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ON THE MEAN VALUES
OF MULTIPLICATIVE FUNCTIONS

OVER RATIONAL NUMBERS

V. Stakėnas (Vilnius, Lithuania)

Professor K.-H. Indlekofer zum 60. Geburtstag gewidmet

Abstract. Two mean value theorems for the multiplicative functions of

rational arguments are proved. One of them may be viewed as an analogue

of the Delange’s theorem well-known in the theory of arithmetical functions.

Definitions and results

A complex valued function f(m/n), defined on the set of positive rational
numbers, is called multiplicative, if for all irreducible fractions m/n

f
(m

n

)
= f(m) · f

(
1
n

)

holds with g(n) = f(n), h(n) = f(1/n) being arithmetical multiplicative
functions. Using the unique expression of m/n as a product of powers of primes
(positive and negative ones) we may write

f
(m

n

)
=

∏

pν‖m
n

f(pν);

here pν ||mn for ν > 0 means that pν ||m and for ν < 0 it means that p−ν ||n.

Let for x ≥ 1 α = αx, β = βx and 0 < α < β. With the system of
intervals

Ix = (α, β), 0 < α < β, x ≥ 1,
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we define the following subsets of rational numbers

Fx =
{m

n
∈ Ix : n ≤ x

}
;

here and in the following all fractions are supposed to be irreducible.
We are interested in the asymptotical behavior of the sums

S(f, x) =
∑

m
n ∈Fx

f
(m

n

)
,

where f is a multiplicative function.
This problem was considered in particular cases in the papers [4], [7]. It

is our aim to prove in this work the following analogue of the Delange’s mean
value theorem for the multiplicative functions defined for rational numbers.

Theorem 1. Let with some ξ ∈ (0, 1) and ζ > 0 for intervals Ix = (α, β)
the following condition

(1) max{x−ξ, α/x} ¿ β − α ¿ xζ (0 < α < β)

be satisfied. If for a complex valued multiplicative function f(m/n), |f(m/n)| ≤
≤ 1, the series

(2)
∑

p

2− Ref(p)− Ref(p−1)
p

converges, then

(3)
1

#Fx
S(f, x) = Π1(x) ·Π2(x) ·Π3(x) + o(1) (x →∞)

holds with Πi(x) defined as follows

Π1(x) =
∏

p≤x∗

(
1− 2

p + 1

) ∑

|ν|≥0

f(pν)
p|ν|

, x∗ = min{(β − α)x, x},

Π2(x) =
∏

x∗<p≤x

(
1− 1

p

)(
1 +

f(p−1)
p

)
,

Π3(x) =
∏

x∗<p, p∈P∗

(
1− 1

p

)(
1 +

f(p)
p

)
,

where P∗ = {p : there exists m/n ∈ Fx, p||m}.
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With some stronger constraints on intervals the asymptotics may be
written in more simple form.

Corollary. Let for every ε > 0

x−ε ¿ β − α < β ¿ xε

hold. If the condition (2) is satisfied, then

1
#Fx

S(f, x) =
∏

p≤x

(
1− 2

p + 1

) ∑

|ν|≥0

f(pν)
p|ν|

+ o(1) (x →∞).

The proof of Theorem 1 is based on the following statement.

Theorem 2. Let with some ξ ∈ (0, 1) and ζ > 0 for intervals Ix

the conditions (1) be satisfied. Then for the complex valued multiplicative
functions f(m/n) with the conditions

∣∣∣f
(m

n

)∣∣∣ ≤ 1, f(pν) = 1 as |ν| ≥ 1, p ≥ y, y = exp
{

c1
log x

log2 x

}

the asymptotics

(4)
1

#Fx
S(f, x) =

∏

p≤y

(
1− 2

p + 1

) ∑

|ν|≥0

f(pν)
p|ν|

+ o(log−B x) (x →∞)

holds uniformly with an arbitrary constant B > 0.

This theorem is formulated in a slightly different form in [4]. A sketch of
the proof is given in that paper, too. We present here the proof in details.

Proofs

We start with the proof of the Theorem 2 and then, using it prove the
Theorem 1.

Proof of Theorem 2. We denote

Sn =
∑

αn<m<βn
(m,n)=1

f(m).
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Let θ be a real number, ξ < θ < 1. Then for n ≤ xθ

Sn ¿ (β − α)xθ.

