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Abstract. Extending a result of Subbarao [4], we give a characterization of

a class of integer-valued multiplicative functions satisfying some congruence

relation.

1. Introduction

Starting with a famous article of Paul Erdős [1], the characterization of
an additive arithmetical function as a logarithm has turned to be a rather
classical problem in Probabilistic Number Theory, and similarly, the question
of the determination of multiplicative functions has been considered. One of
the oldest results, now quite classical, is due to Subbarao [4] who proved in 1966
that if f is an integer-valued multiplicative function defined on the semigroup
of the positive integers N∗, f(1) 6= 0, and if for all positive integers m and n
the relation f(m + n) ≡ f(m) mod n holds, then there exists a non-negative
integer k such that f(n) = nk for all n of N∗.

In this article, we shall give an extension of this result.
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2. Result

We have the following result:

Theorem 1. Let p be an odd prime number and a, b, c be elements of N∗

relatively prime with p such that

i) a is a primitive root mod p, and p2|/ap−1 − 1, and is not a squarefull
number, i.e. there is a prime q such that q|a, q2|/a.

ii) b is a primitive root mod p, and p2|/ap−1 − 1.
iii) c 6= 1.
iiii) The numbers a, b, c are multiplicatively independent, which means that

the relation akblcm = 1, k, l, m ∈ Z, implies that k = l = m = 0.
We denote by S the semigroup generated by a, b, c.
Let f be an integer-valued function defined on S, multiplicative on S, i.e.

if n ∈ S and is written n = akblcm, where k, l,m are non-negative integers, we
have f(n) = f(akblcm) = f(ak)f(bl)f(cm), and such that f(1) 6= 0.

Assume that there exists a sequence of positive integers α(k), k ∈ N∗, such
that lim

k→+∞
α(k) = +∞ and that

(H) for all positive elements m and n of S, the condition n ≡ m mod pk

implies that f(n) ≡ f(m) mod pα(k).
Then, f is the restriction to the semigroup S of a function F defined on

the set of the elements of N∗ relatively prime to p and either by F (n) = nr, or

F (n) =
(

n

p

)
nr, where r is a non-negative integer and

(
n

p

)
is the Legendre

symbol mod p.

Remark 1. The proof will show that the number c is introduced
essentially for technical reasons and, in fact, it is reasonable to do the following
conjecture.

Conjecture 2. Let p an odd prime number and a and b be elements of
N∗ relatively prime with p satisfying conditions i) and ii) of the above theorem
and

iii’) the numbers a, b are multiplicatively independent, i.e. if akbl = 1,
k, l ∈ Z, then k = l = 0.

As above, we denote by S the semigroup generated by a and b, and f is
an integer-valued function defined on S, multiplicative on S, f(1) 6= 0, and we
assume that there exists a sequence of positive integers α(k), k ∈ N∗, such that
lim

k→+∞
α(k) = +∞, and that the condition (H) is satisfied.
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Then, the same conclusion as in the above theorem still holds.

Remark 2. We underline the fact that the identification of f and F
is valid only on the semigroup S, i.e. if n ∈ S and is written n = akblcm,
where k, l, m are non-negative integers, the theorem will give only the following
equalities:

f(n) = f(akblcm) = f(ak)f(bl)f(cm) =

= F (akblcm) = F (ak)F (bl)F (cm) =

= F (a)kF (b)lF (c)m = f(a)kf(b)lf(c)m.

Elsewhere, we have no more information concerning this identification.

Typically, if f(m) is an ordinary positive multiplicative function and it
satisfies the hypothesis of the above theorem with some a, b, c and for instance,
a = 4, f(4) = 4, and f(2) = 4, the result will give that f(4) = F (4), and so,
|F (2)| = 2 since F (4) = F (2)2 = 4, but evidently not that |F (2)| = f(2) since
we have f(2) = 4.

An immediate corollary of the above theorem is the following

Corollary 3. Let f be an integer-valued multiplicative function defined
on the semigroup of the positive integers N∗.

Assume that f(1) 6= 0 and there exists a sequence of positive integers α(k),
(resp. βk), k ∈ N∗, such that lim

k→+∞
α(k) = +∞, (resp. lim

k→+∞
β(k) = +∞),

and two different odd prime numbers p and q such that
(H ′) for all positive elements m and n of N∗, the condition n ≡ m mod pk

(resp. n ≡ m mod qk) implies that f(n) ≡ f(m) mod pα(k) (resp. f(n) ≡
≡ f(m) mod qβ(k)).

Then, there exists a non-negative integer k such that f(n) = nk for all n
of N∗.

