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Abstract. We prove simple theorems concerning the maximal order of

a large class of multiplicative functions. As an application, we determine

the maximal orders of certain functions of the type σA(n) =
∑

d∈A(n)

d,

where A(n) is a subset of the set of all positive divisors of n, including the

divisor-sum function σ(n) and its unitary and exponential analogues. We

also give the minimal order of a new class of Euler-type functions, including

the Euler-function φ(n) and its unitary analogue.

1. Introduction

Let σ(n) and φ(n) denote, as usual, the sum of all positive divisors of n
and the Euler function, recpectively. It is well-known, that

(1) lim sup
n→∞

σ(n)
n log log n

= eγ ,

(2) lim inf
n→∞

φ(n) log log n

n
= e−γ ,
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where γ is Euler’s constant. These results go back to the work of T.H. Gronwall
[5] and E. Landau [7] and have been established for a number of modified σ-
and φ-functions.

One such modification relates to unitary divisors d of n, notation d‖n,
meaning that d|n and (d, n/d) = 1. The corresponding σ- and φ-functions are
defined by σ∗(n) =

∑
d‖n

d and φ∗(n) = #{1 ≤ k ≤ n; (k, n)∗ = 1}, where (k, n)∗

denotes the largest divisor of k which is a unitary divisor of n. These functions
are multiplicative and for prime powers pν given by σ∗(pν) = pν + 1, φ∗(pν) =
= pν−1, see [3, 8]. They are treated, along with other multiplicative functions,
in [2] with the result that

(3) lim sup
n→∞

σ∗(n)
n log log n

=
6
π2

eγ ,

while φ∗ gives again (2). (Actually (3) is written incorrectly in [2] with the
factor 6/π2 missing.)

In [4] it is shown that (3) holds also for σ(e)(n), the sum of exponential
divisors of n. (A number d =

∏
pδp is called an exponential divisor of n =

∏
pνp

if δp|νp for all p.)
These and a number of similar results from literature refer to rather special

functions. Textbooks dealing with the extremal order of arithmetic functions
also treat only particular cases, see [6, 1, 11]. It should be mentioned that
a useful result concerning the maximal order of a class of prime-independent
functions, including the number of all divisors, unitary divisors and exponential
divisors, is proved in [10].

In the present paper we develop easily applicable theorems for determining

L = L(f) := lim sup
n→∞

f(n)
log log n

,

where f are nonnegative real-valued multiplicative functions. Essential param-
eters are

ρ(p) = ρ(f, p) := sup
ν≥0

f(pν)

for the primes p, and the product

R = R(f) :=
∏
p

(
1− 1

p

)
ρ(p).

These theorems can, in particular, be used to obtain the maximal or minimal
order, respectively, of generalized σ- and φ-functions which arise in connection
with Narkiewicz-convolutions of arithmetic functions.
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2. General results

We formulate the conditions for lower and upper estimates for L separately.
Note that ρ(p) ≥ f(p0) = 1 for all p.

Theorem 1. Suppose that ρ(p) < ∞ for all primes p and that the product
R converges unconditionally (i.e. irrespectively of order), improper limits being
allowed, then

(4) L ≤ eγR.

A different assumption uses

Theorem 2. Suppose that ρ(p) < ∞ for all p and that the product R
converges, improper limits being allowed, and that

(5) ρ(p) ≤ 1 + o

(
log p

p

)
,

then (4) holds.

Remark. Neither does condition (5) plus convergence of R imply uncon-
ditional convergence of R nor vice versa.

To establish eγR also as the lower limit more information is required: The
suprema ρ(p) must be sufficiently well approximated at not too large powers
of p.

Theorem 3. Suppose that ρ(p) < ∞ for all primes p, that for each prime
p there is an exponent ep = po(1) ∈ N such that

(6)
∏
p

f (pep) ρ(p)−1 > 0,

and that the product R converges, improper limits being allowed. Then

L ≥ eγR.

Corollary 1. If for all p we have ρ(p) ≤ (1 − 1/p)−1 and there are ep

such that f (pep) ≥ 1 + 1/p, then

L = eγR.

In other words: The maximal order of f(n) is eγR log log n.
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Formally R becomes infinite if there is a nonempty set S of primes for
which ρ(p) = ∞. So one might expect that the assumptions of Theorem 3
taken for all p with finite ρ(p) would imply L = ∞. Surprisingly enough this is
true only for rather thin sets S. But note that for p ∈ S there is no substitute
for the f (pep) approximating ρ(p).