Hence, from the obvious equality

S(f, x) =
∑

n≤x

f(n−1)Sn

we obtain

(5) S(f, x) =
∑

xθ<n≤x

f(n−1)Sn + O((β − α)x2θ).

For the natural number n we denote

n∗ =
∏

pν‖n
p≤y

pν , n∗∗ =
n

n∗
.

Now

Sn =
∑

αn<m<βn
(m,n∗)=1

f(m) + O




∑
αn<m<βn
(m,n∗∗)>1

1


 .

The sum under the O-sign can be estimated as

¿
∑

p|n∗∗

∑
αn<m<βn

p|m

1 ¿ (β − α)x
y

· log x

log y
.

Hence,

(6) Sn = S∗n + O

(
(β − α)x

y
· log x

log y

)
, S∗n =

∑
αn<m<βn
(m,n∗)=1

f(m).

We estimate now the sum

S∗n =
∑

αn<m<βn
(m,n∗)=1

f(m) =
∑

αn<m<βn
(m,n∗)=1

f(m∗)
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for xθ < n ≤ x. Let us choose a small number τ ∈ (0, 1) and taking w = xτ

split the sum into two parts S∗n1, S
∗
n2 according to whether which of the two

conditions m∗ ≤ w or w < m∗ is satisfied. Hence,

(7) S∗n = S∗n1 + S∗n2, S∗n1 =
∑

αn<m<βn
(m,n∗)=1

m∗≤w

f(m∗), S∗n2 =
∑

αn<m<βn
(m,n∗)=1

w<m∗

f(m∗).

We shall use the notations p−(m), p+(m) for the smallest, respectively, largest
prime divisor of m, m > 1, i. e.

p−(m) = max{q : if p < q, then p|/ m},
p+(m) = min{q : if p > q, then p|/ m},

here p, q are primes. We set formally p−(1) = +∞, p+(1) = 0. We estimate
S∗n2 as follows

(8)

|S∗n2| ≤

∣∣∣∣∣∣∣∣∣

∑
w<m<βn
(m,n∗)=1
p+(m)≤y

f(m)#
{

l :
αn

m
< l <

βn

m
, p−(l) > y

}
∣∣∣∣∣∣∣∣∣
¿

¿
∑

w<m<βn
(m,n∗)=1
p+(m)≤y

#
{

l :
αn

m
< l <

βn

m
, p−(l) > y

}
.

Represent now m in the last sum as m = m′ · m′′, where w < m′ ≤ w2 and
p+(m′) ≤ p−(m′′). For the uniqueness choose m′ the largest possible. Hence,
the sum in (8) is bounded by

∑

w<m′≤w2

(m′,n∗)=1
p+(m′)≤y

∑
w/m′<m′′,(m′′,n∗)=1

p+(m′)≤p−(m′′)
p+(m′′)≤y

#
{

m′′l :
αn

m′ < lm′′ <
βn

m′ , p
−(l) > y

}
.

For fixed m′ and different m′′ the sets
{

m′′l :
αn

m′ < lm′′ <
βn

m′ , p
−(l) > y

}
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do not intersect themselves. This observation leads to the bound

S∗n2 ¿
∑

w<m′≤w2

(m′,n∗)=1
p+(m′)≤y

#
{

m :
αn

m′ < m <
βn

m′ , (m,n∗) = 1, p+(m′) ≤ p−(m)
}

.

We estimate the summands on the right-hand side using the folowing sieve
result (see [1], Theorem 2.5).

Lemma 1. Let 2 ≤ s < v < u, εp ∈ {0, 1} for all primes p,

Ps =
∏

p≤s

pεp ,

and
S(u, v, Ps) = #{m : u− v < m ≤ u, (m,Ps) = 1}.

Then

S(u, v, Ps) = v
∏

p|Ps

(
1− 1

p

)
(1 + O(R)),

uniformly for all sequencies {εp}, where

R = exp
{
−c2 · log v

log s
log

(
log v

log s

)}
+ exp{− log1/2 v}.

We apply this Lemma with

u =
βn

m′ , v =
(β − α)n

m′ , s = y = exp
{

c1
log x

log2 x

}
,

Ps =
∏

p<p+(m′)
or p|n∗

p.

If τ is chosen such that σ = θ − ξ − 2τ > 0, then

v =
(β − α)n

m′ > xθ−ξ−2τ = xσ.

