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Abstract. In this paper we construct continuous and discrete approx-

imation processes on the sphere S2 using spherical functions. These

processes are generated by summations of Laplace-Fourier series. Replacing

the continuous invariant measure on the sphere by a convenient discrete

measure we get a discrete approximation process closely connected with

the continuous approximation. It turns out that the surface-measure can

be obtained as the limit of the discrete measure in question. Among others it

will be proved that the discrete and the continuous Lp norms are equivalent

on the space of corresponding spherical functions. This is an analogue of

Marcinkiewicz-theorem regarding to the equivalence of the discrete and

continuous Lp norms for trigonometric polynomials. The clue of proof is

the de la Valée-Poussin type summmation method for spherical functions.

1. Introduction

Spherical harmonics play an inportant role in Fourier analysis. They are
restrictions to the sphere x2

1 + x2
2 + ... + x2

n = 1 of homogeneous polynomials
that are solutions of the n-dimensional Laplace equation (see [3, p.445]).

There is another way to introduce them, namely for example in the case
n = 3 they are matrix elements t`jk of unitary irreducibile representations of
the matrix group SU(2) ( [7, p.278]) (see (1.2)).

For k = 0 we obtain the classical spherical functions. The functions
{√2` + 1t`j0 : ` = 0, 1, ...,−` ≤ j ≤ `} constitute an orthonormal system with
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respect to the invariant measure (given by formula (1.6)) on three dimensional
unit sphere S2 and the corresponding Fourier series is convergent in L2(S2).

Taking the classical spherical functions we will construct an approximation
process with the nodal points defined by (2.1). We will show that the
approximation function can be written as a discrete integral (see (2.6)). The
advantage of the integral notation is that it brings to light the formal similarity
between the n-th approximation process of the function f defined on S2 and
the n-th partial sum of the Laplace-Fourier series (1.8).

It is natural to ask for conditions under which the spherical approximation
process will tend to f?

In the one variable case there is a rich bibliography where the approxi-
mation properties of algebraic and trigonometric polynomials are studied, for
example P. Erdős and P. Turán in [4], R. Askey in [2], G, Szegő in [5] etc.
From the point of view of the numerical method the discrete approximation
process plays an important role. An example of such a discrete process is
the trigonometric interpolation studied in Zygmund’s book [6, vol.II]. Another
method which is based on the discrete θ−summation is applied in control theory
(see [9]).

In this paper we construct continuous and discrete approximation pro-
cesses on the sphere S2 using spherical functions. These processes are generated
by summations of Laplace-Fourier series. Replacing the continuous invariant
measure on the sphere by a convenient discrete measure we get a discrete
approximation process closely connected with the continuous approximation.
It turns out that the surface-measure can be obtained as the limit of the
discrete measure in question. Among others it will be proved that the discrete
and the continuous Lp norms are equivalent on the space of corresponding
spherical functions. This is an analogue of Marcinkiewicz-theorem regarding
to the equivalence of the discrete and continuous Lp norms for trigonometric
polynomials. The clue of the proof is the de la Valée-Poussin type summmation
method for spherical functions.

2. Spherical functions

In this section we will summarize some results connected with spherical
functions. The spherical functions can be expressed by irreductible represen-
tations of the group SU [2], where

SU(2) = {g ∈ SL(2) : g∗ = g−1}
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is the set of second order unitary matrices. If g ∈ SU(2), then it can be
represented in the following form:

g =
(

α β
−β α

)
, |α|2 + |β|2 = 1, α, β ∈ C.

Every element from SU(2) can be represented with the so called Euler
angles, namely there exist θ ∈ (0, π), ϕ ∈ [0, 2π), ψ ∈ [−2π, 2π) so that:

g =
(

eiϕ/2 0
0 e−iϕ/2

)(
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)(
eiψ/2 0

0 e−iψ/2

)
:=

:= k(ϕ)a(θ)k(ψ),

where |α| = cos(θ/2), Argα = (ϕ + ψ)/2, Argβ = (ϕ− ψ + π)/2.

Let ` ∈ N and I` := {−`,−` + 1, ..., `}. Denote by X` the space of all
homogeneous complex polynomials of degree 2` in two variables. This is 2`+1
dimensional and is spanned by the polynomials

e`
k(z1, z2) =

z`+k
1 z`−k

2√
(` + k)!(`− k)!