We begin by stating what the above theorems imply if one ignores the
numbers with prime factors from a given set S of primes. For any such set
define

N(S) := {n : n ∈ N, p|n ⇒ p ∈ S}, C(S) := {n : n ∈ N, p|n ⇒ p 6∈ S}.

Corollary 2. Modify the assumptions of Theorems 1, 2 and 3 by replacing
R with

RS = RS(f) :=
∏

p 6∈S

(
1− 1

p

)
ρ(p),

L with

LS = LS(f) := lim sup
n→∞, n∈C(S)

f(n)
log log n

,

condition (5) with

(7) ρ(p) ≤ 1 + o

(
log p

p

)
for p 6∈ S,

and (6) with

(8)
∏

p 6∈S
f (pep) ρ(p)−1 > 0.

Assume further that ∑

p∈S

1
p

< ∞.

Then

LS ≤ eγ
∏

p∈S

(
1− 1

p

)
·RS , LS ≥ eγ

∏

p∈S

(
1− 1

p

)
·RS ,

respectively. This applies even if ρ(p) = ∞ for some or all of the p ∈ S.

Theorem 4. Let S be a set of primes such that

(9)
∑

p∈S

1
p

< ∞.
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If ρ(p) = ∞ exactly for the p ∈ S, if (8) holds and RS > 0, then L = ∞.
Condition (9) must not be waived.

In fact there are counter-examples for any set S for which
∑

1/p diverges.

3. The proofs

Proof of Theorem 1. An arbitrary n =
∏

pνp we write as n = n1n2

with n1 :=
∏

p≤log n

pνp . Mertens’s formula
∏

p≤x

(1 − 1/p)−1 ∼ eγ log x and the

definition of ρ(p) imply

(10)

f(n1) =
∏

p≤log n

f(pνp) ≤
∏

p≤log n

ρ(p) =

=
∏

p≤log n

(
1− 1

p

)−1

·
∏

p≤log n

(
1− 1

p

)
ρ(p),

f(n1) ≤ (1 + o(1))eγR log log n as n →∞.

Let a denote the number of prime divisors in n2. Then a ≤ log n/ log log n.
There is nothing to prove if R = ∞, so let R < ∞. Using the unconditional
convergence

(11)

f(n2) ≤
∏

p|n, p>log n

(
1− 1

p

)
ρ(p) ·

∏

p|n, p>log n

(
1− 1

p

)−1

≤

≤ (1 + o(1)) ·
(

1− 1
log n

)−a

=

= (1 + o(1))eO(1/ log log n) → 1.

Combining (10) and (11) finishes the proof.

Proof of Theorem 2. There is no change in the estimation of f(n1). For
n2 we have

f(n2) ≤
(

1 + o

(
log log n

log n

)) log n
log log n

= 1 + o(1).
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Proof of Theorem 3. We treat the case of proper convergence only.
There is nothing to prove if R = 0 and the changes for R = ∞ are obvious.
For given ε take P so large that

(12)
∏

p>P

f(pep)ρ(p)−1 ≥ 1− ε

and choose exponents kp for the p ≤ P such that

(13)
∏

p≤P

f(pkp) ≥ (1− ε)
∏

p≤P

ρ(p).

Keeping P and the kp fixed let x tend to infinity and consider

n(x) :=
∏

p≤P

pkp

∏

P<p≤x

pep .

Now on the one hand, using (12) and (13), we see

f(n(x))
∏

p≤x

(
1− 1

p

)
≥ (1− ε)

∏

p≤x

(
1− 1

p

)
ρ(p) ·

∏

P<p≤x

f(pep)ρ(p)−1 ≥

≥ (1− ε)2(1 + o(1))R

and with Mertens’s formula again

(14) f(n(x)) ≥ (1− ε)2(1 + o(1))Reγ log x.

On the other hand, since ep = po(1), we have

log n(x) ≤
∑

p≤P

kp log p +
∑

P<p≤x

ep log p ≤ xo(1)
∑

p≤x

log p = x1+o(1),

and therefore
log log n(x) ≤ (1 + o(1)) log x.

Together with (14) this yields the lower bound

lim sup
x→∞

f(n(x))
log log n(x)

≥ (1− ε)2Reγ

with arbitrary ε > 0.