It is easy to check, that the Lemma 1 is applicable. Because of log v > σ log x,
we have for the remainder term R the following bound

R ¿ exp{−c3 log2 x · log3 x}.
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We have then

|S∗n2| ¿ (β − α)n
∑

w<m′<w2
(m′,n∗)=1
p+(m′)≤y

1
m′

∏

p<p+(m′)
or p|n∗

(
1− 1

p

)
.

Let q = p+(m′); then m′ = q · l, p+(l) ≤ q and

(9) |S∗n2| ¿ (β − α)n
∑
q≤y

(q,n∗)=1

1
q

∏
p<q

or p|n∗

(
1− 1

p

) ∑

w/q<l<w2/q

(l,n∗)=1
p+(l)≤q

1
l
.

Due to q ≤ y we have with some small constant ε > 0

(10)
∑

w/q<l<w2/q
(l,n∗)=1
p+(l)≤q

1
l
≤

∑

w1−ε<l
(l,n∗)=1
p+(l)≤q

1
l
.

For estimating this last sum we apply the technique used in [5], [3] as well as
in [4] for similar sums. With some z, q, t and δ ∈ (0, 1) consider the sum

∑

z<b,p+(b)≤q
(b,t)=1

1
b
≤ 1

z1−δ

∑

z<b,p+(b)≤q
(b,t)=1

1
bδ
≤ 1

z1−δ

∏
p≤q

(p,t)=1

(
1 +

1
pδ

+
1

p2δ
+ . . .

)
≤

≤ exp




−(1− δ) log z +

∑
p≤q

(p,t)=1

{
1
p

+ cp(δ)
}

+
∑

p≤q

(
1
pδ
− 1

p

)




,

where
cp(δ) =

∑

m≥2

1
pmδ

.

Using the obvious arguments we have

∑

p≤q

(
1
pδ
− 1

p

)
≤

∑

p≤q

p1−δ − 1
p

=
∑

p≤q

1
p

∞∑
n=1

((1− δ) log p)n

n!
≤

≤
∞∑

n=1

(1− δ)n logn−1 q

n!

∑

p≤q

log p

p
≤ 2

∞∑
n=1

(1− δ)n logn q

n!
< 2q1−δ.
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Hence,

∑

z<b, p+(b)≤q
(b,t)=1

1
b
≤ exp




−(1− δ) log z + 2q1−δ +

∑
p≤q

(p,t)=1

{
1
p

+ cp(δ)
}





.

We use this bound with z = w1−ε = xc4 , t = n∗. Because of q ≤ y =
= exp{c1 log x/ log2 x} taking

1− δ =
1
c1

log2 x

log x
log3 x

we get

(11)
∑

w1−ε<l
(l,n∗)=1
p+(l)≤q

1
l
¿ exp





∑
p≤q

(p,n∗)=1

1
p
− c5 log2 x log3 x





.

We obtain now from (9), (10) and (11)

|S∗n2| ¿

¿ (β−α)n exp
{−c5 log2 x log3 x

} ∑
q≤y

(q,n∗)=1

1
q

∏
p<q or

p|n∗

(
1− 1

p

)
exp





∑
p≤q

(p,n∗)=1

1
p





.

Using

∏
p≤q or

p|n∗

(
1− 1

p

)
exp





∑
p≤q

(p,n∗)=1

1
p




¿

∏

p|n∗

(
1− 1

p

)
,

we get

|S∗n2| ¿ (β − α)n exp
{− c5 log2 x log3 x

} ∏

p|n∗

(
1− 1

p

) ∑
q≤y

(q,n∗)=1

1
q
,

and, finally,

(12) |S∗n2| ¿ (β − α)n exp
{− c6 log2 x log3 x

}
.
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Let us now for xθ < n ≤ x investigate the sum

S∗n1 =
∑

αn<m<βn
(m,n∗)=1

m∗≤w

f(m∗).

We have

S∗n1 =
∑
l<w

(l,n∗)=1
p+(l)≤y

f(l)#
{

k :
αn

l
< k <

βn

l
, p−(k) > y

}
.

