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Abstract. Given integers 0 < a; < ae < ... and bounded complex num-
bers by, ba, ..., we deal with the problem of the existence and uniqueness
of a uniformly—almost—even function f satisfying

flan) =b,, forall neN.

We give necessary and sufficient conditions that there exists at most or at
least one function f with this interpolation property.

1. Introduction

A function f : N — C is called r-even, if the equation f(gcd(nﬂ“)) =
= f(n) holds for all integers n; f is called even, abbreviated f € B, if there is
some r for which f is r-even. The closure of B with respect to the “uniform”
norm || f|l. =sup |f(n)| is the complex algebra B* of uniformly-almost-even

neN

functions. Starting with the complex vector-space D of all periodic functions
one obtains similarly the algebra D% of uniformly-almost-periodic functions
(see, for example, [7], IV.1).

In this note the following interpolation problem is dealt with: Let {ay},
be a strictly increasing sequence of positive integers, and {b,}, a bounded
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sequence of complex numbers; when does a uniformly-almost-even function f
(resp. a uniformly-almost-periodic function) exist with values

(P) flap)="b, for n=1,2,...7

When is there at most one such function? !

Under more restrictive conditions the problem of the existence of such
functions was already treated in [5] and [7], IV.5, Theorems 5.1 and 5.2. The
authors used the fact that the Banach algebra B* is isomorphic with the algebra
of functions continuous on the compact space Ag of maximal ideals, and this
space was explicitly given,

AB = H{laplaPQa te. 7poo}a
p

where the factors are one-point compactifications of the discrete spaces
{1,p%,p%,...}, p € P. Later the second-named author tried to prove this result
without using Gelfand’s theory (see [6]). However, unfortunately there is a gap
in this paper: in the proof that {gx, }cen is a Cauchy-sequence, one case is
missing. Schwarz & Spilker [8] used the method of [6] to prove other existence
results under different assumptions.

In this paper we prove elementarily, without using Gelfand’s theory,
uniqueness results (Theorems 1 and 2, Section 2) and existence theorems
(Theorems 3 and 4, Section 3).

Notations. N = {1,2,...} is the set of positive integers, P = {2,3,5,...}
the set of primes. For n € N, p € P, we denote by o,(n) the order of p in the
factorization of n, so that p°r(™ | n, but por(™+1yn,

2. Sets of uniqueness

In this section we deal with the (much simpler) problem of uniqueness in
our interpolation problem (see equation (P)).

I Karl-Heinz Indlekofer investigated uniqueness sets for additive functions;
as far as the second-named author remembers correctly, Indlekofer gave a talk
on this subject already in Oberwolfach in the year 1978. He returned to this
subject in joint papers (see [1], [2]) with Fehér, Stachd, and Timofeev.
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Definition. A subset A = {a,, : n € N} of Nis called a set of uniqueness
for B“, if the condition

{f,g e B", f(a,) =g(a,) forall ne N}

implies f =g.
Sets of uniqueness for B are characterized by the following theorem.
Theorem 1. The following properties of the set A = {a, :n € N} CN
are equivalent:
(1) A is a set of uniqueness for B*.
(2) For any integers d,k € N satisfying d | k! there exists an integer n € N
such that the greatest common divisor ged(an, k!) equals d.
Proof.

(1) = (2): Let {ay, : n € N} be a set of uniqueness, and let d, k € N satisfy
d | k!. Define a k!-even function fi(n) for n | k! by

0, ifn|kl n#d,

fi(n) =

1, ifn=d,
and, for n € N, by fi(n) = f1 (gcd(n, k')) If there were no n € N satisfying
ged(an, k) = d, then there would be two different solutions f; and fo = 0 for
the interpolation problem f(a,) = 0, a contradiction to (1).

(2) = (1): Assume that there is a function f € B*, f # 0, satisfying
f(a,) = 0 for any n € N. Fix an integer d such that f(d) # 0, and choose a
large k, k > d, and a kl-even function h satisfying || f—hl, < 3-|f(d)|. Because
of (2) there is an integer n so that ged(ay, k!) = d, and so h(a,) = h(d). This
gives the contradiction

()] < [f(d) = h(d)] + |han) = flan)] < 2-|If = hllu <[f(d)]-

Examples. The set (P + 1) U (P + 2), the union of two sets of shifted
primes, is a set of uniqueness for B*.