Remark 3. An immediate consequence of this corollary is the result of
Subbarao presented above.

3. Proofs

3.1. Proof of the theorem

1) Since f is integer-valued, it can be identified to a function with values
in Zp, the ring of the p-adic integers, and the hypothesis H give immediately
that f is a uniformly continuous function on S for the p-adic topology, and as
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a consequence, can be identified to the restriction of a continuous function F
defined on S, the p-adic closure of S, with values in Zp.

Since a is a primitive root mod p, and p2|/ap−1 − 1, the sequence ak, k ∈
∈ N∗, is dense in Z∗p , the multiplicative group of the p-adic units ([5], Ch VI,
2-e, p.107) and so, we get that S = Z∗p .

2) As in the case of a, since b is a primitive root mod p, and p2|/bp−1 − 1,
the sequence bk, k ∈ N∗, is dense in Z∗p .

Let q be an element of Z∗ such that (q, p) = 1, and let λk(q) (resp.
µk(q)) be a sequence of positive integers such that lim

k→+∞
bλk(q) = q (resp.

lim
k→+∞

aµk(q) = q).

It is clear that, if r is in N , by continuity of F , we have

F (qr) = F

((
lim

k→+∞
bλk(q)

)r)
= F

(
lim

k→+∞
brλk(q)

)
=

= lim
k→+∞

F
(
brλk(q)

)
= lim

k→+∞
f

(
brλk(q)

)
,

and similarly for a, if s is in N , we have

F (qs) = F

((
lim

k→+∞
aµk(q)

)s)
= F

(
lim

k→+∞
asµk(q)

)
=

= lim
k→+∞

F
(
asµk(q)

)
= lim

k→+∞
f

(
asµk(q)

)
.

This gives that, for any r and s in N , we have

F
(
qr+s

)
= F (qrqs) = F

((
lim

k→+∞
brλk(q)

)
×

(
lim

k→+∞
asµk(q)

))

since the sequences ak and bk, k ∈ N∗, are dense in Z∗p ,

= F

(
lim

k→+∞

(
brλk(q) × asµk(q)

))
= lim

k→+∞
F

(
brλk(q) × asµk(q)

)

by continuity of F ,

= lim
k→+∞

f
(
brλk(q) × asµk(q)

)

since f and F coincide on S,

= lim
k→+∞

(
f

(
brλk(q)

)
× f

(
asµk(q)

))
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since f is multiplicative on S,

= lim
k→+∞

(
F

(
brλk(q)

)
× F

(
asµk(q)

))

since f and F coincide on S,

= lim
k→+∞

(
F

(
brλk(q)

)
× lim

k→+∞
F

(
asµk(q)

))
= F (qr)× F (qs)

by continuity of F .
As a consequence, we get that for all q in Z∗p , if µk(q) is a sequence of

positive integers such that lim
k→+∞

aµk(q) = q, we have, since F is continuous,

F (q) = F

(
lim

k→+∞
aµk(q)

)
= lim

k→+∞
F

(
aµk(q)

)
=

= lim
k→+∞

f
(
aµk(q)

)
= lim

k→+∞
f(a)µk(q).

Another consequence is that if q ∈ S and is written q = akblcm, where
k, l, m are non-negative integers, we have

f(q) = f(akblcm) = f(a)kf(b)lf(c)m,

since

f(q) = f(akblcm) = f(ak)f(bl)f(cm) = F (akblcm) =

= F (ak)F (bl)F (cm) = F (a)kF (b)lF (c)m = f(a)kf(bl)f(c)m.

Moreover, we get also that F (Z∗p ) ⊆ Z∗p .

For if q ∈ Z∗p , we have, with the same notation as above,

F (q)l(p−1) = F
(
ql(p−1)

)
= F

(
lim

k→+∞
al(p−1)µk(q)

)
=

= lim
k→+∞

F
(
al(p−1)µk(q)

)
= lim

k→+∞
f

(
al(p−1)µk(q)

)
,

and if l is large enough, f
(
al(p−1)

) ∈ 1 + pZp. So, F is a continuous
representation of Z∗p into Z∗p .

3) Now, we define three numbers A,B, C, by A = ap−1, B = bp−1, C =
= cp−1.
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We remark that A ∈ 1 + pZp, but A 6∈ 1 + p2Zp, and so, denoting by log
the p-adic logarithm, log A is in pZ∗p , and since log B ∈ pZp and log C ∈ pZp,
log B/ log A and log C/ log A are both in Zp. As a consequence, we have, in Zp,

A = exp(log A),

B = exp ((log A)(log B/ log A)) ,

C = exp ((log A)(log C/ log A)) .