,

where k ∈ I`.
Denote by

[t`jk]j,k∈I`
= T `

the matrix of this representation regarding to the base {e`
k : k ∈ I`} of the

group SU [2].
If g has the form g(θ) = a(θ) let define

(2.1) P `
jk(cos θ) := t`jk(a(θ)) =

=

√
(`− j)!

(` + k)!(`− k)!(` + j)!
2j−lij−k(cos(θ/2))j+k(sin(θ/2))j−k.

d`+j

dy`+j
[(y − 1)`+k(y + 1)`−k]|y=cos θ.

If g = k(ϕ)a(θ)k(ψ) ∈ SU(2), then the correspondent t`jk has the following
form

(2.2) t`jk(g(θ, ϕ, ψ)) = e−i(jϕ+kψ)P `
jk(cos θ),
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where (θ, ϕ, ψ) are the Euler angles.
For k = 0 we obtain t`j0(g) = e−ijϕP `

j0(cos θ) := Y`j(ϕ, θ), ` ∈ N, j ∈ I`,
which are called spherical functions.

Let denote by S2 the three dimensional unit sphere.
The normalized spherical functions

√
2` + 1t`j0(ϕ, θ), ` ∈ N, j ∈ I`

form an orthonormal system regarding to the scalar product generated by the
following continuous measure on the unit sphere

(2.3)
∫

S2

f(x)dµ(x) :=
1
4π

2π∫

0

π∫

0

f(ϕ, θ) sin θdθdϕ.

i.e.

(2.4)
√

(2` + 1)(2`′ + 1)
∫

S2

t`m0(g)t`′m′0(g)dµ(g) =

=

√
(2` + 1)(2`′ + 1)

4π

2π∫

0

π∫

0

ei(m−m′)ϕP `
m0(cos θ)P `′

m′0(cos θ) sin θdθdϕ =

= δmm′δ``′ .

Moreover, every function f from L2(S2) can be represented in the following
form

(2.5) f(ϕ, θ) =
∞∑

`=0

(2` + 1)
k=∑̀

k=−`

C`kt`k0(ϕ, θ),

where

(2.6) C`k =
1
4π

2π∫

0

π∫

0

f(ϕ, θ)t`k0(ϕ, θ) sin θdθdϕ

are the Laplace-Fourier coefficients and the series being convergent in L2(S2)
with respect to the measure on S2. For m = m′ the relation (2.4) implies

(2.7)

√
(2` + 1)(2`′ + 1)

2

π∫

0

P `
m0(cos θ)P `′

m0(cos θ) sin θdθ = δ``′
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and by substituting cos θ = x we obtain

(2.8)

1∫

−1

P `
m0(x)P `′

m0(x)dx =
2

2` + 1
δ``′ .

Let N ∈ N∗, ` ∈ {0, ..., N − 1}, m ∈ I`, then there are

N−1∑

`=0

(2` + 1) = N2

spherical functions of order less than N . For more details connected to spherical
functions see [7]. In what follows we need the following theorem (see [5] p.47).

Theorem A. Let denote by λN
k ∈ (−1, 1), k ∈ {1, ..., N} the roots of

Legendre polynomials PN of order N , and for j = 1, ..., N let

`N
j (x) :=

(x− λN
1 )...(x− λN

j−1)(x− λN
j+1)...(x− λN

N )
(λN

j − λN
1 )...(λN

j − λN
j−1)(λ

N
j − λN

j+1)...(λ
N
j − λN

N )
,

be the corresponding fundamental polynomials of Lagrange interpolation. De-
note by

(2.9) AN
k :=

1∫

−1

`N
k (x)dx (1 ≤ k ≤ N),

the corresponding Cristoffel-numbers. Then for every polynomial f of order
less than 2N ,

1∫

−1

f(x)dx =
N∑

k=1

f(λN
k )AN

k .

3. Discretisation

In what follows, taking as starting point that the spherical functions form
an orthonormal system regarding to the continuous measure given by (2.3),
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we will give the set of nodal points in [0, π]× [0, 2π] and the discrete measure
regarding to the orthonormality property is also valid. Let denote by

(3.1) X = {zkj = (θk, ϕj) =
(

arccos λN
k ,

2πj

2N + 1

)
: k = 1, N, j = 0, 2N}

the set of nodal points, and

µN (zkj) :=
AN

k

2(2N + 1)
.

Let define the following discrete integral on the set of nodal points X

(3.2)
∫

X

fdµN :=
N∑

k=1

2N∑

j=0

f(zkj)µN (zkj) =
N∑

k=1

2N∑

j=0

f(θk, ϕj)
AN

k

2(2N + 1)
.

