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PERMUTATIONS
AVOIDING CONSECUTIVE PATTERNS

R. Warlimont (Johannesburg, South Africa)

Karl-Heinz Indlekofer zum 60. Geburtstag

Abstract. Given some permutation σ ∈ Sm (m ≥ 3) denote by

B(n,m;σ) the set of all permutations π ∈ Sn with the property that

π(k + σ(1)) < . . . < π(k + σ(m)) is false for 0 ≤ k ≤ n−m.

We conjecture that to any σ ∈ Sm there are constants c(σ) > 0, ξ(σ) > 1
such that

|B(n,m;σ)|/n! ∼ c(σ)ξ(σ)−n as n →∞.

We prove this for m = 3 and for the particular σ ∈ Sm being the identity:

σ(j) = j (1 ≤ j ≤ m).

1. Introduction

Let Sn denote the set of all permutations π of 1, . . . , n. Let m ≥ 3 and
some permutation σ ∈ Sm be fixed, ε the identity (ε(j) = j for 1 ≤ j ≤ m).

1. Let A(n,m; σ) denote the set of all π ∈ Sn with the property that

π
(
jσ(1)

)
< . . . < π

(
jσ(m)

)
is false for all 1 ≤ j1 < . . . < jm ≤ n.

In particular A(n,m; ε) is the set of all those π ∈ Sn with the property
that

π(j1) < . . . < π(jm) is false for all 1 ≤ j1 < . . . < jm ≤ n.
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The Stanley-Wilf conjecture states that to any m ≥ 3 there is some constant
K(m) > 1 such that

|A(n,m; σ)| ≤ K(m)n for all σ ∈ Sm.

The following facts are known:

(∗)

|A(n, 3; σ)| = 1
n + 1

(
2n
n

)
for all σ ∈ S3,

|A(n,m; ε)| ≤ (m− 1)2n,

|A(n,m; ε)| ∼ c(m)
(m− 1)2n

nm(m−2)/2
as n →∞.

|A(n,m; σ)| varies considerably with σ already for m = 4.
References for this can be found in Richard Arratia’s paper ”On the

Stanley-Wilf conjecture for the number of permutations avoiding a given
pattern”, Electronic J. Combin. 6 (1999), #N1. The right guess for K(m)
should be (m− 1)2.

We mention that we could sharpen (∗):

|A(n,m; ε)| ≤ (m− 1)2n

m−2∏
k=1

(
1 + 1

k

)k
.

2. Let B(n,m;σ) denote the set of all π ∈ Sn with the property that

π(k + σ(1)) < . . . < π(k + σ(m)) is false for 0 ≤ k ≤ n−m.

In particular B(n,m; ε) is the set of all π ∈ Sn with the property that

π(k) < . . . < π(k + m− 1) is false for 1 ≤ k ≤ n−m + 1.

Since the conditions imposed on π there concern only m consecutive values
of the argument of π they are less restrictive than those met before; hence
A(n,m; σ) ⊂ B(n,m; σ). Our results for B are at this stage as incomplete as
those for A. Put

b(n,m;σ) :=
|B(n,m; σ)|

n!
, b(0, m;σ) := 1,

b(n,m) := b(n,m; ε), b(n) := b(n, 3),

b̃(n) := b(n, 3; σ1), where σ1 :=
(

1 2 3
2 1 3

)
.
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We obtained:

(1) b(n, m; σ) ≤
(

1− 1
m!

)[ n
m ]

for all σ ∈ Sm;

(2) lim
n→∞

b(n,m;σ)
1
n exists and is equal to inf

n
b(n, m; σ)

1
n for all σ ∈ Sm;

(3)
∞∑

n=0
b(n,m)zn = Pm(z)−1, where

Pm(z) :=
∞∑

k=0
k≡0(m)

zk

k!
−

∞∑
k=0

k≡1(m)

zk

k!
;

(4) b(n, m) ∼ c(m)ξ(m)−n as n →∞, where

c(m) > 0 and ξ(m) = 1 +
1
m!