Now we apply the sieve result formulated in Lemma 1 above with u =
= βn/l, v = (β−α)n/l, s = y and Ps =

∏
p≤s

p. The inequality v > xθ−ξ/w > xε

for some ε > 0 ensures that the remainder term is bounded uniformly by the
same term as above in (12). Then

S∗n1 =(1 + O(R))(β − α)n
∏

p≤y

(
1− 1

p

) ∑
l<w

(l,n∗)=1
p+(l)≤y

f(l)
l

,

R =exp{−c6 log2 x · log3 x}.
Using for the sum an obvious relation

∑
l<w

(l,n∗)=1
p+(l)≤y

f(l)
l

=
∑

(l,n∗)=1
p+(l)≤y

f(l)
l

+ O




∑
l>w

p+(l)≤y

1
l


 ,

one gets expanding the first sum into product of primes and estimating the
remainder term (using, for example, (11) with n∗ = 1, q = y) the following
expression

∑
l<w

(l,n∗)=1
p+(l)≤y

f(l)
l

=
∏
p≤y

(p,n∗)=1

∑

ν≥0

f(pν)
pν

+ O(R),

with R = exp{−c6 log2 x · log3 x}. Now we can deal with the sum S∗n1 :
(13)

S∗n1 =(1 + O(R))(β − α)n
∏

p≤y

(
1− 1

p

)



∏
p≤y

(p,n∗)=1

∑

ν≥0

f(pν)
pν

+ O(R)


 =

=(β − α)n
∏

p≤y

(
1− 1

p

) ∏
p≤y

(p,n∗)=1

∑

ν≥0

f(pν)
pν

+ (β − α)nO(R).
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We may due to (6), (7), (12) and (13) write now uniformly for xθ < n ≤ x

Sn = (β − α)n
∏

p≤y

(
1− 1

p

) ∏
p≤y

(p,n∗)=1

∑

ν≥0

f(pν)
pν

+ O((β − α)xR).

With this equality and (5) one gets
(14)

S(f, x) = (β−α)
∏

p≤y

(
1− 1

p

) ∑

n≤x

nf(n−1)
∏
p≤y

(p,n∗)=1

∑

ν≥0

f(pν)
pν

+O((β−α)x2R);

we extended the range of summation, but this affected only the remainder term.
We proceed further by considering the cases

∑

ν≥0

f(2ν)
2ν

6= 0 and
∑

ν≥0

f(2ν)
2ν

= 0.

Consider the non-zero case first. We can rewrite the equality (14) then as

(15) S(f, x) = (β − α)
∏

p≤y

(
1− 1

p

) ∑

ν≥0

f(pν)
pν

∑

n≤x

ng(n) + O((β − α)x2R),

where R = exp{−c6 log2 x · log3 x} and g(n) is a multiplicative function defined
on the powers of primes as follows:

(16) g(pν) =





f(p−ν) = 1, if p > y,

f(p−ν)

(
∑
ν≥0

f(pν)
pν

)−1

, if p ≤ y.

Note, that g(pν) is bounded on the powers of primes. We proceed using the
following Lemma (see [2], Theorem 02).

Lemma 2. Let A > 0 and 0 < α < 1. Then there exists y0 = y0(A,α) so
that for every complex valued multiplicative function h(m) such that

|h(p)| ≤ B,
∑

p,ν≥2

|h(pν)|
pαν

≤ C, h(p) = 1 as p > y ≥ y0,

we have uniformly for z ≥ exp
{
A−1(B + 1) log y log2 y

}
, y ≥ y0,

∑

n≤z

h(n) = z
∏

p≤y

(
1− 1

p

) ∑

ν≥0

h(pν)
pν

+ O

(
z exp

{
−A

log z

log y

})
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and the implied constant depends only on A,B and C.

We have g(p) = 1 as p ≥ y, y = exp{c1 log x/ log2 x}. Then with chosen

A > 0 we may apply Lemma 2 for h(n) = g(n) as z ≥ exp
{c7

A
log x

}
. We have

in this range then

(17) G(z) =
∑

n≤z

g(n) = z
∏

p≤y

(
1− 1

p

) ∑

ν≥0

g(pν)
pν

+ O

(
z exp

{
−A

log z

log y

})
.

It is enough for us that we can use (17) for x/(log x)2A ≤ z ≤ x
with A as large as it is needed the remaining term in (17) still being
O(x exp{−A1 log2 x}), A1 = A/c8.

Using the Cauchy-Buniakowski inequality and the bound for the sum of
values of multiplicative function we estimate

∣∣∣∣∣∣
∑

n≤x/(log x)2A

ng(n)

∣∣∣∣∣∣
≤





∑

n≤x/(log x)2A

n2
∑

n≤x/(log x)2A

|g(n)|2




1/2

¿

¿ x2

log2A x
logc9 x ¿ x2

logA x
.