We verify condition (2). Let positive integers d,r € N, d | r be given. 2

a) If d is even, denote by 7 a prime 7 | r. Then the integer

ne =@ 1, if 7| d, n, =m+1, if 7jd,

2 Tt would be sufficient to restrict ourselves to numbers r of the form r = k.
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satisfies
or(nz) =0, ox(ny+1)=o0x(d).

Any solution n € N of the system of congruences
n=n, mod 7>~ M+ for every = |r

satisfies
ged(n,r) =1, ged(n+1,r) =d.

By the prime number theorem for arithmetic progressions there exists a prime
p=n mod r, and for this prime we get ged(p +1,7) =d.

b) If d is odd, we find a prime p satisfying ged(p + 2,7) = d, in a similar
manner.

The set (P4 1) U (2P + 1) is also a set of uniqueness for B*.

The sets P + a, where a € Ny, the set of squares, the set of squarefree
numbers, the set of k-free numbers, the set of factorials and the set of powers
of an integer a € N are not sets of uniqueness for B*.

Without proof we give the corresponding result for D*.

Theorem 2. A set A = {a, : n € N} C N is a set of uniqueness for
DY, if and only if for any d,r € N, d < r there exists an integer n so that
a, =dmodr.

Examples. Any strictly monotone sequence A of integers a,, which is
uniformly distributed modulo r for any r € N, is a set of uniqueness for D“. In
particular?

— every set A C N with density 1,
— the set {an, a, = [P(n)]}, where P(z) is a polynomial in R[z], and P(z)—

—P(0) has at least one irrational coefficient,*

— the set a,, = [n¢], where ¢ >0, ¢ ¢ Z.°
The set (P+1)U(P+2) is not a set of uniqueness for D*, being disjoint to the

residue class 11 mod 30. Also, thesets | (anP+05,), an €N, 5, € NU{0},
1<n<N

the set of B-numbers (a,, is a B-number, if it is representable as a sum of two
squares of integers)® are not sets of uniqueness for D.

3 For the definition and simple properties of uniform distribution modulo 7,
see, for example, Kuipers & Niederreiter [4], Chapter 5, p. 305ff.

4 See [4], Theorem 1.4, p. 307.

5 See [4], Exercise 1.10, p. 318.

6 B-numbers are easily characterized by conditions concerning prime factors
p = 3mod 4.
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3. Existence theorems

Given finitely many integers aj,as,...,ay and complex numbers
b1,b2,...,by, then there is an even function f € B assuming the values
flap) = b, for 1 <n < N: write « = ajas---ay, and define for all divisors
a | a and for n € N,

1, if (n,a) =a,
fa(n) =

0, if (n,a)# a.

Then f = > by fa, is such a function. By the way (see [6]),
1<n<N
(%) cr(a)
fa(n) - a % QO(T) Cr(n)v
where ¢, (n) = > du (Z> is the Ramanujan-sum. So, we are only concerned
d|(r,n)

with infinite subsets of N.

Theorem 3. For a strictly increasing sequence {a,}nen of positive
integers and a bounded sequence {bp}nen of complex numbers the following
two conditions (3) and (4) are equivalent.

(3) There exists a function f € B* with the values f(a,) =b, (n € N).

(4) If {nk }ren is any strictly increasing sequence of positive integers such that
for any r € N the sequence {ged (an, ,r!) ren is eventually constant, then
the limit

lim b,, exists,
k—o0

and, in the case that, with some integer m [not depending on r],

lim ged (an,,r!) = ged(apm, r!)
k—oo

for every r, its value is by,.

Before proving Theorem 3 we reformulate the conditions concerning
Op(a’ﬂk)'

Lemma. For any sequence {my}ren of positive integers the following
results are true.
(5) Properties (5a) and (5b) are equivalent.

(5a) For everyr € N the sequence {ged(mu, ) fren is eventually constant.



322 J.-C. Schlage-Puchta, W. Schwarz and J. Spilker

(5b) For every prime p the sequence {Op(mk)}keN is eventually constant
or tends to infinity.
(6) Properties (6a) and (6b) are equivalent.
(6a) For everyr € N the sequence {ged(my, 7!) }ren is eventually constant,

and there exists an integer m € N so that for every r the relation
ged(m,r!) = klim ged(myg, r!) holds.
— 00

(6b) For every prime p the sequence {Op(mk)}keN is eventually constant
and klim op(my) # 0 for at most finitely many primes p.
— 00

Proof.

(5a) = (5b): Let (5a) hold for the sequence {my}x, and let p be a prime.
For any j € N there is some k; € N so that min {op (mk),op((pj) ')} does not
depend on k, if k > kj;; say, this minimum is e;.