(1 + o(1)) as m →∞;

in particular

(5) b(n) ∼ exp
(

π√
3

) (
3
√

3
2π

)n+1

as n →∞;

(6)
∞∑

n=0
b̃(n)zn = P̃ (z)−1, where

P̃ (z) := 1−
z∫

0

exp
(
−1

2
w2

)
dw;

(7) b̃(n) ∼ exp
(

1
2ξ2

)

ξn+1
as n →∞, where ξ is given by

ξ∫

0

exp
(
−1

2
t2

)
dt = 1 (1 < ξ < ∞);

(8) b(n, 3; σ) = b(n) for σ = ε,

(
1 2 3
3 2 1

)
,

b(n, 3; σ) = b̃(n) for the 4 remaining σ ∈ S3.

We conjecture that to any σ ∈ Sm (m ≥ 3) there are constants c(σ) >
> 0, ξ(σ) > 1 such that

b(n,m; σ) ∼ c(σ)ξ(σ)−n as n →∞.
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In the last section of our paper we report on m = 4, where we could achieve
only partial results.

3. Acknowledgement. The author thanks Arnold Knopfmacher and
Helmut Prodinger for bringing to his attention the PhD problem of their
student Albert Tshifhurmulo on permutations avoiding consecutive patterns.

Tshifhumulo in his thesis will study these problems mainly using an
approach based on geometrically distributed random variables. (3) of our list of
results will appear in the thesis. Here I will study Tshifhumulo’s problem from a
different (elementary) perspective based on a direct treatment of permutations.

Finally I am obliged to Arnold Knopfmacher for localizing and bringing
to my attention Arratia’s paper.

2. The proofs of (1.1), (1.2)

Since B(m, m; σ) = Sm − {σ−1}, we get

(1) b(m,m; σ) = 1− 1
m!

.

Put B(k) := |B(k, m;σ)| and b(k) :=
B(k)
k!

, b(0) = 1. Then we have

(2) b(n) ≤ b(p)b(n− p) for 0 ≤ p ≤ n.

Proof. This is true for p = 0, n. Assume 0 < p < n. From

B(n,m; σ) =
⋃

P⊂[1,n]
|P |=p

{π ∈ B(n, m; σ) | π([1, p]) = P}

and
# {π ∈ B(n, m; σ) | π([1, p]) = P} ≤ B(p)B(n− p)

we obtain

B(n) ≤
(

n
p

)
B(p)B(n− p)

which gives (2).
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From (2), (1) we infer

b(n) ≤ b(m)[
n
m ]b

(
n−

[ n

m

]
m

)
≤ b(m)[

n
m ] =

(
1− 1

m!

)[ n
m ]

which is (1.1).
From (2) we get

b(p + q) ≤ b(p)b(q) for all p, q ≥ 0,

which yields (1.2).

3. A formula for b(n,m) and the proof of (1.3)

We shall need two formulae whose proofs are left to the reader.

(1)
∑

δs≥0 (1≤s≤t)
t∑

s=1

δs≤N

(
N −

t∑
s=1

δs

)
=

(
t + N
t + 1

)
.

Put
S(h, q, b) :=

∑
0≤δi≤q (1≤i≤h)

h∑
i=1

δi=b

1.

Put m = q + 2. Then

(2)

fm(a) : =
a∑

h=0

(−1)h+1S(h, q, a− h) =

=





−1 if a ≡ 0(m),

1 if a ≡ 1(m),

0 else.
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Put p = m− 1. The sieve formula yields

b(n,m) = 1 +
n−p∑

j=1

(−1)j
∑

1≤k1<...<kj≤n−p

D(k1, . . . , kj)
n!

,

where

D(k1, . . . , kj) = # {π ∈ Sn | π(ki) < . . . < π(ki + p) for 1 ≤ i ≤ j} .

We find

D(k1, . . . , kj) =
n!

M(k1, . . . , kj)
,

where M(k1, . . . , kj) is defined in the following way:

j = 1 : M(k) = m!
j ≥ 2: Put

L(k1, . . . , kj) := {i | 1 ≤ i ≤ j, ki+1 − ki ≥ m} .

If L(k1, . . . , kj) = ∅ then

M(k1, . . . , kj) = (kj − k1 + m)!

If L(k1, . . . , kj) 6= ∅ write

L(k1, . . . , kj) = {`1, . . . , `t} with 1 ≤ `1 < . . . < `t < j.

Furthermore, put `0 = 0, `t+1 = j. Then

M(k1, . . . , kj) =
t+1∏
s=1

(
k`s − k`s−1+1 + m

)
!

