THE MAXIMAL ORDER OF A CLASS OF MULTIPLICATIVE ARITHMETICAL FUNCTIONS

L. Tóth (Pécs, Hungary) E. Wirsing (Ulm, Germany)

Dedicated to Professor Karl-Heinz Indlekofer on his sixtieth birthday

Abstract. We prove simple theorems concerning the maximal order of a large class of multiplicative functions. As an application, we determine the maximal orders of certain functions of the type $\sigma_A(n) = \sum_{d \in A(n)} d$,

where A(n) is a subset of the set of all positive divisors of n, including the divisor-sum function $\sigma(n)$ and its unitary and exponential analogues. We also give the minimal order of a new class of Euler-type functions, including the Euler-function $\phi(n)$ and its unitary analogue.

1. Introduction

Let $\sigma(n)$ and $\phi(n)$ denote, as usual, the sum of all positive divisors of n and the Euler function, recpectively. It is well-known, that

(1)
$$\limsup_{n \to \infty} \frac{\sigma(n)}{n \log \log n} = e^{\gamma},$$

(2)
$$\liminf_{n \to \infty} \frac{\phi(n) \log \log n}{n} = e^{-\gamma},$$

The first author supported partially by the Hungarial National Foundation for Scientific Research under grant OTKA T031877. where γ is Euler's constant. These results go back to the work of T.H. Gronwall [5] and E. Landau [7] and have been established for a number of modified σ -and ϕ -functions.

One such modification relates to unitary divisors d of n, notation d||n, meaning that d|n and (d, n/d) = 1. The corresponding σ - and ϕ -functions are defined by $\sigma^*(n) = \sum_{d||n} d$ and $\phi^*(n) = \#\{1 \le k \le n; (k, n)_* = 1\}$, where $(k, n)_*$

denotes the largest divisor of k which is a unitary divisor of n. These functions are multiplicative and for prime powers p^{ν} given by $\sigma^*(p^{\nu}) = p^{\nu} + 1$, $\phi^*(p^{\nu}) = p^{\nu} - 1$, see [3, 8]. They are treated, along with other multiplicative functions, in [2] with the result that

(3)
$$\limsup_{n \to \infty} \frac{\sigma^*(n)}{n \log \log n} = \frac{6}{\pi^2} e^{\gamma},$$

while ϕ^* gives again (2). (Actually (3) is written incorrectly in [2] with the factor $6/\pi^2$ missing.)

In [4] it is shown that (3) holds also for $\sigma^{(e)}(n)$, the sum of exponential divisors of n. (A number $d = \prod p^{\delta_p}$ is called an exponential divisor of $n = \prod p^{\nu_p}$ if $\delta_p | \nu_p$ for all p.)

These and a number of similar results from literature refer to rather special functions. Textbooks dealing with the extremal order of arithmetic functions also treat only particular cases, see [6, 1, 11]. It should be mentioned that a useful result concerning the maximal order of a class of prime-independent functions, including the number of all divisors, unitary divisors and exponential divisors, is proved in [10].

In the present paper we develop easily applicable theorems for determining

$$L = L(f) := \limsup_{n \to \infty} \frac{f(n)}{\log \log n},$$

where f are nonnegative real-valued multiplicative functions. Essential parameters are

$$\rho(p) = \rho(f, p) := \sup_{\nu \ge 0} f(p^{\nu})$$

for the primes p, and the product

$$R = R(f) := \prod_{p} \left(1 - \frac{1}{p}\right) \rho(p).$$

These theorems can, in particular, be used to obtain the maximal or minimal order, respectively, of generalized σ - and ϕ -functions which arise in connection with Narkiewicz-convolutions of arithmetic functions.

2. General results

We formulate the conditions for lower and upper estimates for L separately. Note that $\rho(p) \ge f(p^0) = 1$ for all p.

Theorem 1. Suppose that $\rho(p) < \infty$ for all primes p and that the product R converges unconditionally (i.e. irrespectively of order), improper limits being allowed, then

(4)
$$L \le e^{\gamma} R.$$

A different assumption uses

Theorem 2. Suppose that $\rho(p) < \infty$ for all p and that the product R converges, improper limits being allowed, and that

(5)
$$\rho(p) \le 1 + o\left(\frac{\log p}{p}\right),$$

then (4) holds.