If e; < 0p(p’!) for some j € N, then the sequence {o,(my)}, is eventually
constant.

If e; = 0, (p?!) for every j € N, then the sequence {o,(my)}, tends to oc.

(5b) = (5a): Fix r € N. By (5b) there is some integer ko with the
property, that the sequence {op,my }x>k, is constant for all primes p < r, or
there is some prime p < r such that o,(my) > o,(r!) for every k > ko. Thus
min{o,mg, 0,(r!)} is independent of k > ko [there is no prime p > r dividing
rl], and therefore the sequence {ged(my, )} sk, is constant.

(6a) = (6b): Assume that condition (6a) is true for the sequence {my}.
By (6a) there is an integer m so that for any prime p

min{o,(m),o,(r)} = kli—>rgo min{o, (myg),op(r!)}.

According to (5), the sequence {o,(mx)}r is eventually constant or its limit

[for k — ool is co. Put r = p/, where j > o,(m); then o,(m) > o,(my), if

k is large; therefore the case klim op(my) = oo is impossible. If p > m, then
— 00

Op(m) = 07 and so k‘linolo Op(mk) =0.

(6b) = (6a). Assume that for the sequence {my}; condition (6b) is true.
Given r € N, the sequence {gcd(my,r!)} is eventually constant, by (5b) =
= (5a). Write e, = klim ged(my, ). The number m = [[p° is well-defined

— 00 P
by (6b), and, for every r € N,

k—oo

gcd(m,r!) — Hpmin{ep,op(r!)} — lim Hpmin{op(mk),op(r!)} — klggo gcd(m;wr!).
P P
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Thus the Lemma is proved.

Proof of Theorem 3.

(3) = (4). Let a strictly increasing sequence {a,} of positive integers,
a bounded sequence {b,} of complex numbers, and a function f € B* be
given satisfying the interpolation-property f(a,) = b,; take a strictly monotone
sequence {ny}r in N, so that

for every € N the sequence {gcd(ay,,7!)}ren is eventually constant.

f € B* implies that for any given € > 0 there is some s € N and an (s)-even
function h approximating f, so that || f — k||, < ie.

a) There is some kg € N, kg = ko(g) so that for all k,¢ > kg the relation
ged(an,, s!) = ged(ay,, s!) holds, and so h(an, ) = h(an,). Therefore we obtain
for every k, ¢ > kq:

by (3)
|brg — bryl = |f(ank) = flan,)] <

1
< |f(ank) = h(ank)[ +[f(an,) = hlan)| < 2-|If = hllu < e,
and 8o {b,}x is a Cauchy-sequence, and thus convergent.

b) Now, we take for granted that in addition (with some integer m)

ged(am,r!) = klin;o gcd(ank,r!), for every r € N.

Note that f(am) = bm, and that the sequence {gcd(any, r!) }ren is eventually
constant; thus there is some ¢y > ko [lo = £o(s), and so £y depends on ] with
the property that for any ¢ > /g

ged(am, s!) = ged(an,, s!), and so, in particular, h(an) = h(ay,).

Therefore we obtain, with some £ > £,

b = lim bl < [bm — b, |+ | i by = b, |

and by the inequalities in a) this is

= |f((lm) - f(a"2)| + %5 < |f(am) - h(am)‘ + |f(anz) - h(anz)| + %5 <

1
S2'Hf7h||u+§5<57
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and so lim b, = by,.
k—oo

Now we come to the more difficult part, the proof of the implication.

(4) = (3). Given sequences {a,} and {b,} as in the theorem; without loss
of generality we may assume that the b, are non-negative real numbers. We
have to find a function f € B*, so that f(a,) = b, for every n.

Define for any positive integers n and k satisfying n | k! the set

M(n,k):={m e N: ged(am, k!) =n} =

am k!

:{meN: Gy, =0 modn, and gcd(',):l}.
n’'n

The set M (n, k) is empty if and only if ged(ay,, k!) = n is impossible for any
m; in particular, if n does not divide any a,y,, then M (n, k) = 0. We define two
k!-even functions f,j' and f, , first for integers n | k!, by

sup{bm: mGM(n,k)}, if M(n,k) # 0,
Fif(n) =
0, if  M(n,k) =0,

and similarly f, (n), replacing “sup” with “inf”, and then obtain k!-even
functions by the definition

fki(n) = fki (ged(n, k!))  for any n € N.
So,
fif(n) =sup {by, : me M((n,k!),k)}, if M((n,k)) #0, otherwise = 0.
It is sufficient to show the equation

(7) Jim 5= £l =0,

The reasons are:

() For any k,n € N the inequalities
Fie () < fia () < fi (n) < £ (n)

hold. [This implies that ||f;" — f, ||« is decreasing.]
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Without loss of generality n | (k+ 1)!. On behalf of [ ged(am, (k+ 1)!) =
= n implies ged(am, k!) = ged(n, k!) | we obtain
M@, k+1) C M(gcd(n, k), k;),

and this gives the first and last inequality.