This, too, should be verified by the reader.
We have

mt ≤
j−1∑

i=1

(ki+1 − ki) = kj − k1 ≤ n−m.

Therefore 0 ≤ t ≤ T =
[ n

m

]
− 1. We get

b(n,m) = 1 +
T∑

t=0

X(t),
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where

X(0) = −n− p

m!
+

n−p∑

j=2

(−1)j
∑

1≤k1<...<kj≤n−p

L(k1,...,kj)=∅

M(k1, . . . , kj)−1

and (t ≥ 1)

X(t) =
n−p∑

j=t+1

(−1)j
∑

1≤k1<...<kj≤n−p

|L(k1,...kj)|=t

M(k1, . . . , kj)−1.

We have to evaluate (j ≥ 2, t ≥ 0) the inner sums

Xj(t) :=
∑

1≤k1<...<kj≤n−p

|L(k1,...,kj)|=t

M(k1, . . . , kj)−1.

We begin with t = 0.

Xj(0) =
∑

1≤k1<...<kj≤n−p

ki+1−ki≤p (1≤i<j)

1
(kj − k1 + m)!

=

=
∑

j−1≤d≤n−m

1
(d + m)!

∑
1≤k1<...,kj≤n−p

ki+1−ki≤p (1≤i<j)
kj−k1=d

1,

Xj(0) =
∑

j−1≤d≤n−m

n− p− d

(d + m)!
S(j − 1, q, d− (j − 1)).

Now let t ≥ 1.

Xj(t) =
∑

1≤`1<...<`t<j

∑
1≤k1<...<kj≤n−p

L(k1,...,kj)={`1,...,`t}

M(k1, . . . , kj)−1.

Denote the inner sum by Sj(`1, . . . `t) and write L(t) := {`1, . . . `t}. Then

Sj(`1, . . . , `t) =
∑

1≤k1<...<kj≤n−p

L(k1,...,kj)=L(t)

(
t+1∑
s=1

(
k`s − k`s−1+1 + m

)
!

)−1

.
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We introduce the differences di = ki+1 − ki (1 ≤ i ≤ j). They satisfy

di ≤ p (i 6∈ L(t)) and d`s
≥ m (1 ≤ s ≤ t).

We have

k`s
− k`s−1+1 =

`s−1∑

i=`s−1+1

di

and
j−1∑
i=1

i 6∈L(t)

di = kj − k1 −
∑

`∈L(t)

d` ≤ n−m(t + 1).

Therefore

Sj(`1, . . . , `t) =
∑

1≤di≤p (i6∈L(t))

D:=
∑

i6∈L(t)

di≤n−m(t+1)




t+1∏
s=1




`s−1∑

i=`s−1+1

di + m


!



−1

·X,

where
X =

∑
d`s

≥m (1≤s≤t)

t∑
s=1

d`s
≤n−m−D

∑
1≤k1<...<kj≤n−p

ki+1−ki=di (1≤i<j)

1 =

=
∑

d`s
≥m (1≤s≤t)

t∑
s=1

dls
≤n−m−D

(
n− p−D −

t∑
s=1

d`s

)
=

=
(

n− p(t + 1)−D
t + 1

)
by (1).

Therefore

Sj(`1, . . . , `t) =
∑

1≤di≤p(i 6∈L(t))∑
i 6∈L(t)

di≤n−m(t+1)

(
n− p(t + 1)− ∑

i 6∈L(t)

di

t + 1

)
×

×



t+1∏
s=1




`s−1∑

i=`s−1+1

di + m


!



−1

=

=
∑

a1+...+at+1≤n−m(t+1)
as≥`s−`s−1−1 (1≤s≤t+1)


 n− p(t + 1)−

t+1∑
s=1

as

t + 1




(
t+1∏
s=1

(as + m)!

)
! · Y,
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where

Y =
∑

1≤di≤p (i 6∈L(t))
`s−1∑

i=`s−1+1

di=as (1≤s≤t+1)

1 =
t+1∏
s=1

∑
1≤di≤p (`s−1<i<`s)

`s−1∑
i=`s−1+1

di=as

1 =

=
t+1∏
s=1

S(`s − `s−1 − 1, q, as − (`s − `s−1 − 1)).

Therefore we obtain
Sj(`1, . . . , `t) =

=
∑

a1+...+at+1≤n−m(t+1)
as≥`s`s−1−1 (1≤s≤t+1)


n− p(t + 1)−

t+1∑
s=1

as

t + 1




t+1∏
s=1

σ (as, `s − `s−1)
(as + m)!