Remark. Neither does condition (5) plus convergence of R imply unconditional convergence of R nor vice versa.

To establish $e^{\gamma}R$ also as the lower limit more information is required: The suprema $\rho(p)$ must be sufficiently well approximated at not too large powers of p.

Theorem 3. Suppose that $\rho(p) < \infty$ for all primes p, that for each prime p there is an exponent $e_p = p^{o(1)} \in \mathbb{N}$ such that

(6)
$$\prod_{p} f(p^{e_p}) \rho(p)^{-1} > 0,$$

and that the product R converges, improper limits being allowed. Then

$$L \ge e^{\gamma} R.$$

Corollary 1. If for all p we have $\rho(p) \leq (1 - 1/p)^{-1}$ and there are e_p such that $f(p^{e_p}) \geq 1 + 1/p$, then

$$L = e^{\gamma} R.$$

In other words: The maximal order of f(n) is $e^{\gamma}R\log\log n$.

Formally R becomes infinite if there is a nonempty set S of primes for which $\rho(p) = \infty$. So one might expect that the assumptions of Theorem 3 taken for all p with finite $\rho(p)$ would imply $L = \infty$. Surprisingly enough this is true only for rather thin sets S. But note that for $p \in S$ there is no substitute for the $f(p^{e_p})$ approximating $\rho(p)$.

We begin by stating what the above theorems imply if one ignores the numbers with prime factors from a given set S of primes. For any such set define

$$N(\mathcal{S}) := \{ n : n \in \mathbb{N}, \ p | n \Rightarrow \ p \in \mathcal{S} \}, \quad C(\mathcal{S}) := \{ n : n \in \mathbb{N}, \ p | n \Rightarrow p \notin \mathcal{S} \}.$$

Corollary 2. Modify the assumptions of Theorems 1, 2 and 3 by replacing R with

$$R_{\mathcal{S}} = R_{\mathcal{S}}(f) := \prod_{p \notin \mathcal{S}} \left(1 - \frac{1}{p} \right) \rho(p),$$

L with

$$L_{\mathcal{S}} = L_{\mathcal{S}}(f) := \limsup_{n \to \infty, \ n \in C(\mathcal{S})} \frac{f(n)}{\log \log n},$$

condition (5) with

(7)
$$\rho(p) \le 1 + o\left(\frac{\log p}{p}\right) \quad \text{for} \quad p \notin \mathcal{S},$$

and (6) with

(8)
$$\prod_{p \notin \mathcal{S}} f\left(p^{e_p}\right) \rho(p)^{-1} > 0.$$

Assume further that

$$\sum_{p\in\mathcal{S}}\frac{1}{p}<\infty.$$

Then

$$L_{\mathcal{S}} \leq e^{\gamma} \prod_{p \in \mathcal{S}} \left(1 - \frac{1}{p} \right) \cdot R_{\mathcal{S}}, \quad L_{\mathcal{S}} \geq e^{\gamma} \prod_{p \in \mathcal{S}} \left(1 - \frac{1}{p} \right) \cdot R_{\mathcal{S}},$$

respectively. This applies even if $\rho(p) = \infty$ for some or all of the $p \in S$.

Theorem 4. Let S be a set of primes such that

(9)
$$\sum_{p \in \mathcal{S}} \frac{1}{p} < \infty.$$

If $\rho(p) = \infty$ exactly for the $p \in S$, if (8) holds and $R_S > 0$, then $L = \infty$. Condition (9) must not be waived.

In fact there are counter-examples for any set S for which $\sum 1/p$ diverges.