(B) The sequence (f;)ren is a Cauchy-sequence in BY, because of (see («))

I3 = Fyellu < 1 = fillu for any k£ €N,
The space (B*, || - ||l.) is complete, therefore

f = lim f; exists and is in B“.
k—oo k

(7) The function f defined in () does interpolate the prescribed values b,,:
If k > an, then n € M(ay,k), therefore f, (a,) < b, < fi(an) [by the
definition of f,, f;'], and so

B) ;.
flan) @ lim fif(an) = b,
k—o00
[by (7) and the inequalities f, (an) < b, < fi (an)]-
So it remains to proof equation (7), |f;7 — f. || = 0, as k — oo.

Assume that (7) is wrong. Since the sequence {||f;" = fi lu} oy i

decreasing [see ()], there is some ¢ > 0 so that | f;f — f, || > c for all k € N.
Therefore, for every k € N there is some integer v = w(k) for which

i) = frw) >e
By the definition of fki, for every k there exist integers n$ and n, in
M (ged(v, k'), k) with the properties
(a) gcd(anz,k!) = gcd(an;,k‘!) [: ged(v, k) ],
and
(b) bn; — bn; > c.
7

The sequence {by, }, is bounded; therefore there is” a constant b such that
for some increasing subsequence {k(j)}; the inequalities

1 1
bn— <b—§C<b+§C<bn+

k(5) k(5)

7 For b, one may take, for example, a point of accumulation of the sequence
{3 (bnf +bny )},
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hold for every j € N. It follows that

2
b,+ —b,- >§c for any 1,5 € N.

k(5) 0)

So we got a sequence k(1) < k(2) < ... of integers and integers nz(j), )
satisfying

(a)  ged(a,+ (k7)) = ged(ang ), (k(7))Y),

k()
and
@) b+ —b - >gc Vi, 5 € N.
() ey T3
Now we consider the set

M= {(d.k()) €N XN, d| k(j)! }

of pairs of integers, together with a relation “ <" defined for (d, k(j)),
(d*, k(j*)) € M by

(d k(j)) < (d", k(")) <= j < j* and ged(d",k(j)!) = d.

This relation induces a partial ordering < on M.

We say that a pair (d, k(j)) € M is “evil”, if there are indices n;(j), iy
so that (a) and (') are true.

For any j € N the pair (d, k(j)) is “evil”, if d = (an+( ),k:(j)!). So we have

k(i

shown that for every j there exists an “evil” pair (d, k(j)). And, if (d, k(j)) <
< (d*,k(j + 1)), and (d*,k(j + 1)) is “evil”, then (d, k(j)) is “evil”, too.®

In the tree of “evil” pairs there is an infinite [totally ordered] branch
(dk(j),k(j))jeN. The reason is: for every pair (dg(j),k(j)) having infinitely
many “evil” successors, there is an “evil” pair (dy 41y, k(j+1)) = (diy, k7)),
which has infinitely many “evil” successors, too (see also the Lemma of D.
Kénig, [3], p. 381).

As described some lines before, to every pair (d;y, k(j)) from this infinite

branch of “evil” pairs, there are indices n;( n;(j), so that for all r satisfying

)’
r < k(j) we have

N = _ . |

gcd(an:(j),r.) gcd(ank G-

8 For every a € N the relation ged(a, (k(j +1)!) = d* implies ged(a, k(j)!) =
= ged(d*, k(5)!). Since (d,k(j)) < (d*,k(j + 1)), the last gcd-equation gives

ged(a, k(4)!) = d. Then take ng(j) = ng(jﬂ), and ng oy =g
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In the special case k(1) = 1, k(2) = 2,... the tree (M, <) looks like this:

k=4 (1,4 (3,4)  (24) (44) (8,4) (6,4) (12,4) (24,4)

! | NI/ NS

k=3 (1,3 (3,3) (2,3) (6,3)
N/ >~
k=2 (1,2) (2,2)
~ _—
k=1 (1,1)

Figure 1. The tree (M, <) [in a special case]

We now distinguish three possible cases and obtain a contradiction in every

of these cases.