,

where

σ(as, `s − `s−1) := S(`s − `s−1 − 1, q, as − (`s − `s−1 − 1)).

Now we have

X(t) =
n−p∑

j=t+1

(−1)jXj(t) =
n−p∑

j=t+1

(−1)j
∑

1≤`1<...<`t<j

Sj(`1, . . . `t) =

=
∑

a1+...+at+1≤n−m(t+1)
as≥0 (1≤s≤t+1)


 n− p(t + 1)−

t∑
s=1

as

t + 1


 ·

t+1∏
s=1

1
(as + m)!

·F (a1, . . . , at+1),

where

F (a1, . . . , at+1) =
n−p∑

j=t+1

(−1)j
∑

1≤`1<...<`t<j

`s−`s−1≤as+1 (1≤s≤t+1)

t+1∏
s=1

σ(as, `s − `s−1).

Since

j = `t+1 − `0 =
t+1∑
s=1

(`s − `s−1),
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we get

F (a1, . . . , at+1) =
n−p∑

j=t+1

∑
1≤`1<...<`t<j

`s−`s−1≤as+1 (1≤s≤t+1)

t+1∏
s=1

(−1)`s−`s−1σ(as, `s − `s−1) =

=
t+1∏
s=1

as∑

h=0

(−1)h+1S(h, q, as − h) =
t+1∏
s=1

fm(as) by (2).

We summarize. Writing t + 1 = k we arrive at the formula

b(n,m) = 1 +
[ n

m ]∑

k=1

Sk(n,m),

where

Sk(n, m) =
∑

aj≥0 (1≤j≤k)

k∑
j=1

aj≤n−mk


 n− (m− 1)k −

k∑
j=1

aj

k




k∏

j=1

fm(aj)
(aj + m)!

with

fm(a) =





−1 if a ≡ 0 (m),

1 if a ≡ 1 (m),

0 else.

Proof of (1.3). Put S0(n,m) = 1 and introduce

Fm(z) :=
∞∑

a=0

fm(a)
(a + m)!

za.

Then we have

∞∑
n=0

b(n,m)zn =
∞∑

n=0


 ∑

0≤k≤ n
m

Sk(n,m)


 zn =

=
∞∑

k=0

∑

n≥mk

Sk(n,m)zn =

=
∞∑

k=0

zmk
∞∑

`=0

Sk(` + mk, m)z`.
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The inner sum is equal to

∞∑

`=0




∑
aj≥0 (1≤j≤k)

k∑
j=1

aj≤`


 ` + k −

k∑
j=1

aj

k




k∏

j=1

fm(aj)
(aj + m!)




z` = (1− z)−(k+1)Fm(z)k.

Therefore

∞∑
n=0

b(n,m)zn =
1

1− z

∞∑

k=0

(
zmFm(z)

1− z

)k

=
1

1− z − zmFm(z)
= Pm(z)−1.

4. The proof of (1.5)

We have

∞∑
n=0

b(n)zn = P3(z)−1 with P3(z) =
∞∑

k=0
k≡0 (3)

zk

k!
−

∞∑
k=0

k≡1 (3)

zk

k!
.

Putting ξ := exp
(

2πi

3

)
we get

P3(z) =
1
3
(ξ − 1) exp(ξz)

(
ξ−1 − exp(ξ(ξ − 1)z)

)
.

Therefore the zeros of P3(z) are

w` =
2π√

3

(
1
3
− `

)
(` = 0,±1, . . .).

We find

P ′3(w`) = (−1)`+1 exp
(

π√
3
(3`− 1)

)
.
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The residue theorem yields

b(n) ∼
∞∑

`=−∞

1
−P ′3(w`)

1
wn+1

`

.

In particular we get (1.5).

5. The proof of (1.4)

Since m = 3 has been settled we may assume m ≥ 4. We show first that
Pm(z) has a zero on the open interval

I(m) =
]
1 +

1
m!

(1− α(m)), 1 +
1
m!

(1 + β(m))
[

,

where

α(m) =
m! + 1

(m + 1)! + 1
, β(m) =

2(m + 1)
m!− 2(m + 1)

.

We have

Pm(x) = 1− x +
xm

m!