Theorem 3.1. Let N ∈ N, N ≥ 1, then the finite collection of normalized
spherical functions

{
√

2` + 1t`m0 : S2 → C |m ∈ I`, ` ∈ {0, ..., N − 1}}

form an orthonormal system on the set of nodal points X regarding to the
discrete integral defined by (3.2), i.e

(3.3)
√

2` + 1
√

2`′ + 1
∫

X

t`m0t
`′
p0dµN = δ``′δmp

(`, `′ < N, m ∈ I`, p ∈ I`′).

Proof. Using the definition of the discrete measure and properties of the
roots of order 2N + 1 of the unity, the left side of (3.3) is equal to

√
2` + 1

√
2`′ + 1

∫

X

t`m0t
`′
p0dµN =

=
√

2` + 1
√

2`′ + 1
N∑

k=1

2N∑

j=0

t`m0(θk, ϕj)t`
′

p0(θk, ϕj)
AN

k

2(2N + 1)
=
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=
√

2` + 1
√

2`′ + 1
N∑

k=1

P `
m0(λ

N
k )P `′

p0(λ
N
k )

AN
k

2(2N + 1)

2N∑

j=0

ei(m−p) 2πj
2N+1 =

(3.4) =





0, m 6= p,

1
2

√
2` + 1

√
2`′ + 1

N∑
k=1

P `
m0(λ

N
k )P `′

m0(λ
N
k )AN

k , m = p.

Taking into account that grP `
m0P

`′
m0 = `+ `′ < 2N , we can apply Theorem

A and using the relation (2.8) we obtain

1
2

√
2` + 1

√
2`′ + 1

N∑

k=1

P `
m0(λ

N
k )P `′

m0(λ
N
k )AN

k =

=
1
2

√
2` + 1

√
2`′ + 1

1∫

−1

P `
m0(x)P `′

m0(x)dx =

=
1
2

√
2` + 1

√
2`′ + 1

2
2` + 1

δ``′ =





0, ` 6= `′,

1, ` = `′.

In [8] P. Barone proved that the discrete harmonics transform operator of
the function f evaluated on the lattice L (similar defined as X) has orthonormal
columns.

Next we will prove that the discrete integral defined by (3.2) tends to the
invariant measure on SU(2) given by (2.3), namely

Theorem 3.2. For all f ∈ C(S2),

lim
N→∞

∫

X

fdµN =
∫

S2

fdµ.

Proof. Let denote by U = C(S2), and introduce the bounded linear
functionals AN (f) =

∫
X

fdµN , A(f) =
∫
S2

fdµ. Theorem 3.2 is a consequence

of the Banach-Steinhaus theorem. We will check that all conditions of this
theorem are satisfied for the functionals AN : U → C and A : U → C. Let
denote by Z the set of all spherical functions. It can be proved that Z is a
dense subset of C(S2) on the base of the Stone-Weierstrass theorem, because
of the points of U are separated by the functions in Z. Namely if g, h ∈ SU [2]
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so that g 6= h, then t110(g) 6= t110(h). It is enough to prove that the product of
two spherical functions can be expressed as a linear combination of spherical
functions. This follows from properties of representations. It is well known
that the direct product of two representations T ` and T `′ can be expressed as

`+`′∑
k=`−`′

T k. This implies that

t`mm′t`
′

nn′ =
∑

k,j,j′
C(`, `′, k, m, n, j)C(`, `′, k, m′, n′, j′)tkjj′ ,

where C(`, `′, k, m, n, j) are the so called Clebsh-Gordon coefficients. Because
of orthonormality of elements t`mm′ these coefficients can be computed in the
following way:

C(`, `′, k,m, n, j)C(`, `′, k,m′, n′, j′) =

= (2k + 1)
1

16π2

2π∫

−2π

2π∫

0

π∫

0

t`mm′t`
′

nn′t
k
jj′ sin θdθdϕdψ.

Taking into account that t`mm′(g) = ei(mϕ+m′ψ)P `
mm′(cos θ), the above integral

is different from zero only when m + n = j and m′ + n′ = j′. From this we get
that if m′ = n′ = 0, then j′ = 0 and we obtain that

t`m0t
`′
n0 =

∑

k,j,j′
C(`, `′, k,m, n, j)C(`, `′, k, 0, 0, 0)tkj0.