Proof of Corollary 1. Apply Theorems 1 (or 2) and 3.
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Proof of Corollary 2. To see this one applies the theorems to the
multiplicative function f∗ defined by f∗(n) = f(n) for n ∈ C(S) and f(n) = 1
for n ∈ N(S). One finds

L(f∗) = LS(f), R(f∗) = RS(f)
∏

p∈S

(
1− 1

p

)
,

and (8) implies (6) for f∗ because
∏

p∈S
(1− 1/p) converges absolutely.

Note also that for any sequence of numbers n = n1n2 tending to ∞, where
n1 ∈ N(S), n2 ∈ C(S), we have f∗(n)/ log log n = f(n2)/ log log(n1n2), hence
lim sup f∗(n)/ log log n = 0 if n2 stays bounded, and

≤ lim sup
n2

f(n2)/ log log n2

otherwise, with equality if n1 is bounded. Thus L(f∗) = LS .

Proof of Theorem 4. I. Assume (9). With any n1 ∈ N(S) we have

L ≥ lim sup
n2∈C(S)

f(n1)f(n2)
log log(n1n2)

= f(n1)LS .

From Corollary 2, as it refers to Theorem 3, we have LS > 0 and f(n1) can be
chosen arbitrarily large.

II. Assume that (9) does not hold. We shall construct a counter-example.
The assumption implies that

g(x) :=
∏

p∈S, p≤x

(
1 +

1
p

)

tends to ∞ as x → ∞. Choose an increasing sequence of numbers qj = p
νj

j

with pj ∈ S and νj so large that g(log qj) ≥ jj for all j, and such that every
prime p ∈ S occurs infinitely often in the sequence of the pj . Put f(qj) = j
for all j ∈ N and f(pν) = 1 + 1/p for all pν that are not among the qj . Then,
obviously, ρ(p) = ∞ for p ∈ S and ρ(p) = 1 + 1/p for p 6∈ S. The product

RS =
∏

p6∈S

(
1− 1

p

) (
1 +

1
p

)

converges absolutely and so does (choosing ep = 1)
∏

p6∈S
f(p1)/ρ(p) = 1. Any

n ∈ N can be written as n = n1n2, where n1 collects from the canonical
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representation of n those prime powers that occur among the qj , while the
rest compose n2. For given n let k := max{j; qj‖n1}. Then f(n1) ≤ k! =
= o(kk) = o(g(log qk)) = o(g(log n)) by construction. Now for any n ∈ N

f(n) = f(n1)f(n2) =
∏

p|n, p 6∈S

(
1 +

1
p

)
· o(g(log n)) =

= o


 ∏

p≤log n

(
1 +

1
p

)
 ·

∏

p|n, p≥log n

(
1 +

1
p

)
≤

≤ o(log log n) ·
(

1 +
1

log n

) log n
log log n

= o(log log n),

hence L = 0.

4. Applications

A general frame for generalizations of the σ- and φ-functions mentioned
in the introduction can be found in Narkiewicz [9]. Assume that for each n a
set A(n) of divisors of n is given and consider the A-convolution ∗A defined by

(15) (f ∗A g)(n) :=
∑

d∈A(n)

f(d)g
(n

d

)
.

Properties of convolution (15) and of arithmetical functions related to it
have been studied extensively in the literature, see [9, 8]. The system A is called
multiplicative if A(n1n2) = A(n1)A(n2) for coprime n1, n2, with elementwise
multiplication of the sets, and not all A(n) empty. Such a divisor system can
be described by the sets AEp(ν) of admissible exponents,

AEp(ν) := {δ; pδ ∈ A(pν)}.

The A-convolution of any two multiplicative functions f and g is multiplicative
if and only if A is multiplicative. In particular multiplicativity of A implies
multiplicativity of the modified divisor function

σA(n) :=
∑

d∈A(n)

d.
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As natural means to define an Euler-function attached to A we consider
the relation

(16)
∑

d∈A(n)

φA(d) = n, n ≥ 1.

This need not be solvable; there is, however, the following

Theorem 5. If the divisor system A is multiplicative then (16) has a
solution if and only if n ∈ A(n) for all n ∈ N. In this case the solution φA is
unique and is a multiplicative function with 1 ≤ φA(n) ≤ n for all n ∈ N.

Proof. Suppose a solution exists. Then by induction on ν the recursion

(17)
∑

δ∈AEp(ν)

φA(pδ) = pν

implies that 1 ≤ φA(pν) ≤ pν and (therefore) ν ∈ AEp(ν) for all ν : pν ∈ A(pν).
It follows from the multiplicativity of A that n ∈ A(n) for all n. If, on the
other hand, n ∈ A(n) for all n, then (17) can be solved recursively and the
multiplicative function defined from the φA(pν) solves (16). This is in fact the
only solution since φA(n) = n− ∑

d∈A(n)\{n}
φA(d).