3. The proofs

Proof of Theorem 1. An arbitrary $n = \prod p^{\nu_p}$ we write as $n = n_1 n_2$ with $n_1 := \prod_{p \leq \log n} p^{\nu_p}$. Mertens's formula $\prod_{p \leq x} (1 - 1/p)^{-1} \sim e^{\gamma} \log x$ and the definition of $\rho(p)$ imply

(10)
$$f(n_1) = \prod_{p \le \log n} f(p^{\nu_p}) \le \prod_{p \le \log n} \rho(p) =$$
$$= \prod_{p \le \log n} \left(1 - \frac{1}{p}\right)^{-1} \cdot \prod_{p \le \log n} \left(1 - \frac{1}{p}\right) \rho(p),$$
$$f(n_1) \le (1 + o(1))e^{\gamma}R \log \log n \quad \text{as } n \to \infty.$$

Let a denote the number of prime divisors in n_2 . Then $a \leq \log n / \log \log n$. There is nothing to prove if $R = \infty$, so let $R < \infty$. Using the unconditional convergence

(11)
$$f(n_2) \leq \prod_{p|n, p>\log n} \left(1 - \frac{1}{p}\right) \rho(p) \cdot \prod_{p|n, p>\log n} \left(1 - \frac{1}{p}\right)^{-1} \leq \left(1 + o(1)\right) \cdot \left(1 - \frac{1}{\log n}\right)^{-a} = \left(1 + o(1)\right) e^{O(1/\log \log n)} \to 1.$$

Combining (10) and (11) finishes the proof.

Proof of Theorem 2. There is no change in the estimation of $f(n_1)$. For n_2 we have

$$f(n_2) \le \left(1 + o\left(\frac{\log\log n}{\log n}\right)\right)^{\frac{\log n}{\log\log n}} = 1 + o(1).$$

Proof of Theorem 3. We treat the case of proper convergence only. There is nothing to prove if R = 0 and the changes for $R = \infty$ are obvious. For given ε take P so large that

(12)
$$\prod_{p>P} f(p^{e_p})\rho(p)^{-1} \ge 1 - \varepsilon$$

and choose exponents k_p for the $p \leq P$ such that

(13)
$$\prod_{p \le P} f(p^{k_p}) \ge (1 - \varepsilon) \prod_{p \le P} \rho(p)$$

Keeping P and the k_p fixed let x tend to infinity and consider

$$n(x) := \prod_{p \le P} p^{k_p} \prod_{P$$

Now on the one hand, using (12) and (13), we see

$$f(n(x))\prod_{p\leq x} \left(1-\frac{1}{p}\right) \ge (1-\varepsilon)\prod_{p\leq x} \left(1-\frac{1}{p}\right)\rho(p) \cdot \prod_{P$$

and with Mertens's formula again

(14)
$$f(n(x)) \ge (1 - \varepsilon)^2 (1 + o(1)) R e^{\gamma} \log x.$$

On the other hand, since $e_p = p^{o(1)}$, we have

$$\log n(x) \le \sum_{p \le P} k_p \log p + \sum_{P$$

and therefore

$$\log \log n(x) \le (1 + o(1)) \log x.$$

Together with (14) this yields the lower bound

$$\limsup_{x \to \infty} \frac{f(n(x))}{\log \log n(x)} \ge (1 - \varepsilon)^2 R e^{\gamma}$$

with arbitrary $\varepsilon > 0$.

Proof of Corollary 1. Apply Theorems 1 (or 2) and 3.

Proof of Corollary 2. To see this one applies the theorems to the multiplicative function f^* defined by $f^*(n) = f(n)$ for $n \in C(S)$ and f(n) = 1 for $n \in N(S)$. One finds

$$L(f^*) = L_{\mathcal{S}}(f), \quad R(f^*) = R_{\mathcal{S}}(f) \prod_{p \in \mathcal{S}} \left(1 - \frac{1}{p}\right),$$

and (8) implies (6) for f^* because $\prod_{p \in S} (1 - 1/p)$ converges absolutely.

Note also that for any sequence of numbers $n = n_1 n_2$ tending to ∞ , where $n_1 \in N(\mathcal{S}), n_2 \in C(\mathcal{S})$, we have $f^*(n)/\log \log n = f(n_2)/\log \log(n_1 n_2)$, hence $\limsup f^*(n)/\log \log n = 0$ if n_2 stays bounded, and

$$\leq \limsup_{n_2} f(n_2) / \log \log n_2$$

otherwise, with equality if n_1 is bounded. Thus $L(f^*) = L_S$.