From [5 p.48 (3.4.5)] it follows that AN is a bounded linear operator, namely

||AN || =
N∑

k=1

2N∑

j=0

|AN
k |

2(2N + 1)
=

N∑

k=1

|AN
k |
2

= 1 < ∞.

From the orthonormality property it follows that for all z = tlm0 ∈ Z, for all N
so that l < N AN (z)−A(z) = 0, consequently lim

N→∞
|AN (z)−A(z)| = 0,

z ∈ Z. Applying the Banach-Steinhaus theorem we get that

|AN (f)−A(f)| → 0, for all f ∈ C(S2), N →∞.

In fact Theorem 3.2 means that the limit of the 0-th disccrete Laplace-
Fourier coefficient is equal by the 0-th Laplace-Fourier coefficient. In an
analogous way can be proved that in general the discrete Laplace-Fourier
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coefficients of the function from C(S2) tend to the corresponding Laplace-
Fourier coefficients of f .

4. (C,α) kernel of Laplace-Fourier series

Let denote g = a(θ)k(ϕ), h = a(θ′)k(ϕ′). Let n < N and denote by

(4.1) (IN,nf)(g) = (IN,nf)(θ, ϕ) :=
n∑

`=0

(2` + 1)
∑̀

k=−`

cN
`kt`k0(θ, ϕ),

the n-th partial sum of discrete Laplace-Fourier series of f , where cN
`k is given

by

(4.2) cN
`k =

∫

X

t`k0fdµN =
N∑

m=1

2N∑

j=0

f(θm, ϕj)t`k0(θm, ϕj)
AN

m

2(2N + 1)
.

IN,nf is n-th partial sum of the discrete Fourier-Laplace series of the function
f defined on the unit sphere S2. We can observe that

(4.3) (IN,nf)(θ, ϕ) =

=
n∑

`=0

(2` + 1)
∑̀

k=−`




N∑
m=1

2N∑

j=0

f(θm, ϕj)t`k0(θm, ϕj)
AN

m

2(2N + 1)


 t`k0(θ, ϕ) =

=
∫

X

f(θ′, ϕ′)

(
n∑

l=0

(2` + 1)
∑̀

k=−`

t`k0(θ′, ϕ′)t
`
k0(θ, ϕ)

)
dµN .

Let denote by

(4.4) χ`(θ, θ′, ϕ, ϕ′) :=
∑̀

k=−`

t`k0(θ′, ϕ′)t
`
k0(θ, ϕ).

Taking into account that the representation T ` of SU(2) is unitary (see [7]
p.284), and using that every element u := h−1g ∈ SU(2) can be represented as

u = vk(t)v−1, v ∈ SU(2),
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we obtain that

(4.5) χ`(θ, θ′, ϕ, ϕ′) = χ`(h−1g) = spur(T `(h−1g)) = spurT `(vk(t)v−1) =

= spurT `(v)T `(k(t))T `(v−1) =
sin(` + 1/2)t

sin(t/2)
.

Denote by

(4.6) Dn(h−1g) :=
n∑

`=0

(2` + 1)χ`(h−1g)

the kernel function. Then the discrete Fourier-Laplace sum can be expressed
in the following way:

(4.7) (IN,nf)(g) = (IN,nf)(θ, ϕ) =
∫

X

f(h)Dn(h−1g)dµN (h).

It can be seen the analogy between the (IN,nf) and the partial sum of the series
(2.5):

(4.8) (Snf)(g) =
∫

S2

f(h)Dn(h−1g)dµ(h).

Let denote by

(4.9) Kα
n :=

1
Aα

n

n∑

`=0

Aα
n−`(2` + 1)χ`, Aα

n :=
(α + 1)(α + 2)...(α + n)

n!
,

the (C, α) kernels of the Laplace-Fourier series. It is easy to show that

Kα
n :=

1
Aα

n

n∑

`=0

Aα−1
n−`D`,

consequently Kα
n is a (C,α) kernel and similarly to the trigonometric case (see

[6] vol.I, chap.III.) Kα
n corresponds to a (C,α) summation method. From (1.14)

of [1] we get that for α = 2

(4.10) K2
n :=

1
A2

n

n∑

`=0

A2
n−`(2` + 1)χ` ≥ 0.
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Using the orthonormality property (2.4), (3.3) and the definition of χk it is
easy to check that

(4.11)
∫

X

K2
n(h−1g)dµN (h) =

∫

S2

K2
n(h−1g)dµ(h) = 1.