Now, since F (A) = f
(
ap−1

)
= f(a)p−1 and f(a) is in Z∗p , we know that

F (A) is in 1 + pZp. As a consequence, we can write F (A) in the form F (A) =
= exp(log(F (A))). Moreover, since we have B = exp((log A)(log B/ log A)), by
continuity of F , we have

F (B) = F (exp((log A)(log B/ log A))) = F
(
(exp(log A))(log B/ log A)

)
=

= F (exp(log A))(log B/ log A) = F (A)(log B/ log A) =

= f(A)(log B/ log A) = exp(log(f(A))× (log B/ log A)),

and similarly,
f(C) = exp(log(f(A))× (log C/ log A)).

Consider now Σ, the Z-module generated by the three p-adic integers 1,
log B/ log A, log C/ log A. Σ is a group of rank 3 on Z, for if there exist
k, l, m in Z such that k + l(log B/ log A) + m(log C/ log A) = 0, this means
that k log A + l log B + m log C = 0, and since A,B, C are multiplicatively
independent, we have k = l = m = 0. Now, we remark that for all σ ∈ Σ,
exp(σ log A) and exp(σ log f(A)) exist and take only rational values. We recall
now the p-adic version given by Serre [3] of the well-known ”six exponentials
theorem” of Lang [2]:

Theorem 4. Let A be a free subgroup of Qp of finite rank a ≥ 3 on Z, b1

and b2 ∈ Qp, b1, b2 6= 0. Assume that for all z ∈ A, exp b1z and exp b2z are
algebraic on Q. Then, b1 and b2 are dependent on Q, i.e. b1/b2 ∈ Q.

Remark 4. It is in order to mention now that the our conjecture is in
fact essentially the well-known ”four exponentials conjecture”, which can be
formulated like that:

Conjecture 5. Let A be a free subgroup of Qp of finite rank a ≥ 2 on
Z, b1 and b2 ∈ Qp, b1, b2 6= 0. Assume that for all z ∈ A, exp b1z and exp b2z
are algebraic on Q. Then, b1 and b2 are dependent on Q, i.e. b1/b2 ∈ Q.

We check now that this allows to assert that log A and log f(A) are ratio-
nally dependent, i.e. there exist integers r and s such that r log A = s log f(A).
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First, Σ is a subgroup of Qp since it is generated as a Z-module by 1,
log B/ log A, log C/ log A, which are elements of Zp, and Σ is a free group of
rank 3 on Z.

Second, for all σ ∈ Σ, exp(σ log A) and exp(σ log f(A)) are algebraic on Q
since they take only rational values.

So, the ”six exponentials theorem” gives that log A and log f(A) are ratio-
nally dependent, i.e. there exist integers r and s such that r log A = s log f(A).

This means exactly that Ar = f(A)s, i.e. a(p−1)·r = f(a)(p−1)·s.
We shall drop the trivial case when r and s are equal to 0.
If rs 6= 0, since a and f(a) are integers, we get that ar = |f(a)|s, which

gives us that r and s are positive integers.
Now, since a is not squarefull, there exists a prime q such that q‖a, and

so, qr‖ |f(a)|s. This gives us that if ql‖ |f(a)|, then r = ls, and so, s divides r
and we have ak = |f(a)| for some k in N∗.

4) Now, let u be any prime number different of p. We chose a non-negative
integer r such that u.ar ≡ 1 mod p. u.ar will be denoted by U .

We remark that since U is in 1 + pZp, we can write log U as

log U = (log A)(log U/ log A).

This gives us that

F (U) = F (exp((log A).(log U/ log A)))

and by continuity of F , this can be written as

F (U) = (F (exp log A))(log U/ log A).

Since F (A) = Ak and A is a generator of 1 + pZp, we get that

(F (exp log A)) = F (A) = exp log Ak = exp(k log A),

and so, we obtain that

F (U) = (F (exp log A))(log U/ log A) =

= (exp k log A)(log U/ log A) = exp k log U = Uk.

So, this means that
F (u.ar) = (u.ar)k.
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But we know that
F (u.ar) = F (u)F (ar),

and that
F (ar) = f(ar),

since a is in S.
Now, since f(ar) is an integer and

f(ar) = f(a)r

using the fact that
|f(a)| = ak,

we get that

(u.ar)k = F (u.ar) = F (u)F (ar) = F (u)f(ar) =

= F (u)|f(a)|r(f(a)/|f(a)|)r = F (u)ark(f(a)/|f(a)|)r,

and this gives us that

(u.ar)k = F (u)ark(f(a)/|f(a)|)r,

and so
ark(uk − F (u)(f(a)/|f(a)|)r) = 0,

and since Zp has no divisors of zero, this implies that

uk = F (u)(f(a)/|f(a)|)r.

