proves (a).

For the proof of (b) and Corollary 1 let the mean value of f be zero, and let $\beta_0 \in \mathbb{R}/\mathbb{Z}$ such that the mean value of $f \cdot e_{-\beta_0}$ is nonzero. Then $f \cdot e_{-\beta_0} \in \mathcal{D}^1$. Since $f \in \mathcal{A}^1 \setminus \mathcal{D}^1$ if and only if β_0 is irrational, (a) yields (b) and Corollary 1.

References

- [1] **Daboussi H.,** Charactérisation des fonctions multiplicatives presque périodiques \mathcal{B}^{λ} à spectre non vide, Ann. Inst. Fourier Grenoble, **30** (1980), 141-166.
- [2] Delange H., Sur les fonctions q-additives ou q-multiplicatives, Acta Arith., 21 (1972), 285-298.
- [3] Indlekofer K.-H., A mean-value theorem for multiplicative functions, Math. Z., 172 (1980), 255-271.
- [4] Indlekofer K.-H., Some remarks on almost-even and almost-periodic functions, Arch. Math., 37 (1981), 353-358.
- [5] Indlekofer K.-H., Properties of uniformly summable multiplicative functions, *Periodica Math. Hung.*, 17 (1986), 143-161.
- [6] Indlekofer K.-H., Lee Y.-W. and Wagner R., Mean behaviour of uniformly summable q-multiplicative functions, preprint, 2003.
- [7] Schwarz W. and Spilker J., Arithmetical functions, London Math. Soc. LNS 184, Cambridge Univ. Press, 1994.
- [8] Spilker J., Almost-periodicity of q-additive and q-multiplicative functions, Anal. Probab. Methods Number Theory, (2002), 256-264.

Yi-Wei Lee

Institut für Mathematik Fakultät für Elektrotechnik, Informatik und Mathematik Universität Paderborn Warburger Str. 100 D-33098 Paderborn, Germany