The last two properties show that K2
n has two important properties of Fejér

kernel. Let introduce the analogue of de la Valée-Poussin kernel denoted by

(4.12) Mn :=
1
n2

(A2
3nK2

3n − 2A2
2nK2

2n + A2
nK2

n).

Note that the partial sum of order n of Mn is equal to

(4.13) Sn[Mn] = Dn.

Let denote by Tn = span{t`k0, ` ∈ {0, 1, ..., n}, k ∈ I`}. From the
orthonormality property of spherical finctions and (4.13) follows that

∫

S2

f(h)Mn(h−1g)dµ(h) = f(g), for all f ∈ Tn.

Denote by
(4.15)

(σnf)(g) :=
∫

S2

f(h)K2
n(h−1g)dµ(h), (Vnf)(g) :=

∫

S2

f(h)Mn(h−1g)dµ(h)

and

(σn,Nf)(g) :=
∫

X

f(h)K2
n(h−1g)dµN (h),

(4.16) (Vn,Nf)(g) :=
∫

S2

f(h)Mn(h−1g)dµN (h)

(f ∈ C(S2), g ∈ SU [2]).

the continuous and discrete summmation processes corresponding to the K2
n

kernels and Mn.

Theorem 4.1 For all f ∈ C(S2),
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1)

(4.17) ||σnf − f || → 0, if n →∞,

2)

(4.18) ||Vnf − f || → 0 if n →∞

3)

(4.19) ||σn,Nf − f || → 0, if N, n →∞, so that n < N,

4)

(4.20) ||Vn,Nf − f || → 0 if n →∞, so that 3n < N,

where the norm is the maximum norm.

Proof. In the proof of Theorem 3.2 we have already showed that the set
Z of all spherical functions is dense in C(S2). From (4.10) and (4.11) we obtain
that ||σnf || ≤ ||f || for all f ∈ C(S2), consequently the linear operators σn :
C(S2) → C are uniformly bounded. Let denote by σ : C(S2) → C, σf := f the
identity operator. Because of orthonormality property of spherical functions

we get that for every z = t`k0 from Z, if n →∞ then σnt`k0 =
A2

n−`

A2
n

t`k0 → t`k0,

consequently for all z ∈ Z

lim
n→∞

||σnz − σz|| = 0.

Applying the Banach-Steinhaus theorem we get that (4.17) is true.

From (4.10) and (4.11) we obtain that

||Vnf || ≤ 1
n2

(A2
3n + 2A2

2n + A2
n)||f || ≤ 25||f ||.

Consequently Vn : C(S2) → C are also uniformly bounded. If l < n, then
Vnt`k0 = t`k0. In analogous way as before we get that (4.18) is true. The proof
of (4.19) and (4.20) is similar.

As in the case of one variable trigonometric interpolation (see [6] vol.II,
Chap.5) arises the question if we could compare the behaviour of (IN,nf) and
(Snf)?

The behaviour of (IN,nf) and (Snf) in norm will be the same if we
could prove the equivalence of the norms genereted by the continuous (dµ)
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and discrete (dµN ) measures. In one variable case the basic tool to prove the
equivalence of the norms is the so called Marczinkievicz inequality (see [6] vol.II,
p.30). In what follows we will prove Marczinkievicz type inequality regarding
to the spherical polynomials in the system t`m0.

5. Marcinkiewicz type inequalities

Theorem 5.1. Let n,N be positive integers so that 3n < N . Consider a
linear combination of spherical functions of order n of the following form

(5.1) S(g) =
n∑

l=0

(2l + 1)
l∑

k=−l

cN
lktlk0(θ, ϕ).

Then there exist constants A and Ap, depending only on p, such that

(5.2)




∫

S2

|S(g)|pdµN




1/p

≤ A




∫

S2

|S(g)|pdµ




1/p

(1 ≤ p ≤ +∞)

and

(5.3)




∫

S2

|S(g)|pdµ




1/p

≤ Ap




∫

S2

|S(g)|pdµN




1/p

(1 < p < +∞).

Proof. Let S be a linear combination of spherical functions of order n,
then

(5.4) Sn[S](x) = S(x) =
∫

S2

S(y)Dn(y−1x)dy.