1. Both of the sequences {nz'(j)}j and {n;(j)}j contain infinitely many
different elements.

Choose from every sequence a strictly increasing subsequence, form the
union of these subsequences, and order this union to a strictly increasing
sequence {ni}ren. According to the definition of “evil”, there are arbi-
trarily large indices ng, ny with the property bn; — bp, > -;-c; in particular,
{bny }ren is not a Cauchy-sequence.

On the other hand, the sequence {gcd(any,!)}ren is eventually constant
for any integer r. According to (4a) the sequence {b,;} is convergent —
a contradiction.

. One of the two sequences, say {n:(j)}j has infinitely many elements,

the other only finitely many. Choose from {n:(j)}j a strictly increasing

subsequence {nk}r, and choose from {n;(j)}j one value m, which occurs
infinitely often. Thus, for any r € N and for infinitely many k, say for
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k1, ko, ..., the relation ged(ay, ,r!) = ged(am,r!)  holds fori=1,2,...;
according to (4), “in the case that ...” we obtain

im by, =bpn.
1—00 4

This is a contradiction to the inequality b,; — by, > %c, which is valid for
sufficiently large k.

3. If both of the sequences {”Z_(j)}j and {n,:(j)}j contain only finitely many

elements, then choose from every sequence one value which occurs infinitely
often, say n* and n~. Then

ged(an+, k(5)!) = ged(ay,-, k(4)!) for every j €N,

therefore a,,+ = a,,- and n™ = n~, contradicting b,,+ — b,,- > %c.
Thus we arrived at a contradiction in any of these three cases, and Theorem

3 is proved.

Corollary. Let {b,}, be a convergent sequence of complex numbers and
{an}n a strictly monotone sequence of positive integers, satisfying at least one
of the following three properties:

a) a1 > 1, and the least prime factor pmin(an) of a, tends to oo (see [7], p.
155);

B) for all m < n the relation a,,fa, is true (see [8], Satz 1.2);
v) for every m < n the relation a, | an holds.
Then there is a function f € B* with values f(a,) = b, for alln € N.
Proof. For any of these three examples we have to check condition (4).
Let {ny}x be a strictly increasing sequence of indices, for which the sequence
{gcd(ank,r!)} . becomes eventually constant for every r» € N. The sequence
{bni}x, being a subsequence of a convergent sequence, is convergent.

We are going to show that the assumption in (4) , “in the case that ...”
does not occur for any of these three examples.

Assume that m is an index so that ged(am,r!) = klirgo ged(any, r!) for
every 7 € N.
a) Since, for any fixed 7, klirgo ged(ang, ') = 1 on behalf of the condition
Pmin(@n) — 00, we conclude that ged(ay,,r!) =1 for any r, and so a,, = 1;
but this is impossible.

08) In the second case, for any p | a,,, we choose an integer j > rr‘lax op(am)
plam

and a large k with the property

ged(am, (p7))) = ged(ang, (p7)!) for these primes p dividing ay,.
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Then, for every p | a,,, we obtain

op(am) = min{op(am),op(pj!)} = min{op(ank),op(pj!)} < op(ang)-

Therefore a,, divides a,, and so np < m [by (8)]. For large k this is a
contradiction.

7) In the third case the relation aj | an,,, holds for any k, and so the
sequence {0p(ans)}r is increasing for any prime p. Since a,, — o as
k — oo, the sequence {op(anz)}r is not bounded for at least one prime p.
For this prime p we obtain a contradiction to the inequality

lim min {o,(an),0,(p’1)} < 0p(am), for any j € N.

k—oo

Finally, without proof, we state an existence theorem for D*.

Theorem 4. Let {a,}nen be a strictly increasing sequence of positive
integers and {bp}nen a bounded sequence of complex numbers. Then the
following two properties are equivalent:

(8) There is a function f € D" with values f(a,) = by, for alln € N.

(9) If {nk}r is a strictly increasing sequence of positive integers, with the
property, that for any q € N there exists an integer k; € N, so that
Qp,, = apn,, mod q for all k,k" > kg, then

a) the corresponding sequence {by, }i is convergent;

b) the limit khi& bn, equals by,, if for all ¢ € N there is are integers kg, m € N

satisfying an, = am mod g for all k > k.

The proof of this Theorem is similar to the proof of Theorem 3.
Example. If f is in D“, then the interpolation-problem a,, = n, b, =

= f(ay) has the solution f in D*. Choosing a function f not in B*, then this
problem does have a solution in D%, but no solution in B".
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