(
1− x

m + 1

)
+ Sm(x),

Sm(x) =
∞∑

`=2

xm`

(m`)!

(
1− x

m` + 1

)
.

Let 1 ≤ x ≤ 2. Then Sm(x) > 0 and

Sm(x) <

∞∑

`=2

(
xm

m!

)`

=
(

xm

m!

)2 1
1− xm

m!

.

From this we see that for 1 ≤ x ≤ 2 we have

(1) Pm(x) > 1− x +
1
m!

(
1− x

m + 1

)
,

(2) Pm <
1

1− xm

m!

− x.
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In (1) take x = 1 + 1
m! (1 + δ), 0 < δ < 1. Then

Pm(x) >
1
m!

(
δ

(
1 +

1
(m + 1)!

)
− 1

m + 1

(
1 +

1
m!

))
= 0 for δ = α(m).

In (2) take x = 1 +
1
m!

(1 + δ), 0 < δ < 1, and put ε =
1 + δ

m!
. We get

Pm(x) <
y

m!− xm
,

where
y = (1 + ε)m+1 − (1 + δ) ≤
≤ exp(ε(m + 1))− (1 + δ) ≤
≤ (1 + 2ε(m + 1))− (1 + δ) =

=
2
m!

(m + 1)− δ

(
1− 2

m!
(m + 1)

)
=

= 0 for δ = β(m).

Next we show that Pm(z) has on the disk |z| ≤ 1 +
1
m

just one zero and

that this zero is simple.
This will follow from Rouché’s theorem if

|Pm(z)− (1− z)| < |1− z| for |z| = 1 +
1
m

.

Since

|Pm(z)− (1− z)| =
∣∣∣∣∣
∞∑

`=1

zm`

(m`)!

(
1− z

m` + 1

)∣∣∣∣∣ ≤

≤
(

1 +
|z|

m + 1

) ∞∑

`=1

( |z|
m!

)`

and since |1− z| ≥ |z| − 1, it is enough to show that

(
1 +

|z|
m + 1

) ∞∑

`=1

( |z|m
m!

)`

< |z| − 1 for |z| = 1 +
1
m

.
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Since
(

1 +
1
m

)m

< 3 the left side is

<

(
1 +

1
m

)
3
m!

∞∑

`=0

(
3
4!

)`

≤ 5
7

1
m

<
1
m

.

Denote the unique zero of Pm(z) on the disk |z| ≤ 1 +
1
m

by ξ(m). Since it is

simple we have P ′m(ξ(m)) 6= 0. Since

1 +
1
m!

(1 + β(m)) < 1 +
1
m

(m ≥ 4)

we have ξ(m) ∈ I(m).
The residue theorem yields

b(n,m) =
c(m)
ξ(m)n

+ O

((
m

m + 1

)n)
as n →∞,

where
c(m) = − (ξ(m)P ′m(ξ(m)))−1

.

6. An invariance property of b(n,m;σ)

Let τ ∈ Sn be given by τ(k) = n+1−k (1 ≤ k ≤ n). Let ρ ∈ Sm be given
by ρ(`) = m + 1− ` (1 ≤ ` ≤ m). One finds

π ∈ B(n,m; σ) ⇐⇒ π ◦ τ ∈ B(n,m; ρ ◦ σ),

π ∈ B(n,m; σ) ⇐⇒ τ ◦ π ∈ B(n,m;σ ◦ ρ).

From this we deduce

b(n,m; σ) = b(n,m; ρ ◦ σ) = b(n,m; σ ◦ ρ) = b(n,m; ρ ◦ σ ◦ ρ).

We apply this on

S3 =
{(

1 2 3
1 2 3

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 1 2

)}
=

= {ε, ρ, σ1, σ2, σ3, σ4}
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and see that b(n, 3;σ) is the same for σ = ε, ρ (= b(n)) and for σ = σ1, σ2, σ3, σ4.
We select σ1 as a sample for our analysis.

B(n, 3; σ1) is the set of all π ∈ Sn with the property that

π(k + 1) < π(k) < π(k + 2) is false for 1 ≤ k ≤ n− 2.

The fraction

b̃(n) :=
|B(n, 3; σ1)|

n!

will be studied in the next section.

7. A formula for b̃(n) and proof of (1.6), (1.7)

The sieve formula yields

b̃(n) = 1 +
n−2∑

j=1

(−1)j
∑

1≤k1<...<kj≤n−2

D̃(k1, . . . , kj)
n!