Proof of Theorem 4. I. Assume (9). With any $n_1 \in N(S)$ we have

$$L \ge \limsup_{n_2 \in C(\mathcal{S})} \frac{f(n_1)f(n_2)}{\log \log(n_1 n_2)} = f(n_1)L_{\mathcal{S}}.$$

From Corollary 2, as it refers to Theorem 3, we have $L_S > 0$ and $f(n_1)$ can be chosen arbitrarily large.

II. Assume that (9) does not hold. We shall construct a counter-example. The assumption implies that

$$g(x) := \prod_{p \in \mathcal{S}, \ p \le x} \left(1 + \frac{1}{p} \right)$$

tends to ∞ as $x \to \infty$. Choose an increasing sequence of numbers $q_j = p_j^{\nu_j}$ with $p_j \in \mathcal{S}$ and ν_j so large that $g(\log q_j) \ge j^j$ for all j, and such that every prime $p \in \mathcal{S}$ occurs infinitely often in the sequence of the p_j . Put $f(q_j) = j$ for all $j \in \mathbb{N}$ and $f(p^{\nu}) = 1 + 1/p$ for all p^{ν} that are not among the q_j . Then, obviously, $\rho(p) = \infty$ for $p \in \mathcal{S}$ and $\rho(p) = 1 + 1/p$ for $p \notin \mathcal{S}$. The product

$$R_{\mathcal{S}} = \prod_{p \notin \mathcal{S}} \left(1 - \frac{1}{p} \right) \left(1 + \frac{1}{p} \right)$$

converges absolutely and so does (choosing $e_p = 1$) $\prod_{p \notin S} f(p^1)/\rho(p) = 1$. Any $n \in \mathbb{N}$ can be written as $n = n_1 n_2$, where n_1 collects from the canonical

representation of n those prime powers that occur among the q_j , while the rest compose n_2 . For given n let $k := \max\{j; q_j || n_1\}$. Then $f(n_1) \leq k! = o(k^k) = o(g(\log q_k)) = o(g(\log n))$ by construction. Now for any $n \in \mathbb{N}$

$$f(n) = f(n_1)f(n_2) = \prod_{p|n, p \notin S} \left(1 + \frac{1}{p}\right) \cdot o(g(\log n)) =$$
$$= o\left(\prod_{p \le \log n} \left(1 + \frac{1}{p}\right)\right) \cdot \prod_{p|n, p \ge \log n} \left(1 + \frac{1}{p}\right) \le$$
$$\le o(\log \log n) \cdot \left(1 + \frac{1}{\log n}\right)^{\frac{\log n}{\log \log n}} = o(\log \log n),$$

hence L = 0.

4. Applications

A general frame for generalizations of the σ - and ϕ -functions mentioned in the introduction can be found in Narkiewicz [9]. Assume that for each n a set A(n) of divisors of n is given and consider the A-convolution $*_A$ defined by

(15)
$$(f *_A g)(n) := \sum_{d \in A(n)} f(d)g\left(\frac{n}{d}\right).$$

Properties of convolution (15) and of arithmetical functions related to it have been studied extensively in the literature, see [9, 8]. The system A is called multiplicative if $A(n_1n_2) = A(n_1)A(n_2)$ for coprime n_1, n_2 , with elementwise multiplication of the sets, and not all A(n) empty. Such a divisor system can be described by the sets $AE_p(\nu)$ of admissible exponents,

$$AE_p(\nu) := \{\delta; \ p^{\delta} \in A(p^{\nu})\}.$$

The A-convolution of any two multiplicative functions f and g is multiplicative if and only if A is multiplicative. In particular multiplicativity of A implies multiplicativity of the modified divisor function

$$\sigma_A(n) := \sum_{d \in A(n)} d.$$

As natural means to define an Euler-function attached to A we consider the relation

(16)
$$\sum_{d \in A(n)} \phi_A(d) = n, \quad n \ge 1.$$

This need not be solvable; there is, however, the following

Theorem 5. If the divisor system A is multiplicative then (16) has a solution if and only if $n \in A(n)$ for all $n \in \mathbb{N}$. In this case the solution ϕ_A is unique and is a multiplicative function with $1 \leq \phi_A(n) \leq n$ for all $n \in \mathbb{N}$.

