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1. Introduction

Mean-value theorems for multiplicative functions f on N via Halász’s
method are classical in probabilistic number theory [8, 7]. The method was
first presented in [8]. These theorems give information about mean-values

(1.1) mf := lim
x→∞

x−1
∑

n≤x

f(n)

of functions f of which the generating function

F̂ (s) :=
∞∑

n=1

f(n)n−s

satisfies

(1.2) F̂ (s) =
A

s− 1
+ o

( |s|
σ − 1

)
, s = σ + it

uniformly for σ > 1 and −∞ < t < ∞. A shortcoming of these theorems is
that they do not convey information about the ”higher order” mean-values of
functions of which

(1.3) F̂ (s) =
A

(s− 1)τ
+ o

( |s|
(σ − 1)τ

)
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with τ > 1. A variety of multiplicative functions f satisfy condition (1.3), but
not (1.2). A trivial example is the divisor function f(n) = d(n), which satisfies
the three conditions of Halász’s general mean-value theorem and (1.3) with
τ = 2. In particular, the functions ω(d) in the theory of sieves of dimension
κ > 1 are of this variety [9]. For these functions f , instead of the mean-value
mf defined by (1.1), one should consider the ”higher order” mean-values

(1.4) mf := lim
x→∞

1
x(log x)τ−1

∑

n≤x

f(n),

which we call, when it exists, an order τ mean-value of the function f . Notice
that, in classical theory, only order one (τ = 1) mean-value has been discussed.

2. A general mean-value theorem

This lacuna is removed principally in [12]. Actually, a general mean-value
theorem for multiplicative functions f defined on a set N of generalized integers
nj , associated with a set P of generalized primes pj (henceforth, g-integers, g-
primes, etc.) in Beurling’s sense [1, 2], is proved as follows.

Let f(nj) be a complex-valued function on N and

F (x) :=
∑

nj≤x

f(nj).

Also, let Λ(nj) be the analog of the classical von Mongoldt function and

ψ(x) :=
∑

nj≤x

Λ(nj)

be the Chebyshev function associated with P.

Theorem 1. (i) Suppose there exist a constant c, real constants α and
τ > 0, and a measurable slowly oscillating function L(u) with |L(u)| = 1 such
that

(2.1) F (x) =
cx1+iα(log x)τ−1

Γ(τ)(1 + iα)
L(log x) + o

(
x logτ−1 x

)
,
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where Γ(x) is Euler’s gamma function. Then the asymptotic formula

(2.2) F̂ (s) =
c

(s− 1− iα)τ
L

(
1

σ − 1

)
+ o

( |s|
(σ − 1)τ

)

holds as σ → 1+ uniformly for −∞ < t < ∞.

(ii) Conversely, suppose
(1) There exist positive constants δ and Kδ such that

lim sup
σ→1+

(σ − 1)
∑
pj

max
{
1, |f(pj)|1+δ

}
p−σ

j log pj = Kδ;

(2) ∑
pj

∑

k≥2

|f(pk
j )|p−k

j < ∞;

and
(3)

1 +
∞∑

k=1

f(pk
j )p−k(1+it)

j 6= 0

for every pj ∈ P and −∞ < t < ∞.
Furthermore, suppose that the counting function N(x) of g-integers satis-

fies

(2.3) N(x) = x

m∑
r=1

Ar(log x)ρr−1 + O
(
x(log x)−γ

)

with real constants ρ1 < ρ2 < . . . < ρm and A1, A2, . . . , Am such that ρm = ρ ≥
≥ 1, ρr 6= 0, Am = A > 0 and real constants γ > γ0. Also, suppose that

(2.4) ψ(x) =


ρ− 2

l∑

j=1

αj cos(tj log x)


 x + O

(
x(log x)−M

)

holds with positive integers αj, real constants tj , j = 1, . . . , l, and constants
M > M0. Here constants γ0 and M0 depend on ρ, δ,Kδ and τ only. Then (2.2)
with τ ≥ 1 entails (2.1).

This theorem has the following corollary, which is a direct extension of
Halász’s general mean-value theorem [8].
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Corollary 1. Suppose that

(2.5) N(x) = Ax + Ok

(
x(log x)−k

)

for every k ∈ N. If f satisfies conditions (1), (2) and (3) in Theorem 1 then
(2.2) with τ ≥ 1 entails (2.1).

3. High order mean-value theorems

On the basis of Theorem 1, one can characterize further the asymptotic
behavior of the order τ mean-values of multiplicative functions with τ ≥ 1
[13]. These theorems assume conditions less restrictive than those of their
counterparts in classical theory [10, 7] in some sense. In the following context,
conditions (1), (2) and (3) of Theorem 1 are quoted as conditions (1), (2) and
(3) without indicating Theorem 1 repeatedly. Also, p is used to denote the
general g-prime pj for convenience. This will not cause any confusion.