,

where

D̃(k1, . . . , kj) = # {π ∈ Sn | π(ki + 1) < π(ki) < π(ki + 2) for 1 ≤ i ≤ j} .

We find

D̃(k1, . . . , kj) =
n!

M̃(k1, . . . , kj)
,

where M̃(k1, . . . , kj) is defined in the following way.

j = 1 : M̃(k) = 3!

j ≥ 2 : D̃(k1, . . . , kj) = 0 if there is some i0 (1 ≤ i0 < j) such that
ki0+1 − ki0 = 1.

Now suppose that ki+1 − ki ≥ 2 (1 ≤ i < j). Put

L(k1, . . . , kj) := {i | 1 ≤ i < j, ki+1 − ki ≥ 3} .

If L(k1, . . . , kj) = ∅ then

M̃(k1, . . . , kj) = (2j + 1)2jj!.
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If L(k1, . . . , kj) 6= ∅ write

L(k1, . . . kj) = {`1, . . . , `t} with 1 ≤ `1 < . . . < `t < j.

Further put `0 = 0, `t+1 = j and define ds := `s+1 − `s (0 ≤ s ≤ t). Then

M̃(k1, . . . , kj) =
t∏

s=0

(2ds + 1)2dsds!.

We must leave the proof of this to the reader. We now have

b̃(n) = 1− n− 2
3!

+
∑

2≤j≤n−1
2

(−1)jS(j),

where (j ≥ 2)
S(j) =

∑
1≤k1<...<kj≤n−2

ki+1−ki≥2 (1≤i<j)

M̃(k1, . . . , kj)−1.

For L ⊂ {1, . . . , j − 1} put

S(j; L) :=
∑

1≤k1<...<kj≤n−2
ki+1−ki≥2 (1≤i<j)

L(k1,...,kj)=L

M̃(k1, . . . , kj)−1.

Then we have (j ≥ 2)

S(j) =
∑

L⊂{1,...,j−1}
S(j; L) =

= S(j; ∅) +
j−1∑
t=1

∑

1≤`1<...<`t<j

S(j; {`1, . . . , `t}).

We have

S(j; ∅) =
∑

1≤k1<...<kj≤n−2
ki+1−ki=2 (1≤i<j)

1
(2j + 1)2jj!

=
n− 2j

(2j + 1)2jj!
.

We have (t ≥ 1)

S(j; {`1, . . . , `t}) =

(
t∏

s=0

(2ds + 1)2dsds!

)−1

·X,
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where
X =

∑
1≤k1<...<kj≤n−2

ki+1−ki≥2 (1≤i<j)
L(k1,...,kj)={`1,...,`t}=:L

1 =

=
∑

ϑ`≥3 (`∈L)

∑
1≤k1<...<kj≤n−2
ki+1−ki=2 (i 6∈L)

k`+1−k`=ϑ` (`∈L)

1 =

=
∑

δ`≥0 (`∈L)∑
`∈L

δ`≤n−2j−t

(
n− 2j − t−

∑

`∈L

δ`

)
=

=
(

n− 2j
t + 1

)
by (3.1).

Altogether we get
(

2 ≤ j ≤ n− 1
2

)

S(j) =
∑

0≤t≤min{j−1,n−2j−1}

(
n− 2j
t + 1

)
σ(j, t)

with
σ(j, 0) =

1
(2j + 1)2jj!

and (t ≥ 1)

σ(j, t) =
∑

1≤`1<...<`t<j

(
t∏

s=0

(2ds + 1)2dsds!

)−1

=

=
∑

ds≥1 (0≤s≤t)
t∑

s=0

ds=j

(
t∏

s=0

(2ds + 1)2dsds!

)−1

.

We arrive at the formula

b̃(n) = 1 +
∑

0≤k≤n−3
2

(−1)k+1
k∑

t=0

(
n− 2k − 2

t + 1

)
S(k, t),
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where

S(k, t) =
∑

as≥0 (0≤s≤t)
t∑

s=0

as=k−t

(
t∏

s=0

(2as + 3)2as+1(as + 1)!

)−1

.