Now, the fact that (f(a)/|f(a)|)r takes the values 1 or −1 gives us that
F (u) is an integer and moreover, |F (u)| = uk, the constant k being independent
of u.

A consequence is that for all n in N∗ relatively prime with p,

|F (n)| = nk.

5) We remark that since for all n in N∗ relatively prime with p, |F (n)| =
= nk, the function χ(n) defined by χ(n) = F (n)/|F (n)| exists, is completely
multiplicative on the set of the n such that (n, p) = 1, and takes only the values
1 or −1. Now, since F is uniformly continuous on Z∗p , by density in Z∗p of the n

in N∗ relatively prime with p, there exists an l such that if m ≡ n mod pl, then
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F (m) − F (n) belongs to pZp. This means that (χ(m)|F (m)| − χ(n)|F (n)|) ∈
∈ pZp, and we deduce that since

χ(m)|F (m)| − χ(n)|F (n)| =

= (χ(m)(|F (m)| − |F (n)|)− (χ(n)− χ(m))|F (n)|) ∈ pZp

and (|F (m)| − |F (n)|) = mk − nk ∈ pZp, then (χ(n)− χ(m))|F (n)| ∈ pZp, i.e.
(χ(n) − χ(m))nk ∈ pZp, which implies that χ(n) = χ(m) because (n, p) = 1
and χ(n) = ±1. This allows to assert that there exists some r in N such that
the equality χ(n) = χ(n + pr) holds for all integers n such that (n, p) = 1.

Now, let n be any positive integer, (n, p) = 1, 1 ≤ n ≤ pr − 1. Viewed as
a p-adic integer, n can be written in a unique way as n = a(1 + pu), where a is
a (p − 1)-root of the unity, and u is in Zp. Since χ(n) = ±1 and p is odd, we
have χ(n)pr−1

= χ(n). This can be written as

χ(n) = χ(n)pr−1
= χ(a(1 + pu))pr−1

= χ(apr−1
(1 + pu)pr−1

) =

=χ(apr−1
).χ((1 + pu)pr−1

) = χ(a),

since apr−1
= a and (1 + pu)pr−1 ≡ 1 mod pr.

Hence we get that χ(n) = χ(n mod p), i.e. χ is a character mod p.

If χ is not identically equal to 1, denoting by
(

n

p

)
the Legendre symbol,

we have

χ(n) = 1 if
(

n

p

)
= 1,

since
(

n

p

)
= 1 means that n ≡ x2 mod p for some x and so, χ(n) = χ(x2) =

= χ(x)2 = 1.
Now, since χ is a real character, we have

∑

1≤m≤p−1

χ(n) = 0 =

=
∑

1≤m≤p−1, (n
p )=1

χ(n) +
∑

1≤m≤p−1, (n
p )=−1

χ(n) =

= (p− 1)/2 +
∑

1≤m≤p−1, (n
p )=−1

χ(n),
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for there are (p− 1)/2 quadratic residues mod p and so, we get that

∑

1≤m≤p−1, (n
p )=−1

χ(n) = −(p− 1)/2,

which implies that

χ(n) = −1 if
(

n

p

)
= −1,

for there are (p− 1)/2 non-quadratic residues mod p, and this gives us that

χ(n) =
(

n

p

)
.

3.2. Proof of the corollary

First, we apply the theorem to get that on the set of the elements of N∗

relatively prime to p, we have either f(n) = nk or f(n) =
(

n

p

)
nk, where k

is a non-negative integer. Similarly, the theorem gives that on the set of the
elements of N∗ relatively prime to q, we have either f(n) = nk′ or f(n) =

=
(

n

q

)
nk′ , where k′ is also non-negative integer.

Clearly, this implies that k = k′ since we have |f(n)| = nk = nk′ for all
n ∈ N∗ such that (n, pq) = 1.

Now, on the same set of the n ∈ N∗ such that (n, pq) = 1, we must

have f(n)/nk = 1 or
(

n

p

)
, or

(
n

q

)
. It is clear that neither the equality

(
n

p

)
=

(
n

q

)
, nor

(
n

p

)
= 1 or

(
n

q

)
= 1, can hold on the whole set of the n

such that (n, pq) = 1, and so, f(n)/nk = 1 for all n in N∗.
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Université Pierre et Marie Curie
175 Rue de Chevaleret, Plateau 7D
F-75013 Paris, France