We first consider mean-value mf = 0. Let

log+ |x| := max{0, log |x|}.

Theorem 2. Suppose that (2.3) and (2.4) are satisfied and that f satisfies
conditions (1) and (2).

If

(3.1)
∑

p

p−1

(
τ

ρ
−< (

f(p)p−it
))

+ log+ |t|

diverges to +∞ uniformly for −∞ < t < ∞ then the order τ mean-value
mf = 0.

Conversely, suppose further that there exist a subset P0 of the set P of all
g-primes and a constant K > 0 such that

∑
p∈P0
p≤x

p−1

(
τ

ρ
−< (

f(p)p−it
)) ≥ −K

uniformly for 0 ≤ x < ∞ and −∞ < t < ∞ and such that
∑
p6∈P0
p≤x

|f(p)| ¿ x

log x
.
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If the order τ mean-value mf = 0 then either there exist a real number t0 and
a g-prime p0 such that

1 +
∞∑

k=1

f(pk
0)p−k(1+it0)

0 = 0

or (3.1) diverges to+∞ uniformly for −∞ < t < ∞.

Theorem 2 is a direct extension of the classical Halász-Wirsing theorem
[6, 11].

The theorems on nonzero mean-values are more complicated. For simplic-
ity, only the results under the condition (2.5) are presented here as follows.

Theorem 3. Suppose that (2.5) is satisfied. Let f be a multiplicative
function satisfying condition (2) and

(3.2) 1 +
∞∑

k=1

f(pk)p−k 6= 0

for all p ∈ P. Suppose further that there exist a positive constant η such that
both series

(3.3)
∑

|f(p)|≤ τ
ρ +η

p−1

∣∣∣∣f(p)− τ

ρ

∣∣∣∣
2

and series

(3.4)
∑

|f(p)|> τ
ρ +η

|f(p)|p−1

converge. Then the order τ mean-value mf exists for τ ≥ 1 and

(3.5) mf =
(A)τ

Γ(τ)

∏
p

(
1− p−1

)τ

(
1 +

∞∑

k=1

f(pk)p−k

)
6= 0

if and only if

(3.6)
∑

p

p−1

(
τ

ρ
− f(p)

)

converges.
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Theorem 3 is a direct extension of the classical Delange-Halász theorem
[4, 6, 8].

As an example, let f(n) = (d(n))2, where d(n) is the divisor function of
n ∈ N. The condition (2) and (3.2) are satisfied. Also, (3.6), (3.3) and (3.4)
are satisfied with ρ = 1, τ = 4 and η = 1 (the Riemann zeta function has order
ρ = 1 and A = 1). Therefore the order 4 mean-value

mf =
(Γ(1))2

Γ(4)

∏
p

(1− p−1)4
(

1 +
∞∑

k=1

(k + 1)2p−k

)
=

=
1
6

∏
p

(1− p−2) =
1
π2

,

i.e.
lim

x→∞
1

x(log x)3
∑

n≤x

(d(n))2 =
1
π2

.

This is well-known is elementary number theory.

4. A generalization of theorems of Elliott and Daboussi

The well-known theorems of Elliott [5] and Daboussi [3] can be extended
to functions having high order mean-values [14].

Theorem 4. Suppose that (2.5) is satisfied. Let f be a multiplicative
function. Then the order τ mean-value mf exists and is nonzero for τ ≥ 1 and
the limit

lim
x→∞

1
x(log x)τα−1

∑

nj≤x

|f(nj)|α

exists with some constant α > 1 if and only if the series

∑
p

p−1(τ − f(p)),
∑

|f(p)|≤τ+η

p−1|τ − f(p)|2,

∑

|f(p)|>τ+η

p−1|f(p)|α,
∑

p

∑

k≥2

p−k|f(pk)|α
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converge with some constant η > 0 and

∞∑

k=0

p−kf(pk) 6= 0

for all p ∈ P.

In case τ = 1, Theorem 4 is the well-known theorem of Elliott and
Daboussi.

The dual of the Turán-Kubilius inequality plays a key role in proofs of the
necessity part of the Elliott-Daboussi theorem [7]. However, in case of higher
order (τ > 1) mean-values, the dual inequality fails. This is shown by the trivial
example f(n) = d2(n). Hence the proof of the necessity part of Theorem 4 is
based on an intrinsic connection between the order τ mean-value mf and the
order τα − 1 mean-value of |f(nj)|α.
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