Proof of (1.6). The formula above gives

∞∑
n=0

b̃(n)zn =
1

1− z
+ S(z),

where

S(z) =
∞∑

n=3


 ∑

0≤k≤n−3
2

(−1)k+1
k∑

t=0

(
n− 2k − 2

t + 1

)
S(k, t)


 zn =

=
∞∑

k=0

(−1)k+1
k∑

t=0

S(k, t)
∞∑

n=2k+3

(
n− 2k − 2

t + 1

)
zn =

= z3
∞∑

k=0

(−1)k+1z2k
k∑

t=0

S(k, t)
zt

(1− z)t+2
=

= − z3

(1− z)2

∞∑
t=0

( −z

1− z

)t ∞∑

`=0

(−1)`S(` + t, t)z2`.

Since

S(` + t, t) =
∑

as≥0 (0≤s≤t)
t∑

s=0

as=`

(
t∏

s=0

(2as + 3)2as+1(as + 1)!

)−1

,

the inner sum above is equal to F (z)t+1, where

F (z) :=
∞∑

a=0

(−1)a

(2a + 3)2a+1(a + 1)!
z2a.
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Therefore

S(z) = − z3

(1− z)2

∞∑
t=0

(
− z3

1− z
F (z)

)t

=

= − z3

1− z

F (z)
1− z + z3F (z)

.

We conclude
∞∑

n=0

b̃(n)zn =
1

1− (z − z3F (z))
.

But

z − z3F (z) =

z∫

0

exp
(
−1

2
w2

)
dw.

Proof of (1.7). Put

E(z) :=

z∫

0

exp
(
−1

2
w2

)
dw.

Since E(1) < 1, E(∞) =
√

π

2
> 1 and E(x) is strictly increasing for

x ≥ 0, there is a unique ξ > 1 with E(ξ) = 1. (1.7) follows with the theorem
of residues if

(1) E(z) 6= 1 for all z, |z| ≤ ξ and x 6= ξ.

We first show that

(2) z = x + iy, y 6= 0, |z| ≤ √
π ⇒ ImE(z) 6= 0.

Namely from

ImE(z) = exp
(
−1

2
x2

) y∫

0

exp
(

1
2
t2

)
cos(xt)dt

we see that
ImE(z) 6= 0 if y 6= 0 and |xy| ≤ π

2
.

But |xy| ≤ π

2
if |z| ≤ √

π.
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From (2) we infer

(3) Let 0 < r ≤ √
π. Then

E(z) 6= E(r) for all z, |z| ≤ r and z 6= r.

Proof of (1). According to (3) it is enough to establish ξ ≤ √
π. But this

holds true since E (
√

π) > 1.

Concluding remark. Comparing (1.5), (1.7) one should know if
3
√

3
2π

>

> ξ−1,
2π

3
√

3
< ξ. This is true if E

(
2π

3
√

3

)
< 1.

One has (courtesy Dr. Harald Schmidt, Universität Regensburg)

E

(
2π

3
√

3

)
= 0.9693304740 . . . .

8. m = 4, outlook

We identified 7 classes of S4 on each of which b(n, 4; σ) is the same:

C1 = {e, ρ}
C2 = {(1423), (4132), (2314), (3241)} ∪ {(4123), (1432), (2341), (3214)},
C3 = {(1243), (4312), (2134), (3421)},
C4 = {(1342), (3124), (4213), (2431)},
C5 = {(1324), (4231)},
C6 = {(3142), (2413)},
C7 = {(3412), (2143)}.
We obtained

∞∑
n=0

b(n, 4; C2)zn =


1−

z∫

0

exp
(
−1

6
w3

)
dw



−1

from which we derive

b(n, 4; C1) ∼
exp

(
1
6
ξ3
2

)

ξn+1
2

as n →∞,
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where ξ2 > 1 is given by
ξ2∫
0

exp
(
−1

6
t3

)
dt = 1.

Further we got

∞∑
n=0

b(n, 4;C3)zn = F (z)−1 = (1− z −R(z))−1,

where

R(z) =
∞∑

m=1

(−1)m

m−1∏
k=0

(3k + 1)

(3m + 1)!
z3m+1.

We have F (1) > 0, F

(
3
2

)
> 0 and F (z) has on the disk |z| ≤ 3

2
precisely one

zero ξ3 and it is simple. Therefore

b(n, 4; C3) ∼ 1
(−F ′(ξ3))ξn+1

3

as n →∞.

For the remaining classes we have no results.
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