Hence,

(18)
∑

n≤x

ng(n) =
∑

x/(log x)2A≤n≤x

ng(n) + O

(
x2

logA x

)
.

Integrating by parts we have now
∑

x/(log x)2A≤n≤x

ng(n) =

=

x∫

x/(log x)2A

zdG(z) =
1
2
x2

∏

p≤y

(
1− 1

p

) ∑

ν≥0

g(pν)
pν

+ O

(
x2

logA∗ x

)

with A∗ = min(A,A1).
Using this in (18) we derive from (15) taking into account that the product

over primes is bounded by logc10 x, we obtain that with an arbitrary constant
B

(19) S(f, x) =
1
2
x2(β − α)

∏

p≤y

(
1− 1

p

)2 ∑

|ν|≥0

f(pν)
p|ν|

+ O

(
(β − α)

x2

logB x

)
.
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If we take h
(m

n

)
= 1, then S(h, x) = #Fx and (19) is applicable for the

function f = h. Hence after some routine calculation we have

(20) #Fx =
1
2
x2(β−α)

∏

p≤y

(
1− 1

p

)2 (
1− 2

p + 1

)−1

+O

(
(β − α)

x2

logB x

)
.

It is now almost straightforward to derive (4) from (19) and (20).
Let now

(21)
∑

ν≥0

f(2ν)
2ν

= 0.

We write the sum over n in (14), then

∑

n≤x

nf(n−1)
∏
p≤y

(p,n∗)=1

∑

ν≥0

f(pν)
pν

=
∏

2<p≤y

∑

ν≥0

f(pν)
pν

∑

n≤x

ng∗(n),

where g∗(n) = 0, as 2 6 | n and g∗(n) = g(n) as 2|n with g(n) defined in (16).
Let

S =
∑

n≤x

ng∗(n).

Then

(22) S(f, x) = (β−α)
(

1− 1
2

) ∏

2<p≤y

(
1− 1

p

) ∑

ν≥0

f(pν)
pν

S + O((β−α)x2R).

We proceed with the expression

(23) S =
∑

n≤x

ng∗(n) =
∑

2≤2m≤x

2mf
(
2−m

) ∑

n≤x/2m

nh(n)

with h(n) being a multiplicative function, h(2m) = 0 and h(2m+1) = g(2m+1).

The Lemma 2 implies that for z ≥ exp
{c7

A
log x

}

(24) H(z) =

=
∑

n≤z

h(n) = z

(
1− 1

2

) ∏

3≤p≤y

(
1− 1

p

) ∑

ν≥0

g(pν)
pν

+ O

(
exp

{
−A

log z

log y

})
.
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As above this asymptotical equality is needed for z ≥ x/(log x)2A, the remain-

ing term still being O(x exp{−A1 log2 x}), A1 =
A

c8
. We split the sum (23) into

two parts:
S = S1 + S2,

S1 =
∑

2m≤(log x)2A

2mf
(
2−m

) ∑

n≤x/2m

nh(n),

S2 =
∑

(log x)2A≤2m

2mf
(
2−m

) ∑

n≤x/2m

nh(n).

Using the Cauchy-Buniakowski inequality

∣∣∣∣∣∣
∑

n≤u

nh(n)

∣∣∣∣∣∣
≤


∑

n≤u

n2 ·
∑

n≤u

|h(n)|2



1/2

¿ (
u3 · u logc11 u

)1/2 ¿ u2(log u)c12 ,

we have

S2 ¿
∑

(log x)2A≤2m

2m x2

22m
(log x)c12 ¿ x2

logA x
.

For S1 we split the range n ≤ x/2m of the inner sums into two intervals:
n ≤ x/(log x)2A and x/(log x)2A ≤ n ≤ x/2m. Let according to this partition
S1 = S11 + S12. Using the Cauchy-Buniakowski inequality as above

S11 ¿ x2

(log x)A
.

Hence

S1 =
∑

2m≤(log x)2A

2mf
(
2−m

) ∑

x/(log x)2A≤n≤x/2m

nh(n) + O

(
x2

logA x

)
=

=
∑

2m≤(log x)2A

2mf
(
2−m

) x/2m∫

x/(log x)2A

zdH(z) + O

(
x2

logA x

)
.