Proof. Suppose a solution exists. Then by induction on ν the recursion

(17)
$$\sum_{\delta \in AE_p(\nu)} \phi_A(p^{\delta}) = p^{\nu}$$

implies that $1 \leq \phi_A(p^{\nu}) \leq p^{\nu}$ and (therefore) $\nu \in AE_p(\nu)$ for all $\nu : p^{\nu} \in A(p^{\nu})$. It follows from the multiplicativity of A that $n \in A(n)$ for all n. If, on the other hand, $n \in A(n)$ for all n, then (17) can be solved recursively and the multiplicative function defined from the $\phi_A(p^{\nu})$ solves (16). This is in fact the only solution since $\phi_A(n) = n - \sum_{d \in A(n) \setminus \{n\}} \phi_A(d)$.

With suitable additional conditions on A we give the maximal and minimal orders of σ_A and ϕ_A , respectively. Extremal orders of such functions have not been investigated in the literature.

Obviously $\sigma_A(n) \leq \sigma(n)$ and if for any ν we have $p^{\nu}, p^{\nu-1} \in A(p^{\nu})$ then $\sigma_A(p^{\nu}) \geq p^{\nu} + p^{\nu-1}$. So Corollary 1 applies to $f(n) = \sigma_A(n)/n$ and gives

Theorem 6. Let the system A of divisors be multiplicative and suppose that for each prime p there is an exponent e_p such that

$$p^{e_p}, p^{e_p-1} \in A(p^{e_p})$$

and $e_p = p^{o(1)}$. Then

$$\limsup_{n \to \infty} \frac{\sigma_A(n)}{n \log \log n} = e^{\gamma} \prod_p \left(1 - \frac{1}{p} \right) \sup_{\nu \ge 0} \frac{\sigma_A(p^{\nu})}{p^{\nu}}$$

where the product converges.

Remarks. The quotients $\sigma(p^{\nu})/p^{\nu}$ are of the form $\sum \varepsilon_i p^{-i}$, $\varepsilon_i \in \{0, 1\}$, and the set of such numbers is compact. Therefore each $\sup(\sigma_A(p^{\nu})p^{-\nu})$ is

,

itself of this form and we have for each prime p a finite or infinite sequence of exponents a_i such that $2 \le a_1 < a_2 < \ldots$ and

$$\left(1-\frac{1}{p}\right)\sup_{\nu}\frac{\sigma_A(p^{\nu})}{p^{\nu}} = 1-\frac{1}{p^{a_1}}+\frac{1}{p^{a_2}}-\frac{1}{p^{a_3}}+\dots$$

The formulae (1) and (3) are obvious consequences of Theorem 6. In the standard case e_p is arbitrary, we have $(1 - 1/p)\rho(p) = 1$ for all p, hence R = 1. With unitary and exponential divisors the only admissible choices are $e_p = 1$ and $e_p = 2$, respectively, and $(1-1/p)\rho(p) = 1-1/p^2$, hence $R = \zeta(2)^{-1} = 6/\pi^2$ in both cases.

We turn to ϕ_A , assuming again that A is multiplicative and, in view of Theorem 5, that always $\nu \in AE_p(\nu)$. In order to determine the minimal order of ϕ_A consider the function $f(n) := n/\phi_A(n)$.

For all p and $\nu \ge 1$ we have $\phi_A(p^{\nu}) \ge p^{\nu} - \phi_A(p^{\nu-1}) - \ldots - \phi_A(1) \ge p^{\nu} - p^{\nu-1} - \ldots - 1$, which gives

$$f(p^{\nu}) < \frac{p-1}{p-2}, \quad \rho(p) \le \frac{p-1}{p-2},$$

Note that $\rho(2)$ may equal ∞ . If moreover $e - 1 \in AE_p(e)$ for some $e = e_p \ge 1$ then, on the other hand, $\phi_A(p^e) \le p^e - \phi_A(p^{e-1}) \le p^e - p^{e-1} + p^{e-2} + \ldots + 1$ if $e \ge 2$, and $\phi_A(p) \le p - 1$ if e = 1. Therefore

$$f(p^e) \ge \frac{p(p-1)}{p^2 - 2p + 2},$$

$$f(p^e)\rho(p)^{-1} \ge \frac{p(p-2)}{p^2 - 2p + 2} = 1 - \frac{2}{p^2 - 2p + 2}$$

which is positive and yields a convergent product for $p \geq 3$.