With suitable additional conditions on A we give the maximal and minimal
orders of σA and φA, respectively. Extremal orders of such functions have not
been investigated in the literature.

Obviously σA(n) ≤ σ(n) and if for any ν we have pν , pν−1 ∈ A(pν) then
σA(pν) ≥ pν + pν−1. So Corollary 1 applies to f(n) = σA(n)/n and gives

Theorem 6. Let the system A of divisors be multiplicative and suppose
that for each prime p there is an exponent ep such that

pep , pep−1 ∈ A(pep)

and ep = po(1). Then

lim sup
n→∞

σA(n)
n log log n

= eγ
∏
p

(
1− 1

p

)
sup
ν≥0

σA(pν)
pν

,

where the product converges.

Remarks. The quotients σ(pν)/pν are of the form
∑

εip
−i, εi ∈ {0, 1},

and the set of such numbers is compact. Therefore each sup
ν

(σA(pν)p−ν) is
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itself of this form and we have for each prime p a finite or infinite sequence of
exponents ai such that 2 ≤ a1 < a2 < . . . and

(
1− 1

p

)
sup

ν

σA(pν)
pν

= 1− 1
pa1

+
1

pa2
− 1

pa3
+ . . . .

The formulae (1) and (3) are obvious consequences of Theorem 6. In the
standard case ep is arbitrary, we have (1− 1/p)ρ(p) = 1 for all p, hence R = 1.
With unitary and exponential divisors the only admissible choices are ep = 1
and ep = 2, respectively, and (1−1/p)ρ(p) = 1−1/p2, hence R = ζ(2)−1 = 6/π2

in both cases.

We turn to φA, assuming again that A is multiplicative and, in view of
Theorem 5, that always ν ∈ AEp(ν). In order to determine the minimal order
of φA consider the function f(n) := n/φA(n).

For all p and ν ≥ 1 we have φA(pν) ≥ pν − φA(pν−1)− . . .− φA(1) ≥ pν −
−pν−1 − . . .− 1, which gives

f(pν) <
p− 1
p− 2

, ρ(p) ≤ p− 1
p− 2

.

Note that ρ(2) may equal ∞. If moreover e− 1 ∈ AEp(e) for some e = ep ≥ 1
then, on the other hand, φA(pe) ≤ pe − φA(pe−1) ≤ pe − pe−1 + pe−2 + . . . + 1
if e ≥ 2, and φA(p) ≤ p− 1 if e = 1. Therefore

f(pe) ≥ p(p− 1)
p2 − 2p + 2

,

f(pe)ρ(p)−1 ≥ p(p− 2)
p2 − 2p + 2

= 1− 2
p2 − 2p + 2

,

which is positive and yields a convergent product for p ≥ 3.
Note that for powers of 2 there is no non-trivial lower estimate for φA(n)/n

without further conditions on A. This is shown by the following example. Let
N = {n1, n2, . . .} ⊂ N, n1 < n2 < . . ., and put AE2(n) := {0, 1, . . . , n} for
n ∈ N and AE2(n) := {n} for n 6∈ N . Then the recursion gives φA(2n) = 2n

for n 6∈ N but φA(2nj ) = 2nj−1 for the n ∈ N , where n0 = 0. Hence it is
possible to have ρ(2) = sup

ν
2ν/φA(2ν) = 2supj(nj−nj−1) = ∞.

Thus applying Corollary 1 or Theorem 4 with S = {2} we obtain
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Theorem 7. Let A be multiplicative and n ∈ A(n) for all n. Assume that
for each prime p > 2 there is an exponent ep such that pep−1 ∈ A(pep) and
ep = po(1). Then

lim inf
n→∞

φA(n) log log n

n
= e−γ

∏
p

(
1− 1

p

)−1

inf
ν

φA(pν)
pν

.

The product converges for p > 2; the first factor may vanish.
For the standard Euler function φ(n) and for its unitary analogue φ∗(n)

we regain (2).

For the system of exponential divisors one has φA(1) = 1 because of mul-
tiplicativity. The recursion

∑
κ|ν

φA(pκ) = pν is solved by φA(pν) =
∑
κ|ν

µ(ν/κ)pκ.

Again the minimum of φA(pν)/pν is 1 − 1/p, it is taken for ν = ep = 2 and
once more (2) follows.
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