Using (24) and integrating by parts we derive

S1 =

=
1
2
x2

(
1− 1

2

) ∏

3≤p≤y

(
1− 1

p

) ∑

ν≥0

g(pν)
pν

∑

2m≤(log x)2A

f
(
2−m

)

2m
+ O

(
x2

logA x

)
.
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If we extend the summation over all m the error introduced will be swallowed
by the remainder term. Hence,

S1 =
1
2
x2

(
1− 1

2

) ∑

m≥1

f
(
2−m

)

2m

∏

3≤p≤y

(
1− 1

p

) ∑

ν≥0

g(pν)
pν

+ O

(
x2

logA x

)
,

and this asymptotics holds for the whole sum S in (23) as well. Then we derive
with this asymptotics after some routine calculations from (25) the equality (4)
required for the case (21).

The proof is finally complete.

Proof of Theorem 1. With y ≥ 2 we define the multiplicative function
fy(m/n) for the powers of primes taking the values

fy(pν) =





f(pν), if p < y,

1, if p ≥ y.

With the notation

(25) f(pν) = r(pν) exp{iθ(pν)}, −π < θ(pν) ≤ π

we have
f

(m

n

)
= r

(m

n

)
exp

{
iθ

(m

n

)}
,

where 0 ≤ r(m/n) ≤ 1 is a multiplicative, θ(m/n) an additive function,
respectively.

It is our aim to show, that the difference

(26) ∆(y|x) =
1

#Fx
|S(f, x) exp{−iA(x)} − S(fy, x) exp{−iA(y, x)}|

vanishes as y ≤ x, and y →∞. Here

A(y, x) =
∑
p<y

p∈Π∗

θ(pν)
p

, A(x) =
∑

p∈Π∗

θ(pν)
p

,

Π∗ =
{

pν : |ν| = 1 there exists
m

n
∈ Fx, pν‖m

n

}
.



On the mean values of multiplicative functions over rational numbers 345

Note, that for the set P ∗ from the formulation of Theorem 1 P ∗ ⊂ Π∗ holds.
We start with the following obvious bound

∆(y|x) ≤ 1
#Fx

∑

m/n∈Fx

∣∣∣∣∣∣∣∣
exp{i(A(x)−A(y, x))}

∏
y≤p

pν‖m
n

f(pν)− 1

∣∣∣∣∣∣∣∣
.

Using the inequality |u1 . . . ul−1| ≤ |u1−1|+. . .+|ul−1|, valid for the complex
numbers |uj | ≤ 1, the notation

θy

(m

n

)
=

∑
y≤p

pν‖m
n

θ(pν)

and the expression (25) for f(pν) we write
(27)

∆(y|x) ¿ 1
#Fx

∑

m/n∈Fx

∑
y≤p

pν‖m
n

(1− r(pν))+

+
1

#Fx

∑

m/n∈Fx

∣∣∣exp
{

iθy

(m

n

)
− i(A(x)−A(y, x))

}
− 1

∣∣∣ = ∆1 + ∆2.

Changing the order of summation in the first term we obtain

(28) ∆1 =
1

#Fx

∑

y≤p

∑

|ν|≥1

(1− r(pν))#
{m

n
: pν‖m

n
,
m

n
∈ Fx

}
.

We proceed with the following bound valid for intervals satisfying conditions
(1):

(29) #
{m

n
: pν‖m

n
,
m

n
∈ Fx

}
¿ #

{m

n
: p|ν||mn,

m

n
∈ Fx

}
¿ 1

p|ν|
#Fx.

This bound is proved, for example, in [6], p.125; for the interested reader we
include here the proof.

Let u be a natural number. We consider the set

E(x, pu) =
{m

n
∈ Fx : pu|mn

}
= D1(pu, x) ∪ D2(pu, x),

D1(pu, x) =
{m

n
∈ Fx : pu|m

}
, D2(pu, x) =

{m

n
∈ Fx : pu|n

}
.
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We have to prove that

(30) #E(x, pu) ¿ 1
p|u|

#Fx.

Evidently,

(31) #D1(pu, x) =
{

m

n
:

m

n
∈ 1

pu
(α, β), n ≤ x, (m,n) = (n, p) = 1

}
.

For the following we shall use the Lemma ([6], Theorem 1).

Lemma 3. Let with the real numbers 0 ≤ λ1 < λ2, and the natural
numbers Q0, Q1 and Q2 having no common prime factors (all numbers may
depend on x)

S(x, λ1, λ2, Q0, Q1, Q2) =

= #
{m

n
∈ (λ1, λ2) : (m,n) = (m,Q0Q1) = (n,Q0Q2) = 1

}
.