Note that for powers of 2 there is no non-trivial lower estimate for $\phi_A(n)/n$ without further conditions on A. This is shown by the following example. Let $\mathcal{N} = \{n_1, n_2, \ldots\} \subset \mathbb{N}, n_1 < n_2 < \ldots$, and put $AE_2(n) := \{0, 1, \ldots, n\}$ for $n \in \mathcal{N}$ and $AE_2(n) := \{n\}$ for $n \notin \mathcal{N}$. Then the recursion gives $\phi_A(2^n) = 2^n$ for $n \notin \mathcal{N}$ but $\phi_A(2^{n_j}) = 2^{n_{j-1}}$ for the $n \in \mathcal{N}$, where $n_0 = 0$. Hence it is possible to have $\rho(2) = \sup 2^{\nu}/\phi_A(2^{\nu}) = 2^{\sup_j(n_j - n_{j-1})} = \infty$.

Thus applying Corollary 1 or Theorem 4 with $S = \{2\}$ we obtain

Theorem 7. Let A be multiplicative and $n \in A(n)$ for all n. Assume that for each prime p > 2 there is an exponent e_p such that $p^{e_p-1} \in A(p^{e_p})$ and $e_p = p^{o(1)}$. Then

$$\liminf_{n \to \infty} \frac{\phi_A(n) \log \log n}{n} = e^{-\gamma} \prod_p \left(1 - \frac{1}{p}\right)^{-1} \inf_{\nu} \frac{\phi_A(p^{\nu})}{p^{\nu}}.$$

The product converges for p > 2; the first factor may vanish.

For the standard Euler function $\phi(n)$ and for its unitary analogue $\phi^*(n)$ we regain (2).

For the system of exponential divisors one has $\phi_A(1) = 1$ because of multiplicativity. The recursion $\sum_{\kappa|\nu} \phi_A(p^{\kappa}) = p^{\nu}$ is solved by $\phi_A(p^{\nu}) = \sum_{\kappa|\nu} \mu(\nu/\kappa)p^{\kappa}$. Again the minimum of $\phi_A(p^{\nu})/p^{\nu}$ is 1 - 1/p, it is taken for $\nu = e_p = 2$ and once more (2) follows.

References

- [1] Apostol T.M., Introduction to analytic number theory, Springer, 1976.
- [2] Chidambaraswamy J. and Sitaramachandra Rao R., Maximum orders of arithmetical functions associated with higher order divisors, *Bulletin Number Theory Related Topics*, 9 (1985), 1-11.
- [3] Cohen E., Arithmetical functions associated with the unitary divisors of an integer, Math. Z., 74 (1960), 66-80.
- [4] Fabrykowski J. and Subbarao M.V., The maximal order and the average order of the multiplicative function $\sigma^{(e)}(n)$, Théorie des nombres. Proc. of the Int. Conf. Québec, 1987, de Gruyter, 1989, 201-206.
- [5] Gronwall T.H., Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc., 14 (1913), 113-122.
- [6] Hardy G.H. and Wright E.M., An introduction to the theory of numbers, 4th edition, Clarendon Press, Oxford, 1960.
- [7] Landau E., Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig-Berlin, 1909.
- [8] McCarthy P.J., Introduction to arithmetical functions, Springer, 1986.
- [9] Narkiewicz W., On a class of arithmetical convolutions, Colloq. Math., 10 (1963), 81-94.

- [10] Suryanarayana D. and Sitaramachandra Rao R., On the true maximum order of a class of arithmetical functions, *Math. J. Okayama* Univ., 17 (1975), 95-101.
- [11] **Tenenbaum G.**, Introduction to analytic and probabilistic number theory, Cambridge Univ. Press, 1995.

L. Tóth

Inst.of Mathematics and Informatics University of Pécs Ifjúság u. 6. H-7624 Pécs, Hungary ltoth@ttk.pte.hu E. Wirsing Universität Ulm Helmholtzstraße 22 D-89069 Ulm, Germany wirsing@mathematik.uni-ulm.de