We can substitute Dn in formula (5.4) by any linear combination of spherical
functions of which partial sum of order n is Dn. One of these functions is Mn

defined by formula (4.12).
We observe that

(5.5) A2
3n + 2A2

2n + A2
n =
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=
1
2
[(3n + 1)(3n + 2) + 2(2n + 1)(2n + 2) + (n + 1)(n + 2)] = (3n + 2)2.

Replacing in (5.4) Dn by Mn we have

(5.6) |S(x)| =

=

∣∣∣∣∣∣

∫

S2

S(y)Mn(y−1x)dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

S2

S(y)
1
n2

(A2
3nK2

3N − 2A2
2nK2

2n + A2
nK2

n)dy

∣∣∣∣∣∣
≤

≤ 1
n2

A2
3n

∫

S2

|S(y)|K2
3ndy +

1
n2

2A2
2n

∫

S2

|S(y)|K2
2ndy +

1
n2

A2
n

∫

S2

|S(y)|K2
ndy.

Let n ≥ 2 and Φ be a nondecreasing convex function, and p(x) ≥ 0, then

(5.7) Φ
(∫

pg

)
≤

∫
pΦ(g).

Because K2
n is a positive kernel from (4.10), (4.11) and from the properties of

Φ we get

Φ
(

1
42
|S(x)|

)
≤ Φ

(
n2

(3n + 2)2
|S(x)|

)
≤ 1

(3n + 2)2
A2

3nΦ




∫

S2

|S(y)|K2
3ndy


+

(5.8)

+
1

(3n + 2)2
2A2

2nΦ




∫

S2

|S(y)|K2
2ndy


 +

1
(3n + 2)2

A2
nΦ




∫

S2

|S(y)|K2
ndy


 ≤

≤ 1
(3n + 2)2

A2
3n

∫

S2

Φ(|S(y)|)K2
3ndy +

1
(3n + 2)2

2A2
2n

∫

S2

Φ(|S(y)|)K2
2ndy+

+
1

(3n + 2)2
A2

n

∫

S2

Φ(|S(y)|)K2
ndy.

Considering the discrete integral of the last inequality we obtain

∫

X

Φ
(

1
42
|S(x)|

)
dµN (x) ≤ 1

(3n + 2)2
A2

3n

∫

X




∫

S2

Φ(|S(y)|)K2
3ndµy


 dµN (x)+
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+
1

(3n + 2)2
2A2

2n

∫

X




∫

S2

Φ(|S(y)|)K2
2Ndµy


 dµN (x)+

(5.9) +
1

(3n + 2)2
A2

n

∫

X




∫

S2

Φ(|S(y)|)K2
ndµy


 dµN (x).

Interchanging the order of the integration and taking into account (4.11) we
get

(5.10)
∫

X

Φ
(

1
42
|S(x)|

)
dµN (x) ≤ 1

(3n + 2)2
A2

3n

∫

S2

Φ(|S(y)|)dµy+

+
1

(3n + 2)2
2A2

2n

∫

S2

Φ(|S(y)|)dµy +
1

(3n + 2)2
A2

n

∫

S2

Φ(|S(y)|)dµy =

=
∫

S2

Φ(|S(y)|)dµy

If we consider Φ(u) = up from (5.10) results that (5.2) is true and the absolute
constant is A = 42.

Applying the representation theorem of Riesz we have: if 1/p + 1/p′ = 1,
then

(5.11)




∫

S2

|S|pdµ




1/p

= sup
||g||p′=1

∣∣∣∣∣∣

∫

S2

Sgdµ

∣∣∣∣∣∣
= sup
||g||p′=1

∣∣∣∣
∫

SSn[g]dµ

∣∣∣∣ =

= sup
||g||p′=1

∣∣∣∣
∫

SSn[g]dµN

∣∣∣∣ ≤ sup
||g||p′=1

(∫
|S|pdµN

)1/p (∫
|Sn[g]|p′dµN

)1/p′

=

=
(∫

|S|pdµN

)1/p

sup
||g||p′=1

(∫
|Sn[g]|p′dµN

)1/p′

≤ Ap

(∫
|S|pdµN

)
.

Using (5.2) we obtain

(5.12)
(∫

|Sn[g]|p′dµN

)1/p′

≤ A

(∫
|Sn[g]|p′dµ

)1/p′

.
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It is easy to see that there exists a number Rp′ independent from n and g so
that

(5.13) sup
||g||p′=1

(∫
|Sn[g]|p′dµ

)1/p′

< Rp′ .

Let denote Ap := ARp′ , for this constant (5.3) is true.
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