Then uniformly in Q0, Q1, Q2 and 0 ≤ λ1 < λ2, we have

S(x, λ1, λ2, Q0, Q1, Q2) =
3
π2

(λ2 − λ1)x2
∏

p|Q0

(
1− 2

p + 1

)
×

×
∏

p|Q1Q2

(
1− 1

p + 1

)
{1 + BεR(x,Q)},

R(x, Q) = 2(2+ε)ω(Q)

(
log x

x
+

1
x(λ2 − λ1)

)
,

where Q = Q0Q1Q2, ω(Q) denotes the number of distinct prime factors of Q,
ε > 0 is an arbitrary number, and the quantity Bε is a bounded function with
the bound depending only on ε.

Using this Lemma for (21) we obtain

#D1(pu, x) =
3
π2

(β − α)
x2

pu

(
1− 1

p + 1

) {
1 +

B log x

x
+

Bpu

x(β − α)

}
.

Since pu ¿ βx we have #D1(pu, x) ¿ (β−α)x2p−u, provided that β/(β−α) ¿
¿ 1, or, equivalently, α/(β − α) ¿ 1. Let us now consider the case, where the
last condition is not satisfied.



On the mean values of multiplicative functions over rational numbers 347

Let c13(β − α) < α < c14(β − α)x with some positive constants c13, c14.
We then have

#D1(pu, x) ≤
∑

m≤βx/pu

∑
mpu

β ≤n≤mpu

α

1 ≤

≤
∑

m≤βx/pu

{
mpu β − α

αβ
+ 1

}
≤ β − α

αβ
pu

(
βx

pu

)2

+
βx

pu
=

=(β − α)
x2

pu

β

α
+

βx

pu
¿ (β − α)

x2

pu
;

here we have used the inequalities β/α = 1 + (β − α)/α < 1 + 1/c13, and
βx = αx + (β − α)x ¿ (β − α)x2. Hence,

#D1(pu, x) ¿ (β − α)
x2

pu

holds provided that α ¿ (β − α)x.

For D2(pu, x) we have

D2(pu, x) =
{

m

n
:

m

n
∈ pu(α, β), n ≤ x

pu
, (m, p) = 1

}
.

Lemma 3 now yields

#D2(pu, x) =
3
π2

(β − α)
x2

pu

(
1− 1

p + 1

)
×

×
{

1 + B
pu log(x/pu)

x
+

1
x(β − α)

}
¿ (β − α)

x2

pu
.

Using the bounds for #D1(pu, x), #D2(pu, x), we obtain (30).
Hence, from (28) and (29) we get

(32) ∆1 ¿
∑

y≤p

2− Re f(p)− Re f(p−1)
p

+
∑

y≤p

1
p2

= δ(y),

where, due to condition (2), δ(y) → 0, as y →∞.
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The function θy is additive with the values on powers of primes uniformly
bounded. Using the inequality |eiu−1| ≤ |u|, and then the Cauchy-Buniakowski
inequality, we obtain the bound for ∆2 in (27)

(33)

∆2 ¿ 1
#Fx

∑

m/n∈Fx

∣∣∣θy

(m

n

)
− (A(x)−A(y, x))

∣∣∣ ≤

≤




1
#Fx

∑

m/n∈Fx

∣∣∣θy

(m

n

)
− (A(x)−A(y, x))

∣∣∣
2





1/2

.

We proceed with the Kubilius inequality for additive functions, defined for
rational numbers (see [8]).

Lemma 4. Let an additive complex valued function g(m/n) is bounded
on powers of primes,

Ag(x) =
∑

pν∈Π∗

g(pν)
p

, B2
g(x) =

∑

pν∈Π∗

|g(pν)|2
p

,

Π∗ =
{

pν : |ν| = 1, pν‖m

n
for some

m

n
∈ Fx

}
.

Then with the constraints (1) for the intervals (α, β) the following inequality
holds

1
#Fx

∑

m/n∈Fx

∣∣∣g
(m

n

)
−Ag(x)

∣∣∣
2

¿ B2
g(x).

Using this inequality in (33) with g = θy we get the bound

∆2 ¿
∑
y≤p

pν∈Π∗

θ(pν)2

p
.

Due to the bound θ2(pν) ¿ 1 − Re f(pν) (see, for example, this inequality
proved in [9], p. 368) and the convergence of (2), we obtain, that ∆2 vanishes,
as y →∞. From this fact and (27), (32) we have that ∆(y|x) → 0 as y →∞.

Then taking into account the form of ∆(y|x) (see, (26)) we get

(34)
1

#Fx
S(f, x) = exp{i(A(x)−A(y, x))}

∑

m/n∈Fx

fy

(m

n

)
+o(1) (x →∞).
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As y = exp{c1 log x/ log2 x} we may use for the sum in (34) the asymptotics
(4). Hence,

1
#Fx

S(f, x) = exp{i(A(x)−A(y, x))}
∏

p≤y

(
1− 2

p + 1

) ∑

|ν|≥0

f(pν)
p|ν|

+ o(1).

We are going to replace the factor exp{i(A(x) − A(y, x))} by the appropriate
product over primes. We do this as follows:

exp{i(A(x)−A(y, x))} =exp





i
∑

pν∈Π∗
y≤p

θ(pν)
p





=

=
∏

pν∈Π∗
y≤p

(
1− 1

p

)(
1 +

f(pν)
p

)
L(y, x),

L(y, x) = exp





∑
pν∈Π∗
y≤p<x

1− f(pν) + iθ(pν)
p

+ O

(∑
p>y

1
p2

)



.

We want to show, that L(y, x) = 1 + o(1). It suffices to prove, that the sum
under exponent vanishes, as x grows unboundedly. It does indeed, as the
following relations show:

∑
pν∈Π∗

y≤p

1− f(pν) + iθ(pν)
p

=
∑

pν∈Π∗
y≤p

1− r(pν)eiθ(pν) + iθ(pν)
p

=

=
∑

pν∈Π∗
y≤p

1− r(pν)
p

+ i
∑

pν∈Π∗
y≤p

θ(pν)
1− r(pν)

p
+ O

(∑
p>y

θ2(pν)
p

)
.

The convergence of the series (2) and the inequality θ2(pν) ¿ 1 − Re f(pν)
ensures, that the sum tends to zero, as x →∞. Now we have
(35)

1
#Fx

S(f, x) =
∏

pν∈Π∗
y≤p

(
1− 1

p

)(
1 +

f(pν)
p

) ∏

p≤y

(
1− 2

p + 1

) ∑

|ν|≥0

f(pν)
p|ν|

+o(1).

For to come to the asymptotics (3) required by the Theorem 1 we need to
consider, which primes p or their reciprocals p−1 belong to Π∗. Let us show
first, that for all p ≤ x p−1 ∈ Π∗.
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If m/np ∈ Fx with (p,mn) = 1, then m/n ∈ (αp, βp) and n ≤ x/p. For to
count the number of such m/n we use the Lemma 3 again.

According to the Lemma 3 the number of m/np ∈ Fx with (p, mn) = 1
equals to

3
π2

(β − α)p
x2

p2

(
1− 2

p + 1

) {
1 + O

(
log(x/p)
(x/p)

+
1

x(β − α)

)}
.

Due to (β−α)x →∞, the value of this expression is positive if x/p > c15 with
c15 large enough. If x/p ≤ c15, then p ≥ x/c15 and there exists u/p ∈ (α, β),
supposed that (β − α)p > 2. This is evidently true for x ≥ x0 because of

(β − α)p ≥ (β − α)x
c15

, (β − α)x →∞.

We proved then that p−1 ∈ P ∗ for all p ≤ x.

Let us investigate now which primes p belong to P ∗ ⊂ Π∗. If there exists
some mp/n ∈ Fx, (p, mn) = 1, then m/n ∈ (α/p, β/p) and n ≤ x. By the
Lemma 3 we get, that the number of such rationals equals

3
π2

β − α

p
x2

(
1− 2

p + 1

) {
1 + O

(
log x

x
+

p

x(β − α)

)}
.

It is evident, that this term is positive as p ≤ c16x(β − α) with an appropriate
constant c16. Hence, factors corresponding to primes p ≤ c16x(β−α) all appear
in (35). If we add the factors corresponding to primes in the range c16x(β−α) ≤
≤ p ≤ x(β−α), the changes will affect only the remainder term o(1). Then for
all p such that y < p ≤ min((β − α)x, x) the product

(
1− 1

p

)(
1 +

f(p)
p

) (
1− 1

p

)(
1 +

f(p−1)
p

)

appears in (35). If we replace this quantity by

(
1− 2

p + 1

) ∑

|ν|≥0

f(pν)
pν

,

only the remainder term changes. This completes the proof of the theorem.
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